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The fault signals of rolling bearings have a very low signal-to-noise ratio (SNR), making it 

difficult to fully extract and reconstruct the fault signals. To solve the problem, this paper 

proposes a way to recognize rolling bearing faults based on improved variational modal 

decomposition (VMD) and fuzzy c-means (FCM) algorithm. Firstly, the measured vibration 

signals of rolling bearings were subject to VMD on different scales. Next, the FCM 

clustering was performed to classy and recognize the eigenvectors of sample signals. Then, 

the authors calculated the normalized energy ratio of the autocorrelation function for each 

model obtained by decomposition, and applied it to optimize and reconstruct modal signals. 

Finally, the eigenvectors of sample signals were classified and recognized through FCM 

clustering. Several experiments were carried out to compare the improved VMD with 

empirical mode decomposition (EMD) and local mean decomposition (LMD) in the fault 

recognition and classification of rolling bearings in different backgrounds of strong 

composite noises. The comparison shows that the improved VMD has a strong denoising 

ability; the stronger the additive noise, the more superior the improved VMD is to LMD and 

EMD, and the better its feature clustering effect. The experimental results fully manifest the 

effectiveness of the proposed method. 
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1. INTRODUCTION

During the operation of rotating machinery, the fault 

vibration signals are non-stationary and nonlinear, under the 

effects of strong background noise, structural deformation, 

acquisition instruments, and signal attenuation. Therefore, it is 

very difficult to extract the fault features of rolling bearings. 

To classify the faults of rolling bearing, the key is to 

effectively extract the fault features under strong noises [1]. 

The fault vibration signals measured from rolling bearings 

are featured by non-stationarity and nonlinearity [2, 3]. In 

recent years, empirical mode decomposition (EMD) and local 

mean decomposition (LMD) have been widely applied to 

extract the features for fault diagnosis [3]. However, the two 

recursive modal decomposition approaches face the problem 

of modal aliasing. They are unable to separate the components 

with similar frequencies. Besides, both EMD and LMD have 

the endpoint effect. Hence, the two approaches are susceptible 

to sampling frequency, and erroneous in decomposition [4, 5]. 

Yang et al. [6] utilized EMD to decompose the signal, and 

extracted the sensitive features of rolling bearings with the 

local tangent space alignment algorithm. Zolfaghari et al. [7] 

transformed the decomposed signals by the coef wavelet 

packet, searches for the maximum amplitude through fast 

Fourier transform, and makes the search result as a feature of 

bearing vibration signals. Wang et al. [8] processed the early 

fault signals with LMD, extracted fault frequencies by 

envelope spectrum analysis, and experimentally proved that 

their approach can effectively mine fault features. Despite 

their adaptability, these approaches each has its defects. For 

example, the EMD has serious modal aliasing, and the 

decomposition result is distorted by envelope error [9, 10]. 

LMD faces weaker modal aliasing than EMD, but still has 

the endpoint effect [11-13]. In 2014, DragomiRetskiy et al. 

presented a novel adaptive signal analysis method called 

variational modal decomposition (VMD). Through iterative 

search for the optimal solution to the variational model, this 

algorithm determines the center frequency and bandwidth of 

each modal, divides the signals in the frequency domain, and 

effectively separates different components. The VMD boasts 

high accuracy, fast convergence, and effective denoising effect. 

However, the modal components might be noise even after 

VMD. Therefore, modal signals with high signal-to-noise ratio 

(SNR) should be selected for signal reconstruction [14]. 

Ma et al. [15] studied the application of VMD in the fault 

classification of bearings, and extracted the fault features of 

rolling bearing by combining the signals reconstructed from 

the VMD results with the Teager energy operator. Mohanty 

[16] optimized the VMD parameters, then processed the early

fault signals of rolling bearings, and succeeded in extracting

weak feature information. The fuzzy c-means (FCM)

algorithm, a common technique in fuzzy cluster analysis,

classifies data by clustering similar data points. This algorithm

has been widely adopted to detect machine faults [17, 18].

Through the above analysis, this paper proposes a rolling 

bearing fault recognition method that improves VMD with 

FCM. Comparative experiments were carried out on the 

denoising effect of our method in the context of strong 

composite noises. The results show that our improved VMD 

can effectively remove noises. Then, the method was applied 
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to analyze the data of rolling bearing fault tests, and compared 

with EMD and LMD in clustering effect. It was learned that 

our method is superior and effective in recognizing rolling 

bearing faults. 

 

 

2. IMPROVED VMD ALGORITHM 

 

2.1 VMD 

 

The VMD needs to preset the scale K, i.e., the number of bi-

dimensional intrinsic modal functions (BIMFs) obtained 

through decomposition. Through an iterative process, the 

VMD obtains the optimal solution to the variational model, 

and determines the frequency centers and modal functions of 

the K BIMFs. To evaluate the bandwidth of each modal, a 

variational constraint can be constructed as: 
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where, uk is a BIMF; ωk is the center frequency of the BIMF; 

∂t is the search for partial derivative of time t; δ(t) is the unit 

pulse function; f(t) is the original signal. 

To find the optimal solution, secondary penalty factor α and 

Lagrangian multiplier λ need to be introduced to get the 

augmented Lagrangian function L: 
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(2) 

 

Then, the alternating direction method of multipliers 

(ADMM) is applied to iteratively find the minimum point of 

L. The specific process of the VMD can be summarized as 

follows: 

Step 1. Initialize �̂�𝑘
1 , 𝜔𝑘

1 , and �̂�, and 𝑛 ← 0; 

Step 2. 𝑛 ← 𝑛 + 1, execute the loop;  

Step 3. k=1:K, update �̂�𝑘(𝜔): 
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Step 4. Update ωk: 
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where, �̂�𝑘 is the final state function in the frequency domain; 

�̂� is the Lagrangian multiplication operator in the frequency 

domain; 𝑓 is the original signal in the frequency domain. 

Step 5. Update �̂�(𝜔): 
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where, γ is the noise tolerance coefficient. To ensure the 

denoising effect, the γ value can be set to zero. 

Step 6. Repeat Steps 2-4 until the precision e meets the 

given convergence constraint e>0: 
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Step 7. End the loop and output K components. 

 

2.2 Autocorrelation function and normalized energy ratio 

 

The correlations between signals at difference moments can 

be compared by the autocorrelation function: 

 

𝑅𝑥(𝜏) = lim
𝑇→∞

1

𝑇
∫ 𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑑𝑡
𝑇

0

 (7) 

 

For periodic signals, the autocorrelation function is 

generally nonzero. For noise signals, the autocorrelation 

function quickly converges to zero with the growth of time 

delay. Therefore, the autocorrelation function can be used to 

evaluate the noise level of signals. 

Let S(t)=cos(20πt) be a signal. After the signal was 

separately added a noise of 10dB, 5dB, 0dB, and -10dB, the 

corresponding autocorrelation functions can be calculated as 

Figure 1. 

 

 
 

Figure 1. Autocorrelation functions of different noisy signals 

 

As can be seen from Figure 1, the autocorrelation function 

is an even function of τ, and maximized at 1 when τ=0. The 

higher the noise level of the signal (except τ=0), the closer the 

function value is to zero. 

Then, the normalized energy ratio ρx can be introduced to 

better describe the features of the autocorrelation function. 

Suppose the autocorrelation function of any signal is: 

 

𝑅𝑥(𝜏) = [𝑅𝑥(−𝑁), 𝑅𝑥(−𝑁
+ 1),⋯ , 𝑅𝑥(0),⋯ , 𝑅𝑥(𝑁)] 

(8) 
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Its energy is: 

 

𝐸𝑅𝑥 = ∑ 𝑅𝑥
2(𝜏)

𝑁

𝜏=−𝑁

 (9) 

 

The energy of the autocorrelation function peaks at ERmax, 

when the signal is a constant direct current (DC) signal. Thus, 

the normalized energy ratio 𝜌𝑥 can be defined as: 

 

𝜌𝑥 =
𝐸𝑅𝑥
𝐸𝑅𝑚𝑎𝑥

 (10) 

 

The ρx values of the above noisy signals can be calculated 

as 0.5, 0.4149, 0.2861, 0.1368, and 0.0076, respectively. 

To sum up, the autocorrelation function and normalized 

energy ratio help to identify the SNR of each signal. The 

smaller the SNR, the higher the noise level, and the smaller the 

ρx. The inverse is also true.  

 

2.3 Signal reconstruction based on modal energy ratio 

 

It is assumed that a composite signal contains 4 signals: 

low-frequency 10Hz signal S1(t), 130Hz signal S2(t), 140Hz 

signal S3(t), and 450Hz signal S4(t). The components of the 

composite signals are either continuous or intermittent in 

terms of frequency: 

 

𝑆1(𝑡) = 0.1 cos(2𝜋10𝑡) 
𝑆2(𝑡) = 0.5 cos(2𝜋130𝑡) 
𝑆3(𝑡) = 0.5 cos(2𝜋140𝑡) 

𝑆4(𝑡) =

{
 
 
 

 
 
 
0.3 cos(2𝜋450𝑡),               (0 ≤ 𝑡 ≤ 0.2𝑠)

0,                                        (0.2 ≤ 𝑡 ≤ 0.4𝑠)

0.3 cos(2𝜋450𝑡),           (0.4 ≤ 𝑡 ≤ 0.8𝑠)

0,                                        (0.8 ≤ 𝑡 ≤ 1.1𝑠)

0.3 cos(2𝜋450𝑡), (1.1 ≤ 𝑡 ≤ 1.45𝑠)

0,                                      (1.45 ≤ 𝑡 ≤ 1.7𝑠)

0.3 cos(2𝜋450𝑡),               (1.7 ≤ 𝑡 ≤ 2𝑠)

 

𝑆(𝑡) = 𝑆1(𝑡) + 𝑆2(𝑡) + 𝑆3(𝑡) + 𝑆4(𝑡) 

(11) 

 

Figure 2 shows the modals after VMD. Among the six 

modals, BIMF1, BIMF2, BIMF3, and BIMF6 have basically 

the same features as the original signal, despite having some 

noises; BIMF4 and BIMF5 correspond to decomposed noise 

bands, which are not features of the original signal. 

Table 1 lists the ρx values of the six modal signals obtained 

by VMD. Figure 3 shows the autocorrelation functions of the 

modal signals. 

As shown in Table 1 and Figure 3, BIMF4 and BIMF5 had 

far smaller ρx values (close to zero) than other modals. Their 

SNRs were very poor. Therefore, the two components must be 

the decomposed noise bands. 

During signal reconstruction, the signals of the two noise 

modals, namely, BIMFs 4 and 5, were removed to obtain the 

reconstructed signal and its spectrum (Figure 4). 

 

Table 1. Energy ratio of each modal (K=6) 

 
Modal BIMF1 BIMF2 BIMF3 

Energy ratio ρx 0.3158 0.4850 0.4928 

Modal BIMF4 BIMF5 BIMF6 

Energy ratio ρx 0.0155 0.0135 0.1760 

 

 
 

Figure 2. VMD results of noisy signal  

 

 
 

Figure 3. Autocorrelation functions of modal signals 

 

Figure 4 suggests that the reconstructed signal retained the 

features of the original signal, and contained much fewer 

noises, due to the removal of the noise bands of BIMF4 and 

BIMF5. In other words, the reconstructed signal can retain the 

features of the original signal and eliminates the noises of that 

signal through the following steps: calculating the normalized 

energy ratio of the autocorrelation function for each modal 

acquired by VMD, setting the corresponding threshold, and 

selecting modals with high SNR for reconstruction. 

 

 
 

Figure 4. Comparison between reconstructed signal and 

original signal 
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To further verify the denoising effect of the improved VMD 

in different noise backgrounds, the simulated fault signal (11) 

was added composite noise signals of -5dB, -10dB, and -15dB, 

respectively, and then decomposed by the improved VMD, 

EMD, and LMD in turn. Table 2 presents the SNRs of the 

signals reconstructed by the three methods. 

 

Table 2. Denoising effects of improved VMD, EMD, and 

LMD in different noise backgrounds 

 
Decomposition 

method 

Noise level 

SNR (dB) 

Improved 

VMD 
LMD EMD 

-5dB 3.3 -4.24 -3 

-10dB 1.81 -9.47 -7.52 

-15dB -1.08 -14.38 -12.05 

 

As shown in Table 2, after the simulated fault signal was 

added composite white noises with different SNRs, the 

reconstructed signal saw a decline in its SNR, with the 

enhancement of noise. Under the three different noise 

backgrounds, the signal reconstructed by the improved VMD 

had a far higher SNR than EMD and LMD. Under the additive 

noise of -5dB, the improved VMD led the LMD and EMD by 

7.54 and 6.3 in SNR, respectively; under the noise of -10dB, 

the leads increased to 11.28 and 9.33, respectively; under the 

noise of -15dB, the leads further grew to 13.3 and 10.97, 

respectively. In general, the stronger the additive noise, the 

greater the leads. This means the advantage of the improved 

VMD in denoising over LMD and EMD increases with the 

noise intensity. 

 

 

3. FCM CLUSTERING 

 

Taking the weighted sum of the Euclidean distance and 

fuzzy membership between each data point and each cluster 

head as the objective function, the FCM clustering gathers 

similar data points into the clusters through iterative correction 

of the fuzzy classification matrix and cluster heads, until 

meeting the convergence constraint at the given precision. 

Let X={x1, x2, ⋯, xn} be the set of data samples, with n being 

the number of samples; V=[v1, v2, ⋯, vc]T be the cluster head 

vector, with c being the number of cluster heads; U=[uij]c×n be 

the fuzzy classification matrix, with uij being the membership 

of the j-th data point xj relative to the i-th cluster head vi. Then, 

the objective function of the FCM clustering can be defined as: 
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where, 𝑑𝑖𝑗 = ‖𝑥𝑗 − 𝑣𝑖‖ is the Euclidean distance from the the 

j-th data point xj to the i-th cluster head vi; m=2 is the fuzzy 

weight index. Then, the following constraints can be 

introduced: 
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(13) 

Hence, the FCM clustering mainly iteratively computes U 

and V to find the minimum interval of the objective function 

under the above constraints. The process of FCM clustering 

can be detailed as follows: 

Step 1. Define the number of cluster heads c and fuzzy 

weight index m; initialize fuzzy classification matrix; set the 

number of iterations l=0. 

Step 2. Update vi: 
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Step 3. Update U: 
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Step 4. Repeat Steps 2-4 until the precision e meets the 

given convergence constraint e>0:  

 

eUU ll −+1
 

 

The clustering effect can be evaluated by the classification 

coefficient F and mean fuzzy entropy H: 
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The clustering effect improves as the F value approaches 1 

and the H value approximates 0. 

 

 

4. EXPERIMENTAL ANALYSIS  

 

6205-2RS SKF bearings were selected for fault diagnosis 

experiments. Local damages were made on the bearings 

manually with an electric discharge machine. Then, vibration 

acceleration sensors were installed on the casing at the upper 

end of the motor output support bearing. After that, the 

vibration signals were measured at different faults, rotation 

speeds, and load conditions. The vibration signals were 

analyzed to identify different fault states. 

Improved VMD, EMD, and LMD were separately applied 

to decompose the data on four different states: normal state, 

inner ring fault, outer ring fault, and ball fault. A total of 100 

data samples were collected for each state. The feature 

parameters of each dataset were calculated, including variance 

ν, kurtosis β, and waveform factor Sf. The three characteristic 

quantities of each dataset were compiled into a 400×3 data 

matrix, serving as the eigenvector of FCM clustering. The 

clustering parameters were configured as: the number of 

cluster heads c=4; fuzzy weight index m=2; convergence 

precision e=0.001. The clustering results are shown in Figure 

5, where each “·” represents a cluster head. 
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(a) No decomposition 
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(b) EMD 
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(c) LMD 
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(d) Improved VMD 

 
 

Figure 5. Clustering effects of different decomposition 

methods 

 

Figure 5 shows that, after being processed by the FCM 

algorithm, the 100 datasets were not decomposed, or 

decomposed by EMD, LMD, and improved VMD, 

respectively. The clustering results of no decomposition, EMD, 

and LMD cases had two problems: some samples were far 

from cluster heads; some fault samples of different classes 

were mixed together. These problems were the most severe in 

the no decomposition case, where the clustering effect was the 

worst, adding to the difficulty of fault sample classification. 

Meanwhile, the fault samples obtained by improved VMD all 

gathered around the four cluster heads, with clear boundaries 

between fault classes. Thus, the improved VMD had much 

better clustering effect than the other three processing 

approaches. 

To further compare the effects of different decomposition 

methods, the classification coefficient F, and mean fuzzy 

entropy H of each method are obtained as shown in Table 3. 

 

Table 3. Fault clustering effects of different decomposition 

methods 

 
Clustering 

effect 

parameters 

No 

decomposition 
EMD LMD 

Improved 

VMD 

Classification 

coefficient F 
0.8234 0.8620 0.8376 0.9599 

Mean fuzzy 

entropy H 
0.3483 0.2802 0.3310 0.0955 

 

As shown in Table 3, the improved VMD had the largest F 

value, which was the closest to 1. It was higher than the F 

values of EMD, LMD, and no decomposition by 0.0879, 

0.1223, 0.1365, respectively. The improved VMD also 

achieved the minimal H value, which was the closest to 0. It 

was lower than the H values of EMD, LMD, and no 

decomposition by 0.1847, 0.2455, and 0.2528, respectively. 

These results demonstrate that the improved VMD has a strong 

denoising effect, i.e., it can effectively remove the noises from 

the fault signals of rolling bearings. This effect greatly 

improves the fault detection ability.  

 

 

5. CONCLUSIONS 

 

This paper suggests optimizing and reconstructing the 

signals decomposed by VMD by modal energy ratio. This 

strategy can effectively remove noises from noisy signals, 

while retaining the fault features. The stronger the noise, the 

more superior the improved VMD is to LMD and EMD. Next, 

the eigenvectors of sample signals were classified and 

recognized through FCM clustering. Then, the clustering 

effect of our method was compared with that of no 

decomposition, EMD, and LMD. The comparison shows that 

the fault samples obtained by the improved VMD all gathered 

around the four cluster heads, with clear boundaries between 

fault classes. Thus, the improved VMD had much better 

clustering effect than the other three processing approaches. 

Based on the improved VMD and FCM clustering, the 

proposed rolling bearing fault recognition method overcomes 

the difficulty in extracting the fault features of rolling bearings 

in the background of composite noises, and greatly improves 

the fault detection ability for rolling bearings.  
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