
Three-Dimensional Target Detection Based on RGB-D Data

Fuchun Jiang*, Hongyi Zhang, Chen Zhu

Fujian Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China

Corresponding Author Email: jiangfuchun@xmut.edu.cn

https://doi.org/10.18280/ts.380208 ABSTRACT

Received: 15 September 2020

Accepted: 25 January 2021

The current three-dimensional (3D) target detection model has a low accuracy, because the

surface information of the target can only be partially represented by its two-dimensional

(2D) image detector. To solve the problem, this paper studies the 3D target detection in the

RGB-D data of indoor scenes, and modifies the frustum PointNet (F-PointNet), a model

superior in point cloud data processing, to detect indoor targets like sofa, chair, and bed. The

2D image detector of F-PointNet was replaced with you only look once (YOLO) v3 and

faster region-based convolutional neural network (R-CNN) respectively. Then, the F-

PointNet models with the two 2D image detectors were compared on SUN RGB-D dataset.

The results show that the model with YOLO v3 did better in target detection, with a clear

advantage in mean average precision (>6.27).

Keywords:

indoor RGB-D data, target detection,

detection accuracy, frustum PointNet (F-

PointNet)

1. INTRODUCTION

With the recent development of deep learning (DL), image

processing technologies have emerged one after another,

bringing considerable achievements in image-based target

detection. However, not many scholars have applied DL to

target detection of three-dimensional (3D) point cloud data.

Compared with two-dimensional (2D) images, 3D point cloud

data can accurately represent the surface information, [1] and

some depth information [2] of the target. Because of its various

sources, 3D point cloud data have attracted a growing attention,

making it interesting to further apply DL to target detection of

3D point cloud data.

Currently, it is an open question how could 3D point cloud

data be imported to neural networks by DL. To facilitate the

importation, the literature [3] adopted the energy equation to

obtain the 3D regression frame under the framework of the fast

region-based convolutional neural network (R-CNN).

However, there is yet no practical or effective detection

method for occluded target. Under the architecture of faster R-

CNN, Literature [4] proposed a 3D region proposal network

(RPN), which can effectively detect occluded targets. But the

3D RPN is too slow to achieve real-time processing. Under the

framework of you only look once (YOLO) network, Literature

[5] drew the merits of relevant research [6-8], and came up

with a new CNN architecture. With a running rate of 50 frames

per second (fps), the new architecture reaches the standard for

real-time processing. Nonetheless, the architecture has errors

in the conversion between 3D and 2D coordinates, resulting in

large detection errors on small targets. Literature [9] proposed

the DenseFusion network, which covers the depth information

of each pixel in the image. The network greatly improves the

real-time processing speed, but does not perform well in small

target detection. Literature [10-12] converted point cloud data

into image information, and detected targets with fusion and

projection techniques [13-15]. However, the above approaches

are defected in target detection, because they more or less

ignore the disordered and local correlations in point cloud data.

This paper adopts the frustum PointNet (F-PointNet) [16]

model to directly process the original point cloud data, and

realize target detection of 3D point cloud data, without

needing to convert the input data into point cloud data.

Considering the restrictions on the features of point cloud data,

this strategy does not generate an overlarge dataset after data

conversion, avoids unnecessary calculations, improves

resource utilization, and ensures better detection effect.

2. F-POINTNET MODEL CONSTRUCTION

The F-PointNet generates a 2D area proposal from the

original image, locates it in the 3D point cloud data, and

thereby extracts the corresponding point cloud data. Then, the

point clou data are processed by the segmentation network of

PointNet [17], and 3D bounding box evaluation for 3D target

detection.

The basic architecture of F-PointNet (Figure 1) contains

three modules: the frustum proposal module, the 3D instance

segmentation module, and the non-modal 3D bounding box

evaluation module.

2.1 Frustum proposal module

In this module, 2D image target detection technology is

employed to classify the corresponding target in the image,

extract the target area, and obtain the parameters of the 2D

bounding box of the target. Then, the 2D target area is

extracted and mapped to the 3D point cloud data, based on the

depth information of the RGB-D image and the camera

projection matrix. From the 3D point cloud data, the frustum

containing the target is extracted. The specific procedure is

summarized as follows:

First, read the coordinates, images and labels of 3D point

cloud, and the data on the related conversion matrix from the

SUN RGB-D dataset [18-21]. Next, map the 2D bounding box

to the 3D point cloud through the conversion matrix, and filter

Traitement du Signal
Vol. 38, No. 2, April, 2021, pp. 315-320

Journal homepage: http://iieta.org/journals/ts

315

https://crossmark.crossref.org/dialog/?doi=10.18280/ts.380208&domain=pdf

out the point clouds outside the corresponding area in the 2D

plane. After that, implement a series of coordinate conversions

(Figure 2) and point cloud extractions/processing to extract the

frustum 3D point cloud data corresponding to the target area.

Figure 1. Basic structure of F-PointNet model
Note: n is the number of point clouds of the frustum point cloud extracted by frustum proposal module; m is the number of point clouds of the target point cloud
after instance segmentation; c is the number of point cloud channels; k is the number of target classes in point cloud.

Each extracted frustum point cloud has a unique direction

in the camera coordinate system. To facilitate data processing,

it is necessary to convert the coordinate system of the frustum

point cloud data from the camera coordinate system to the

frustum coordinate system. As shown in Figure 2, the

centerline of the frustum point cloud is rotated to a position

orthogonal to the image plane; then, the point cloud

coordinates are converted to the frustum coordinate system.

Figure 2. Point cloud coordinates

2.2 3D instance segmentation module

As its name suggests, this module mainly semantically

segments the point cloud. As shown in Figure 3, the module

receives the point cloud data extracted by the previous module,

implements semantic segmentation of the frustum point cloud

data with the aid of the one-hot vector, which is generated

through frustum extraction, and outputs the score of the class

of the 3D point cloud. The output score is a binary score for

the detection of target point cloud and other non-target point

clouds (background point clouds or other messy point clouds).

In this module, the mask operation combines the scores of

semantic segmentation, removes non-target point clouds from

the input 3D point cloud data of the frustum, and extracts the

point cloud of the target instance. After that, the coordinates

of the extracted target point cloud are converted from the

frustum coordinate system (Figure 2(b)) to the mask

coordinate system (Figure 2(c)), with the centroid of the target

point cloud as the origin. During the conversion, the centroid

coordinates of the target point cloud need to be subtracted

from all the target point clouds, forming the point cloud data

in the mask coordinate system.

Figure 3. Structure of 3D instance segmentation module
Note: n is the number of point clouds in the frustum point cloud; k is the number of target classes; mlp is multi-layer perceptron.

2.3 Non-modal 3D bounding box evaluation module

This module predicts the 3D bounding box of the target in

the 3D point cloud, based on the target point cloud data in the

mask coordinate system. The target centroid in the mask

coordinate system obtained by the previous module is not the

centroid of the real target. This is because, when the Velodyne

Lidar sensor scans the target, the point cloud obtained is

316

merely part of the point cloud data of the target facing the radar

direction. Therefore, the centroid position is adjusted with the

help of a lightweight T-Net (Figure 4), combined with the

global vector generated by the one-hot vector. The residual

data related to the centroid adjustment are generated by the

fully-connected layers. After that, the residual data are

subtracted from all the point cloud data, producing the point

cloud data in the local coordinate system (Figure 2(d)), with

the real target centroid as the origin.

After moving the target centroid and target point cloud

through T-Net, all point clouds are converted to the predicted

real target centroid as the origin of the local coordinate system,

and then processed by the non-modal 3D bounding box

evaluation module (Figure 5). After being processed by an

MLP similar to T-Net, the FCs eventually output all the

parameter information evaluated by the module, including the

centroid coordinates, length, width, and height of the bounding

box, residual error, heading angle, etc.

Figure 4. T-Net structure

Note: FCs are fully-connected layers; the numbers behind FCs are the number of output channels in each FC.

Figure 5. Structure of non-modal 3D bounding box evaluation module

2.4 Loss function

In the entire model, multiple networks are adopted to train

the 3D point cloud data, including the 3D instance

segmentation PointNet network of the 3D instance

segmentation module, and the T-Net and the PointNet network

in the non-modal 3D bounding box evaluation module. The

training losses of these networks are integrated into the loss L

of the overall model:

𝐿 = 𝐿𝑠𝑒𝑔 + 𝜆(𝐿𝑐1−𝑟𝑒𝑔 + 𝐿𝑐2−𝑟𝑒𝑔 + 𝐿ℎ−𝑐𝑙𝑠 + 𝐿ℎ−𝑟𝑒𝑔
+ 𝐿𝑠−𝑐𝑙𝑠 + 𝐿𝑠−𝑟𝑒𝑔 + 𝛾𝐿𝑐𝑜𝑟𝑛𝑒𝑟)

(1)

where, Lseg is the semantic segmentation loss in the 3D

instance segmentation of the PointNet; Lc1-reg is the centroid

conversion loss generated by the T-Net; Lc2-reg is the non-

modal centroid conversion loss of the 3D bounding box

evaluation PointNet; Lh-cls and Lh-reg are the classification loss

and semantic segmentation loss of heading angle of the

network model, respectively; Ls-cls and Ls-reg are the

classification and semantic segmentation losses of the

bounding box size of the network predicting the 3D bounding

box, respectively; λ=1 and γ=10 are model parameters; Lcorner

is the total loss of the eight predicted corners of the 3D

bounding box:

𝐿𝑐𝑜𝑟𝑛𝑒𝑟 = 𝐿𝛿 (∑∑min {∑‖Pk
ij
− Pk

∗‖,

8

k=1

∑‖Pk
ij

8

k=1

12

j=1

8

i=1

− Pk
∗∗‖,})

(2)

where, 𝑃𝑘
𝑖𝑗

 is the 3D vector of the k-th corner of the anchor box;

i is the number of the bounding boxes of eight sizes in the

anchor box; j is the number of the bounding boxes with twelve

heading angles in the anchor box; k is the number of the middle

corners of the 8 corners of the bounding box; 𝑃𝑘
∗ is the 3D

vector of the k-th corner of the real 3D bounding box;

‖𝑃𝑘
𝑖𝑗
− 𝑃𝑘

∗‖ is the distance between the k-th corner of the 3D

anchor box and the k-th corner of the real 3D bounding box;

𝑃𝑘
∗∗ is the 3D vector of the k-th corner of the 3D real bounding

box after being flipped by the angle π (the distance between

the predicted angle vector and the flipped vector needs to be

calculated, because the dataset is enhanced by flipping in the

experiment); ‖𝑃𝑘
𝑖𝑗
− 𝑃𝑘

∗∗‖ is the distance between the k-th

corner of the 3D anchor box and the k-th corner of the flipped

bounding box; 𝐿𝛿(𝑎) is the Huber loss function:

𝐿𝛿(𝑎) = {

1

2
𝑎2, |𝑎| ≤ 𝛿

𝛿 (|𝑎| −
1

2
𝛿) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where, a is the input of Huber loss function; 𝛿 is the control

parameter of the angle loss of the entire network. In the Huber

loss function, the angle loss is fitted from square error and

linear error. Before predicting the 3D bounding box of the

target point cloud, the authors predesigned eight anchor boxes

with different lengths, widths and heights, and 12 anchor

boxes with different heading angles, plus the boundaries

between adjacent boxes. The heading angle difference

between the boxes is 30°, and each anchor box contains 8

corners.

317

3. STRUCTURAL OPTIMIZATION OF F-POINTNET

3.1 2D image detector

In 3D target detection, it is critical to choose a suitable

algorithm for the 3D image detector. This paper selects

YOLOv3 and faster R-CNN as the algorithms for 2D image

detector. The former has delivered ideal experimental results

on the SUN RGB-D dataset, as a 2D image detector.

3.2 Parameter initialization

Parameter initialization is an important step in neural

network application. The main parameters to be initialized in

our work are weights and bias. During network training, the

bias is set to zero, but not all weights are initialized as zero.

Otherwise, the network will have the same weights during

model training, which will dampen the detection result.

Therefore, two strategies were selected for parameter

initialization: the Xavier method and the truncated normal

distribution method. The Xavier method keeps the activation

value of each layer consistent with the variance of the output,

and ensures the uniform distribution of the generated

parameters. The truncated normal distribution method

guarantees the normal distribution of the initial values, and

controls the difference between and average of all generated

values below twice the standard deviation after taking the

absolute value.

Figure 6 shows the test results on target detection accuracies

of the two different initialization methods. It can be seen that

the Xavier method achieved faster convergence, better

detection effect, and high efficiency than truncated normal

distribution method.

Figure 6. Target detection accuracies of different

initialization methods

3.3 γ2 regularization

During model training on massive data, it is crucial to avoid

overfitting and enhance the generalization ability of the model.

Thus, a 𝛾2 regularization term was added to the original loss

function:

𝐶 = 𝐶0 +
𝛿

2𝑛
∑𝜔2

where, C is the total loss of C0 after adding the weight

attenuation term; C0 is the loss before adding γ2 regularization;
𝛿

2𝑛
∑𝜔2 is the loss term after γ2 regularization; ω is the weight

in the neural network; δ is the γ2 regularization coefficient; n

is the number of training samples.

The reduction of network loss drags down the weight of the

network, making the network less complex and better

performing in data fitting. The loss function after 𝛾2

regularization can be defined as:

{

𝐿 = 𝐿𝑠𝑒𝑔

+𝜆 (
𝐿𝑐1−𝑟𝑒𝑔 + 𝐿𝑐2−𝑟𝑒𝑔 + 𝐿ℎ−𝑐𝑙𝑠 + 𝐿ℎ−𝑟𝑒𝑔

+𝐿𝑠−𝑐𝑙𝑠 + 𝐿𝑠−𝑟𝑒𝑔 + 𝛾𝐿𝑐𝑜𝑟𝑛𝑒𝑟
) + ∁

𝐶 = 𝐶0 +
𝛿

2𝑛
∑𝜔2

Figure 7 shows the test results on target detection accuracies

of different regularization coefficients. It can be seen that,

when the weight attenuation term was zero, the highest

detection accuracies were achieved on chair, desk, nightstand,

and toilet; when the regularization coefficient was 0.01, the

highest detection accuracies were achieved on bathtub, bed,

bookshelf, and sofa; when the coefficient was 0.0005, the

highest detection accuracy was achieved on dresser.

Figure 7. Target detection accuracies of different

regularization coefficients

Overall, the best weight attenuation term should be set to

0.01. Under this setting, the detection accuracies of chair, desk,

nightstand, and toilet are slightly lower than the no-weight

scenario, but those of bathtub, bed, bookshelf, and sofa are

significantly improved.

3.4 Dataset

Most previous 3D detection studies focus on outdoor lidar

scanning. The targets are well separated in space, and the point

cloud has sparse (feasible for bird’s-eye projection), or dense

pixels. The CNN can be easily applied on the indoor depth

map of conventional images. However, a method designed for

bird’s-eye view may not be possible for indoor environment,

where multiple targets often throng in the same vertical space.

Moreover, the large and sparse point clouds scanned by lidar

may be difficult to apply to indoor focusing techniques.

Fortunately, the F-PointNet is a general detection framework

for outdoor and indoor 3D targets [22]. The network can

achieve ideal performance was achieved on SUN RGB-D

database [18], with a high mean average precision (mAP) and

fast inference speed.

4. EXPERIMENTS

4.1 DL configuration

The improved -PointNet detection algorithm was

implemented under the DL framework TensorFlow. The

318

server platform was configured as follows: Intel ® CoreTM i7-

7700K CPU@4.2GHz processor, 16GB memory, 1T hard disk,

8GB GeForce GTX 1080 GPU.

4.2 Parameter analysis

The model structure (Figure 1) is mainly composed of 3D

instance segmentation network (Figure 3), T-Net (Figure 4),

and non-modal 3D bounding box evaluation network (Figure

5) [23]. The first network contains ten convolutional layers;

the T-Net consists of several convolutional layers (the kernel

outputs are 128, 128, and 256 pixels in size) and three FCs (in

the MLP (128, 128, 256) layer); the third network involves 4

convolutional layers and 3 FCs. The SUN RGB-D dataset was

adopted for our experiments. There are 7,481 images and 748

3D point cloud data files in the dataset. The dataset was

divided by the Multi-View 3D networks (MV3D) method into

a training set of 3,712 files and a test set of 3,769 files. The

batch size was set to 32, i.e., each batch contains 32 point cloud

data files as the network input [24].

In addition, the network training lasts 200 iterations, with

the initial learning rate of 0.0001. To stabilize the network

performance, the exponential decay method was adopted to

reduce the learning rate by half for every 25,000 batches. The

learning rate was kept constant after reaching 0.0001.

4.3 Comparison of target detection accuracies

The 2D image detector in F-PointNet was modified by

YOLOv3 and faster R-CNN, respectively. Table 1 compares

the detection accuracies of 3D point cloud data targets between

the two modified methods. Obviously, the YOLOv3 model

achieved higher accuracies on bed, bookshelf, chair, dresser,

nightstand, sofa, table, and toilet than the faster R-CNN model,

and slightly lower accuracies on bathtub and desk [25, 26].

Table 1. Comparison between YOLOv3 and faster R-CNN

2D image detector Faster R-CNN YOLOv3

Bathtub 58.0 43.6
Bed 63.1 81.6

Bookshelf 32.8 33.4
Chair 62.2 64.4
Desk 45.9 25.1

Dresser 15.7 32.1
Nightstand 27.1 57.5

Sofa 51.8 61.6
Table 51.4 51.3
Toilet 70.6 90.7
Mean 47.86 54.13

Table 2. Comparison between different detection methods

Methods DSS [19]
COG

[20]

2D-driven

method [21]

F-PointNet

[16]

Our

method

Bathtub 44.2 58.3 43.5 43.3 43.6

Bed 78.8 63.7 64.5 81.1 81.6

Bookshelf 11.9 31.8 31.4 33.3 33.4

Chair 61.2 62.2 48.3 64.2 64.4

Desk 20.5 45.2 27.9 24.7 25.1

Dresser 6.4 15.5 25.9 32.0 32.1

Nightstand 15.4 27.4 41.9 58.1 57.5

Sofa 53.5 51.0 50.4 61.1 61.6

Table 50.3 51.3 37.0 51.1 51.3

Toilet 78.9 70.1 80.4 90.9 90.7

Runtime 19.55s 10-30min 4.15s 0.12s 1.42s

mAP 42.1 47.6 45.1 54.0 54.13

Further, the 2D image detector in F-PointNet was replaced

with YOLOv3, and the modified model was compared with

the original F-PointNet, deep sliding shape (DSS) network

[27], clouds of oriented gradients (COG) [28], and 2D-driven

method [4]. Table 2 presents the detection accuracies of these

methods on 3D point cloud data targets. It can be seen that our

model was more accurate on bathtub, bed, bookshelf, chain,

desk, dresser, sofa, and table than the other methods, and was

only slightly less accurate than the original F-PointNet on

nightstand. Hence, the modification of the 2D image detector

indeed improves the generalization ability of the model.

4.4 Visualization of detection results

The detection results of the modified F-PointNet model

were visualized according to the 3D bounding box parameters

outputted by the model. Figure 8 shows an image and the

visualized point cloud data. In the image taken by the camera,

the target area is marked by a 2D blue bounding box. The

visualized data were zoomed in to clearly display the predicted

3D bounding box.

Figure 8. Image and point cloud visualization

5. CONCLUSIONS

This paper modifies the F-PointNet for the target detection

of 3D point cloud data. The 2D image detector of the original

network was changed into YOLOv3, and the test dataset was

replaced with SUN RGB-D room. Experimental results show

that the modified model can effectively detect targets of 3D

point cloud data [28]. Therefore, the modified F-PointNet

model is suitable for indoor robot navigation and many other

fields.

Of course, our model also has some shortcomings: (1) The

detection results are greatly affected by target detection in 2D

images. If the targets are severely occluded or dim, it is

difficult to determine the 2D bounding boxes. (2) The 3D

bounding box might be inaccurate, if the target point cloud is

small [4]. To make our model more applicable to real scenes,

the future research will try to make up for the defects with

high-resolution images.

REFERENCES

[1] Xue, R. (2017). Point cloud registration based on RGB-

D data. Chang'an University, Xi'an, China.

[2] Zhao, X. (2010). Research on 3D reconstruction method

based on surface laser scanning point cloud data. Wuhan

University, Wuhan, China.

[3] Chen, X., Kundu, K., Zhu, Y., Berneshawi, A.G., Ma, H.,

319

Fidler, S., Urtasun, R. (2015). 3d object proposals for

accurate object class detection. In Advances in Neural

Information Processing Systems, 424-432.

https://doi.org/10.1.1.705.5656

[4] Song, S., Xiao, J. (2016). Deep sliding shapes for amodal

3d object detection in RGB-d images. In Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition, 808-816.

[5] Tekin, B., Sinha, S.N., Fua, P. (2018). Real-time

seamless single shot 6d object pose prediction. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 292-301.

[6] Dhiman, V., Tran, Q.H., Corso, J.J., Chandraker, M.

(2016). A continuous occlusion model for road scene

understanding. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 4331-

4339.

[7] Redmon, J., Farhadi, A. (2017). YOLO9000: Better,

faster, stronger. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 7263-

7271.

[8] Long, J., Shelhamer, E., Darrell, T. (2015). Fully

convolutional networks for semantic segmentation. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 3431-3440.

[9] Wang, C., Xu, D., Zhu, Y., Martín-Martín, R., Lu, C., Li,

F.F., Savarese, S. (2019). DenseFusion: 6D object pose

estimation by iterative dense fusion. In Proceedings of

the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pp. 3343-3352.

[10] Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster r-

CNN: Towards real-time object detection with region

proposal networks. arXiv preprint arXiv:1506.01497.

[11] Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.

(2015). Multi-view convolutional neural networks for 3d

shape recognition. In Proceedings of the IEEE

International Conference on Computer Vision, pp. 945-

953.

[12] Li, B., Zhang, T., Xia, T. (2016). Vehicle detection from

3d lidar using fully convolutional network. arXiv

preprint arXiv:1608.07916.

[13] Hirschmuller, H. (2007). Stereo processing by

semiglobal matching and mutual information. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 30(2): 328-341.

https://doi.org/10.1109/TPAMI.2007.1166

[14] Chen, X., Ma, H., Wan, J., Li, B., Xia, T. (2017). Multi-

view 3d object detection network for autonomous driving.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1907-1915.

[15] González, A., Vázquez, D., López, A.M., Amores, J.

(2016). On-board object detection: Multicue, multimodal,

and multiview random forest of local experts. IEEE

Transactions on Cybernetics, 47(11): 3980-3990.

https://doi.org/10.1109/TCYB.2016.2593940

[16] Enzweiler, M., Gavrila, D.M. (2011). A multilevel

mixture-of-experts framework for pedestrian

classification. IEEE Transactions on Image Processing,

20(10): 2967-2979.

https://doi.org/10.1109/TIP.2011.2142006

[17] Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J. (2018).

Frustum pointnets for 3d object detection from RGB-d

data. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 918-927.

[18] Qi, C.R., Su, H., Mo, K., Guibas, L.J. (2017). Pointnet:

Deep learning on point sets for 3d classification and

segmentation. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 652-660.

[19] Ren, Z., Sudderth, E.B. (2016). Three-dimensional

object detection and layout prediction using clouds of

oriented gradients. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 1525-1533.

[20] Lahoud, J., Ghanem, B. (2017). 2d-driven 3d object

detection in RGB-D images. In Proceedings of the IEEE

International Conference on Computer Vision, pp. 4622-

4630.

[21] Jiang, Y., Ma, J. (2015). Combination features and

models for human detection. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pp. 240-248.

[22] Girshick, R. (2015). Fast R-CNN. In Proceedings of the

IEEE International Conference on Computer Vision,

1440–1448.

[23] Yi, M.Y., Yun, K., Kim, S.W., Chang, H.J., Jeong, H.,

Choi, J.Y. (2013). Detection of moving objects with non-

stationary cameras in 5.8 ms: Bringing motion detection

to your mobile device. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

Workshops, pp. 27-34.

https://doi.org/10.1109/CVPRW.2013.9

[24] Tang, S., Andriluka, M., Schiele, B. (2014). Detection

and tracking of occluded people. International Journal of

Computer Vision, 110(1): 58-69.

https://doi.org/10.1007%2Fs11263-013-0664-6

[25] Cai, Y., Liu, Z., Wang, H., Sun, X. (2017). Saliency-

based pedestrian detection in far infrared images. IEEE

Access, 5: 5013-5019.

https://doi.org/10.1109/ACCESS.2017.2695721

[26] Kang, J.K., Hong, H.G., Park, K.R. (2017). Pedestrian

detection based on adaptive selection of visible light or

far-infrared light camera image by fuzzy inference

system and convolutional neural network-based

verification. Sensors, 17(7): 1598.

https://doi.org/10.3390/s17071598

[27] Song, S., Lichtenberg, S.P., Xiao, J. (2015). Sun RGB-d:

A RGB-d scene understanding benchmark suite. In

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 567-576.

[28] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,

Fu, C.Y., Berg, A.C. (2016). Ssd: Single shot multibox

detector. In European Conference on Computer Vision,

pp. 21-37. https://doi.org/10.1007/978-3-319-46448-0_2

320

