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ABSTRACT. This paper projects Improved Canis Rufus Floridanus (ICRF) Optimization 

Algorithm for solving optimal reactive power dispatch problem. Projected ICRF algorithm 

combines the Canis Rufus Floridanus algorithm with particle swarm optimization (PSO) 

algorithm. When the PSO algorithm has been intermingled with Canis Rufus Floridanus (ICRF) 

Optimization algorithm, at first exploration will be done and gradually it will be moved to phase 

of exploitation. Also in this approach social interaction within the swarm also considered with 

communication diversity.   So due the hybridization both Exploration & Exploitation capability 

of the projected Improved Canis Rufus Floridanus (ICRF) Optimization Algorithm has been 

improved. Projected algorithm is evaluated in standard IEEE 30 bus test system. Results 

indicate that proposed algorithm perform well in solving the optimal reactive power dispatch 

problem. Real power losses are reduced by the proposed algorithm when compared to other 

standard algorithms & voltage stability index has increased from 0.2462 to 0.2485, which is 

an improvement in the system voltage stability. To determine the voltage security of the system, 

contingency analysis was conducted using the control variable setting obtained. 

RÉSUMÉ. Cet article porte sur l’algorithme d’optimisation améliorée de Canis Rufus Floridanus 

(ICRF) pour la résolution du problème optimal de répartition de la puissance réactive. 

L'algorithme ICRF projeté combine l'algorithme Canis Rufus Floridanus avec l'algorithme 

d'optimisation par essaims particulaires (PSO). Lorsque l'algorithme PSO a été mélangé à 

l'algorithme d'optimisation Canis Rufus Floridanus (ICRF), l'exploration sera effectuée au 

début et progressivement, il passera à la phase d'exploitation. Également dans cette approche, 

l'interaction sociale au sein de l'essaim est également prise en compte avec la diversité de 

communication. Ainsi, en raison de l'hybridation à la fois l'exploration et l'exploitation, la 

capacité d’algorithme d’optimisation projeté et améliorée de Canis Rufus Floridanus (ICRF) 

a été amélioré. L'algorithme projeté est évalué dans le standard IEEE 30 système de test de 

bus. Les résultats indiquent que l'algorithme proposé fonctionne bien pour résoudre le 

problème optimal de répartition de la puissance réactive. Les pertes de puissance réelles sont 

réduites par l'algorithme proposé par rapport à d'autres algorithmes standard. L’indice de 

stabilité de la tension a augmenté de 0,2462 à 0,2485, ce qui représente une amélioration de la 
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stabilité de la tension du système. Pour déterminer la sécurité de tension du système, une 

analyse de contingence a été réalisée à l'aide du paramètre de variable de contrôle obtenu. 

KEYWORDS: optimal reactive power, transmission loss, canis rufus floridanus, particle swarm 

optimization. 
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1. Introduction 

The main objective of optimal reactive power problem is to reduce the actual 

power loss. Various techniques problem (Lee et al., 1984; Deeb and Shahidehpour, 

1988; Bjelogrlic et al., 1990; Granville, 1994; Grudinin, 1998; Yan et al., 2006) have 

been utilized but have the complexity in handling constraints. Different types of 

evolutionary algorithms (Mukherjee and Mukherjee, 2015; Hu et al., 2010; Morgan 

et al., 2015; Sulaiman et al., 2015; Pandiarajan and Babulal, 2016; Morgan et al., 

2016; Mei et al., 2016) have been utilized in various stages to solve the problem. 

Many algorithms may good in Exploration & but very poor in Exploitation, some 

algorithms will good in Exploitation but lack in Exploration. This paper projects 

Improved Canis Rufus Floridanus (ICRF) Optimization Algorithm for solving 

optimal reactive power dispatch problem. Projected ICRF algorithm combines the 

Canis Rufus Floridanus algorithm with particle swarm optimization (PSO) algorithm. 

When the PSO algorithm has been intermingled with Canis Rufus Floridanus (ICRF) 

Optimization algorithm, at first exploration will be done and gradually it will be 

moved to phase of exploitation. So due the hybridization both Exploration & 

Exploitation capability of the projected Improved Canis Rufus Floridanus (ICRF) 

Optimization Algorithm has been improved. Projected algorithm is evaluated in 

standard IEEE 30 bus test system. Results indicate that proposed algorithm perform 

well in solving the optimal reactive power dispatch problem. Real power losses are 

reduced by the proposed algorithm when compared to other standard algorithms & 

voltage stability index has increased from 0.2462 to 0.2485, which is an improvement 

in the system voltage stability. To determine the voltage security of the system, 

contingency analysis was conducted using the control variable setting obtained. 

2. Problem formulation 

2.1. Modal analysis for voltage stability evaluation 

Modal analysis is one among best methods for voltage stability enhancement in 

power systems. The steady state system power flow equations are given by. 

[
∆𝑃
∆𝑄

] = [
𝐽𝑝𝜃      𝐽𝑝𝑣 

𝐽𝑞𝜃     𝐽𝑄𝑉      
]   [

∆𝜃
∆𝑉

]                                      (1) 

Where 
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ΔP=Incremental change in bus real power. 

ΔQ=Incremental change in bus reactive Power injection 

Δθ=incremental change in bus voltage angle. 

ΔV=Incremental change in bus voltage Magnitude. 

Jpθ, JPV, JQθ, JQV jacobian matrix are the sub-matrixes of the System voltage 

stability is affected by both P and Q. 

To reduce (1), let ΔP=0, then. 

∆𝑄 = [𝐽𝑄𝑉 − 𝐽𝑄𝜃𝐽𝑃𝜃−1𝐽𝑃𝑉]∆𝑉 = 𝐽𝑅∆𝑉                                 (2) 

∆𝑉 = 𝐽−1 − ∆𝑄                                                   (3) 

Where 

𝐽𝑅 = (𝐽𝑄𝑉 − 𝐽𝑄𝜃𝐽𝑃𝜃−1𝐽𝑃𝑉)                                         (4) 

JR is called the reduced Jacobian matrix of the system. 

2.2. Modes of voltage instability 

Voltage Stability characteristics of the system have been identified by computing 

the Eigen values and Eigen vectors. 

Let 

𝐽𝑅 = 𝜉˄𝜂                                                       (5) 

Where, 

ξ=right eigenvector matrix of JR 

η=left eigenvector matrix of JR 

∧=diagonal eigenvalue matrix of JR and 

𝐽𝑅−1 = 𝜉˄−1𝜂                                                  (6) 

From (5) and (8), we have 

∆𝑉 = 𝜉˄−1𝜂∆𝑄                                                (7) 

or 

∆𝑉 = ∑
𝜉𝑖𝜂𝑖

𝜆𝑖
𝐼 ∆𝑄                                                 (8) 

Where ξi is the ith column right eigenvector and η the ith row left eigenvector of 

JR. 



22     EJEE. Volume 19 – n° 1-2/2017 

 

λi is the ith Eigen value of JR. 

The ith modal reactive power variation is, 

∆𝑄𝑚𝑖 = 𝐾𝑖𝜉𝑖                                                 (9) 

Where 

𝐾𝑖 = ∑ 𝜉𝑖𝑗2𝑗 − 1                                          (10) 

Where 

ξji is the jth element of ξi 

The corresponding ith modal voltage variation is 

∆𝑉𝑚𝑖 = [1 𝜆𝑖⁄ ]∆𝑄𝑚𝑖                                     (11) 

If |λi|=0 then the ith modal voltage will collapse. 

In (10), let ΔQ=ek where ek has all its elements zero except the kth one being 1. 

Then, 

∆𝑉 =  ∑
ƞ1𝑘  𝜉1   

𝜆1
𝑖                                            (12) 

ƞ1k kth element of ƞ1 

V–Q sensitivity at bus k 

𝜕𝑉𝐾

𝜕𝑄𝐾
= ∑

ƞ1𝑘  𝜉1   

𝜆1
𝑖  = ∑

𝑃𝑘𝑖

𝜆1
𝑖                                    (13) 

To minimize the system real power loss, 

Ploss= ∑ gk(Vi
2+Vj

2−2Vi Vj cos θij
)

n
k=1

k=(i,j)

                         (14) 

Voltage deviation magnitudes (VD) is stated as Minimize 

VD = ∑ |Vk − 1.0|nl
k=1                                      (15) 

Load flow equality constraints are: 

PGi – PDi − V
i ∑ Vj

nb
j=1

[
Gij cos θij

+Bij sin θij
] = 0, i = 1,2 … . , nb        (16) 

QGi − QDi − V
i ∑ Vj

nb
j=1

[
Gij sin θij

+Bij cos θij
] = 0, i = 1,2 … . , nb     (17) 

Inequality constraints are: 

VGi 
min ≤  VGi ≤ VGi

max, i ∈ ng                                 (18) 
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VLi 
min ≤  VLi ≤ VLi

max, i ∈ nl                                         (19) 

QCi 
min ≤  QCi ≤ QCi

max, i ∈ nc                                      (20) 

QGi 
min ≤  QGi ≤ QGi

max, i ∈ ng                                      (21) 

Ti 
min ≤  Ti ≤ Ti

max, i ∈ nt                                          (22) 

SLi 
min ≤ SLi

max, i ∈ nl                                               (23) 

3. Improved canis rufus floridanus optimization algorithm 

Canis Rufus Floridanus optimization algorithm imitates the collective 

organization and other activities of Canis Rufus Floridanus. 𝛼, β and γ are the three 

fittest candidate solutions has been assumed in the regions of exploration space. Other 

Canis Rufus Floridanus is denoted as ′𝜑′ and it will enhance α, β and 𝛾 to encircle, 

hunt, attack prey; in the formulated algorithm searching towards improved solutions. 

Actions of Canis Rufus Floridanus are mathematically written as: 

𝑍 = |�⃗⃗⃗�. 𝑋𝑃
⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗�(𝑡)|,                                          (24) 

�⃗�(𝑡 + 1) = 𝑋𝑃
⃗⃗ ⃗⃗ ⃗(𝑡) − �⃗⃗⃗�. 𝑍                                        (25) 

Where 𝑡 indicates the current iteration, �⃗⃗⃗� = 2�⃗⃗�. 𝑟1⃗⃗⃗ ⃗ − �⃗⃗�, �⃗⃗⃗� = 2. 𝑟2⃗⃗⃗⃗ , 𝑋�̂� the position 

vector of the prey, X ⃗⃗⃗ ⃗is the position vector of a Canis Rufus Floridanus, b⃗⃗ is linearly 

decreased from 1.99 to 0, and r1⃗⃗⃗⃗  and r2⃗⃗⃗⃗  are random vectors in [0, 1]. 

Hunting behavior of Canis Rufus Floridanus are formulated as, 

𝑍𝛼
⃗⃗ ⃗⃗ ⃗ = |𝑀1

⃗⃗⃗⃗⃗⃗ , 𝑋𝛼
⃗⃗ ⃗⃗ ⃗ − �⃗�| 

𝑍𝛽
⃗⃗⃗⃗⃗ = |𝑀2

⃗⃗ ⃗⃗ ⃗⃗ , 𝑋𝛽
⃗⃗ ⃗⃗ ⃗ − �⃗�|                                               (26) 

𝑍𝛾
⃗⃗⃗⃗⃗ = |𝑀3

⃗⃗ ⃗⃗ ⃗⃗ , 𝑋𝛾
⃗⃗ ⃗⃗ ⃗ − �⃗�| 

𝑋1
⃗⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗ ⃗ − 𝑁1
⃗⃗ ⃗⃗ ⃗  . 𝑍𝛼

⃗⃗ ⃗⃗ ⃗ 

𝑋2
⃗⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗ ⃗ − 𝑁2
⃗⃗ ⃗⃗ ⃗  . 𝑍𝛽

⃗⃗⃗⃗⃗                                              (27) 

𝑋3
⃗⃗⃗⃗⃗ = 𝑋𝛾

⃗⃗ ⃗⃗ ⃗ − 𝑁3
⃗⃗ ⃗⃗ ⃗  . 𝑍𝛾

⃗⃗⃗⃗⃗ 

�⃗�(𝑡 + 1) =
𝑥1⃗⃗ ⃗⃗ ⃗+𝑥2⃗⃗ ⃗⃗ ⃗+𝑥3⃗⃗ ⃗⃗ ⃗

3
                                           (28) 
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Position of Canis Rufus Floridanus was updated by equation (28) and to discrete 

the position the following equation formulated, 

𝑓𝑙𝑎𝑔𝑖,𝑗 = {
1                     𝑋𝑖,𝑗 > 0.498

0                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                               (29) 

Where i, indicates the jth position of the ith Canis Rufus Floridanus, 𝑓𝑙𝑎𝑔𝑖,𝑗 

indicates about the total features of Canis Rufus Floridanus. 

In this formulation particle swarm optimization is utilized to enrich the exploration 

& latter exploitation. Position & velocity of the particles are defined by,  

𝑣𝑡+1
𝑖 = 𝜔𝑡 . 𝑣𝑡

𝑖 + 𝑐𝑔1. 𝑅𝑚1 . (𝑚𝑡
𝑖 − 𝑦𝑡

𝑖) + 𝑐𝑔2. 𝑅𝑚2. (𝑚𝑡
𝑔

− 𝑦𝑡
𝑖)            (30) 

𝑦𝑡+1
𝑖 =  𝑦𝑡

𝑖 + 𝑣𝑡+1
𝑖                                                (31) 

The current position of particle is yt
i & search velocity is vt

i. Global best-found 

position is. mt
g
. In uniformly distributed interval (0, 1) Rm1  & Rm2  are arbitrary 

numbers. Where  cg1  and cg2  are scaling parameters.ωt  is the particle inertia. The 

variable ωt is modernized as 

𝜔𝑡 = (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛).
(𝑡𝑚𝑎𝑥−𝑡)

𝑡𝑚𝑎𝑥
+ 𝜔𝑚𝑖𝑛                            (32) 

Maximum and minimum of ωt  is represented by ωmax  and ωmin ; maximum 

number of iterations is given by  tmax . Until termination conditions are met this 

process will be repeated. 

To examine the social interactions within the swarm, when a particle i updates its 

position based on the position of a particle j (the best neighbor of particle i is the 

particle j) at a given iteration t social interaction happens in the PSO. Weight of an 

edge (i, j) is equal to the number of times the particle i was the best neighbor of the 

particle j or vice-versa .Additionally, they used a time window to control the recency 

of the analysis, so at iteration t with window tw is defined as follows, 

𝐼𝑖𝑗
𝑡𝑤 = ∑ [𝛿𝑖,𝑛𝑗(𝑡′) + 𝛿𝑗,𝑛𝑖(𝑡′)]𝑡

𝑡′=𝑡−𝑡𝑤+1 , 𝑤𝑖𝑡ℎ 𝑡 > 𝑡𝑤  ≥ 1          (33) 

𝐴𝑡𝑤
 measures the diversity in the information flow for a given time window. The 

communication diversity CD is defined as following, 

𝐶𝐷(𝑡) = 1 −
1

|𝑇||𝑆|
 ∑ 𝐴𝑡𝑤

= 𝑡𝑤
′

𝑡𝑤
′ ∈𝑡 (𝑡)                            (34) 

Where |S| is the number of particles in the swarm and T is a set of time windows. 

Thus, swarms exhibiting high CD (low values for 𝐴𝑡𝑤
) have the ability to have diverse 

information flows, while low values for CD imply in swarms with only few 

information flows (high value for 𝐴𝑡𝑤
). An ideal set T would be one taking into 

account all time windows (i.e., interactions from tw=1 until tw=t). 
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Canis Rufus Floridanus;  α , β  and γ  determine the position of the prey. N⃗⃗⃗ =

2b⃗⃗. r1⃗⃗⃗⃗ − b⃗⃗ directs the exploration & exploitation process by reducing the value from 

1.99 to 0.When |�⃗⃗⃗�| < 1 it converged towards the prey & If |�⃗⃗⃗�| > 1 diverged away. 

The first best Minimum loss and variables are accumulated as "α" position, score & 

as like second best, third best accumulated as "β" and "γ" position & score. 

1: Start 

2: Parameters are initialized 

3: Positions of Canis Rufus Floridanus are initialized by; b, N⃗⃗⃗ and M⃗⃗⃗⃗ 

4: i =1: population size; j=1:n 

5: When (i, j)>0.500; (i) = 1; 

6: Else; (j)=0; 

7: End if 

8: End for 

9: Maximum fitness of Canis Rufus Floridanus are computed as follows,  

10: Canis Rufus Floridanus with primary fitness value is defined as “α”; Second 

maximum fitness defined as “β”; Third maximum fitness  is defined as “γ” 

11: While k < maximum number of iteration; For i=1: population size 

12: Periodical revision of Canis Rufus Floridanus has been done  

13: End for  

14: For i=1: population size; For i=1:n 

15: If (i, j)>0.500 ; (j) = 1; Else (j)=0; 

16: End if 

17: End for 

18: Values of b, N⃗⃗⃗ and M⃗⃗⃗⃗  are updated & at the same time fitness value of Canis 

Rufus Floridanus is calculated  

19: "α","β" and " γ" values are revised; k=k+1; 

20: End while 

21: Value of” α “as the optimal characteristic division has been scrutinized again; 

22: End 

4. Simulation results 

The efficiency of the proposed Improved Canis Rufus Floridanus (ICRF) 

optimization algorithm is demonstrated by testing it on standard IEEE-30 bus system. 

The IEEE-30 bus system has 6 generator buses, 24 load buses and 41 transmission 

lines of which four branches are (6-9), (6-10), (4-12) and (28-27) - are with the tap 

setting transformers. The lower voltage magnitude limits at all buses are 0.95 p.u. and 

the upper limits are 1.1 for all the PV buses and 1.05 p.u. for all the PQ buses and the 

reference bus. The simulation results have been presented in Tables 1, 2, 3 &4. The 

optimal values of the control variables along with the minimum loss obtained are 
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given in Table 1. Corresponding to this control variable setting, it was found that there 

are no limit violations in any of the state variables. 

Table 1. Results of ICRF–ORPD optimal control variables 

Control variables Variable setting 

V1 

V2 

V5 

V8 

V11 

V13 

T11 

T12 

T15 

T36 

Qc10 

Qc12 

Qc15 

Qc17 

Qc20 

Qc23 

Qc24 

Qc29 

Real power loss 

SVSM 

1.03100 

1.03200 

1.03900 

1.03100 

1.00000 

1.03000 

1.0000 

1.0000 

1.0000 

1.0100 

3 

2 

2 

0 

3 

2 

3 

2 

4.2406 

0.2462 

 

Optimal Reactive Power Dispatch (ORPD) problem together with voltage stability 

constraint problem was handled in this case as a multi-objective optimization problem 

where both power loss and maximum voltage stability margin of the system were 

optimized simultaneously.  

Table 2 indicates the optimal values of these control variables. Also it is found that 

there are no limit violations of the state variables. It indicates that voltage stability 

index has increased from 0.2462 to 0.2485, which is an improvement in the system 

voltage stability. 

To determine the voltage security of the system, contingency analysis was 

conducted using the control variable setting obtained in case 1 and case 2. The Eigen 

values equivalents to the four critical contingencies are given in Table 3. From this 

result it is observed that the Eigen value has been improved considerably for all 

contingencies in the second case.  
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Table 2. Results of ICRF-Voltage stability control reactive power dispatch 

(VSCRPD) optimal control variables 

Control Variables Variable Setting 

V1 

V2 

V5 

V8 

V11 

V13 

T11 

T12 

T15 

T36 

Qc10 

Qc12 

Qc15 

Qc17 

Qc20 

Qc23 

Qc24 

Qc29 

Real power loss 

SVSM 

1.04500 

1.04100 

1.04000 

1.02900 

1.00000 

1.03000 

0.09000 

0.09000 

0.09000 

0.09000 

2 

2 

2 

3 

0 

2 

2 

3 

4.9886 

0.2485 

Table 3. Voltage stability under contingency state 

Sl.No Contingency ORPD Setting VSCRPD Setting 

1 28-27 0.1419 0.1434 

2 4-12 0.1642 0.1650 

3 1-3 0.1761 0.1772 

4 2-4 0.2022 0.2043 

Table 4. Limit violation checking of state variables 

State variables 
limits 

ORPD VSCRPD 
Lower  upper 

Q1 -20 152 1.3422 -1.3269 
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Q2 -20 61 8.9900 9.8232 

Q5 -15 49.92 25.920 26.001 

Q8 -10 63.52 38.820 40.802 

Q11 -15 42 2.9300 5.002 

Q13 -15 48 8.1025 6.033 

V3 0.95 1.05 1.0372 1.0392 

V4 0.95 1.05 1.0307 1.0328 

V6 0.95 1.05 1.0282 1.0298 

V7 0.95 1.05 1.0101 1.0152 

V9 0.95 1.05 1.0462 1.0412 

V10 0.95 1.05 1.0482 1.0498 

V12 0.95 1.05 1.0400 1.0466 

V14 0.95 1.05 1.0474 1.0443 

V15 0.95 1.05 1.0457 1.0413 

V16 0.95 1.05 1.0426 1.0405 

V17 0.95 1.05 1.0382 1.0396 

V18 0.95 1.05 1.0392 1.0400 

V19 0.95 1.05 1.0381 1.0394 

V20 0.95 1.05 1.0112 1.0194 

V21 0.95 1.05 1.0435 1.0243 

V22 0.95 1.05 1.0448 1.0396 

V23 0.95 1.05 1.0472 1.0372 

V24 0.95 1.05 1.0484 1.0372 

V25 0.95 1.05 1.0142 1.0192 

V26 0.95 1.05 1.0494 1.0422 

V27 0.95 1.05 1.0472 1.0452 

V28 0.95 1.05 1.0243 1.0283 

V29 0.95 1.05 1.0439 1.0419 

V30 0.95 1.05 1.0418 1.0397 

 

In the Table 5 shows the proposed algorithm powerfully reduces the real power 

losses when compared to other given standard algorithms. 
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Table 5. Comparison of real power loss 

Method Minimum loss 

Method; Evolutionary programming (Wu and Ma, 1995) 5.01590 

Method; Genetic algorithm (Durairaj et al., 2006) 4.6650 

Method; Real coded GA with Lindex as SVSM (Devaraj, 2007) 4.5680 

Method; Real coded genetic algorithm (Jeyanthy and Devaraj, 2010) 4.50150 

Proposed ICRF method 4.24060 

5. Conclusion 

In this paper, the Improved Canis Rufus Floridanus (ICRF) Optimization 

Algorithm has been successfully solved Optimal Reactive Power Dispatch problem.  

Efficiency of the projected Improved Canis Rufus Floridanus (ICRF) Optimization 

Algorithm has been evaluated in standard IEEE 30 bus test system. Real power losses 

are reduced by the proposed algorithm when compared to other standard algorithms 

& voltage stability index has increased from 0.2462 to 0.2485, which is an 

improvement in the system voltage stability. To determine the voltage security of the 

system, contingency analysis was conducted using the control variable setting 

obtained. 
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