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The central stimuli of this brief note is to underscore the effect of the temperature 

dependent convection coefficient that give rise to a dual temperature regime facilitating 

dual entropy distribution. In order to avoid unwarranted complexities, a simple geometry 

of shear flow in a channel is considered. The energy equation amenable to an analytic 

solution is simulated to extract the desired numerical findings in as much as for what 

parameters’ values, the temperature has dual distribution /does not yield temperature 

distribution at all. In fact, a range of parameter values have been worked out for which dual 

temperature regime exists or not. The plots of entropy generation number Ns also show the 

dual regime. The findings reveal a qualitative and quantitative difference in dual systems 

of temperature and entropy. It further underlines that the thermal systems with the idealized 

uniform heat transfer coefficient may be far distinct from actual behaviour and even weak 

temperature dependence of convection coefficient need due attention while designing a 

system. 
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1. INTRODUCTION

Simulating thermo-fluidic systems for entropy aspects has 

had started gaining currency in the last couple of decades. The 

literature reveals that the studies were prompted to devise cost 

effective strategies for efficient energy usages. Heat transfer 

and/or entropy aspects in channel flow with or without porous 

inserts have drawn attention of the investigators. Fluid flows 

involving porous-inserts- geometries find a parallel in bio-

fluid transport, heat exchangers, thermal insulation 

engineering, cooling of electronic components, filtration 

process etc.  

Chauhan and Vyas [1] reported heat transfer in 

compressible Couette fluid flow in a permeable channel. 

Mahmud and Fraser [2] considered non- Newtonian fluid flow 

in channels/pipe with an objective to investigate 

thermodynamic irreversibility. Yilbas et al. [3] conducted an 

entropy analysis for non-Newtonian fluid flow in annular pipe. 

Haddad et al. [4] analyzed the entropy generation forced 

convection flow in a micro channel. Mahmud and Fraser [5] 

discussed thermal characteristics and entropy generation 

inside a dissipative porous channel. Hooman and Ejlali [6] 

considered forced convection in a saturated porous circular 

tube to study entropy generation. Chen and Zhu [7] chose 

Bingham fluid to study Couette–Poiseuille flow between 

porous parallel plates with slip conditions. They showed that 

the slippage weakens the shearing deformation. Eegunjobi and 

Makinde [8] considered a flow in a porous channel to examine 

the effects of Navier slip on entropy generation when the 

system was subjected to suction/injection.  

Vyas and his co-authors [9-15] investigated entropy 

generation in various thermo-fluidic configurations. Chinyoka 

and Mankinde [16] presented an entropy generation analysis 

for an unsteady channel flow. Yazdi et al. [17] reported 

findings on the entropy in specifically arranged micro 

channels embedded in a permeable surface. Ibanez et al. [18] 

conducted a study on minimization of entropy in micro 

channels. Makinde and Eegunjobi [19] simulated convective 

heating effects on entropy generation for the flow inside a 

permeable channel. Vyas and Srivastava [20] also examined 

radiative MHD Couette flow of compressible fluid in a 

channel with permeable base. Ibanez et al. [21] investigated 

the effects of heat flux and velocity slip on entropy generation 

in a micro channel. Lopez et al. [22] studied entropy 

generation of power-law fluid in a channel with asymmetric 

convective cooling. Ibanez [23] investigated entropy 

generation in the MHD porous channel with hydrodynamic 

slip and convective boundary conditions. Srinivasacharya and 

Bindu [24] considered micropolar fluid flow in an inclined 

channel for entropy studies. Kareem et al. [25] simulated 

entropy generation for MHD couple-stress fluid flow in a 

porous channel. Ajibade and Onoja [26] reported an 

irreversibility analysis for steady mixed convection in a 

vertical channel. thermodynamic irreversibility in 

thermofluidic systems for various features such as nano fluid, 

radiating fluid, microchannel etc. were taken up in refs. [27-

36]. 

The said flow geometries and many others not reported here 

have been treated for cases where the system is subjected to a 

heat flux with uniform heat transfer coefficient. However, the 

idealized thermal systems with uniform heat transfer 

coefficient may not always be at par with similarly situated 

real systems simply because the heat convection mechanism 

may be significantly temperature dependent. In fact, in certain 

applications, the heat transfer may show up qualitative and 

quantitative changes with local temperature e.g. the cooling 

process may follow a power law type temperature dependence 

or it experiences “weakly” linear temperature dependence. By 
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physical understanding of convective mechanism, there is no 

debate over the fact that the convection heat transfer rate is 

proportional to convection heat transfer coefficient. There are 

some pertinent studies shedding light on temperature 

dependent convection mechanism. Ghai and Jacob [37] 

presented a pertinent text on local coefficient of heat transfer 

on fins. Lau and Tan [38] reported errors in one-dimensional 

heat transfer analysis for the straight and annular fins. Laor and 

Kalman [39] discussed the effects of heat transfer coefficient 

which is temperature dependent on performance of cooling 

fins. Unal [40] analyzed one-dimensional longitudinal fins 

considering the case where the heat transfer coefficient is 

assumed to follow a power law relation of the fin and fluid 

temperatures. He extracted a temperature distribution for an 

extended surface subjected to a non-uniform heat transfer 

coefficient. Sen and Trinh [41] derived an exact solution for 

the heat transfer rate for a rectangular fin with power law-type 

temperature dependence of convection coefficient. Vyas and 

Ranjan [42] examined forced convection with temperature 

dependent convection mechanism and found a unique 

temperature distribution.  

In this paper, we report a dual temperature distribution for a 

forced convection flow in the permeable channel. The central 

stimuli of the paper are to underscore that how a convection 

mechanism with even “weakly” temperature dependent 

convection coefficient give rise to dual temperature regime 

and consequently facilitates a dual entropy distribution system. 

A range of parameter values have been worked out for which 

the said dual system exists or not, and their effects have been 

investigated. 

 

 

2. MATHEMATICAL FORMULATION 

 

Let us consider a steady radiative MHD Couette shear flow 

in a permeable channel. The channel comprises of two parallel 

walls distant H apart. The lower stationary wall is naturally 

permeable and is subjected to a convective flux with “weakly” 

temperature dependent convective coefficient and a 

hydrodynamic slip. The impermeable upper wall is assumed 

to move in its own plane with a uniform velocity u0 and bears 

a uniform temperature T0. A Cartesian coordinate system is 

considered as shown in the schematic diagram (Figure 1). A 

magnetic field of strength B0 is applied transverse to the flow 

direction. The induced magnetic field is assumed to be 

negligible. Beavers and Joseph [43] conducted experiments 

for flow in a channel with porous base. They found a velocity 

slip at the clear fluid- porous interface revealing that the shear 

effects were propagated into the porous strata through a 

boundary layer region and the effect could be conceived as a 

hydrodynamic slip condition at the fluid-porous medium 

interface. Furthermore, though the slug flow in the permeable 

bed addressed by Darcy’s model, but in the absence of any 

external pressure gradient and for small permeability, the 

interior flow of the porous medium would not contribute much 

to the exterior clear fluid flow, and therefore, zero filter 

velocity in the permeable bed may be assumed. However, the 

permeability of the lower bed affects the clear fluid flow 

through the macroscopic boundary condition (that accounts for 

the hydrodynamic slip) as suggested by Saffman [44]. By this 

condition under the present setup the following equation is 

appropriate to compute the exterior clear fluid flow correct to 

O(K). 

 

( )
* *

* *

*

K du
u O K

dy

 
= + 

 
 

 

where, u* is the tangential fluid velocity, K* is the permeability, 

 is the dimensionless empirical constant and y is the direction 

normal to the boundary. The constant  depends the structure 

of the permeable material within the boundary region. The 

above condition put forward by Saffman was also got 

validated by Dagan [45]. It is not out of place to put on record 

that Beavers and Joseph [43] computed values for  as 0.78, 

and 4.0 for foametal having average pore sizes 0.016 and 0.045 

inches, respectively, and further 0.1 for aloxite with average 

pore size 0.027 inches. 

 

 
 

Figure 1. Schematic diagram – mathematical model 

 

For more on the said condition and allied 

discussion/configurations, interested readers may refer to 

Chauhan and Vyas [1], Vyas and Srivastava [20] and the 

references [43-50]. 

Under said assumptions, the governing equations and the 

end conditions are as follows:  
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And the boundary conditions are:  
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 
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 (3) 

 

where, u* denotes fluid velocity,  is the viscosity, k is 

thermal conductivity, K* permeability, σ electric conductivity, 

h temperature dependent convective coefficient, T* fluid 

temperature, 𝑇𝑎
∗ is the ambient temperature, α slip coefficient 

and qr is radiation flux. 

We assume that the convection coefficient “h” bears a 

weakly temperature dependence of the form. 
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where, ha is the reference convection coefficient and  is the 

small linearity constant. The radiation flux qr follows the 

Rosseland approximation and is given by:  

 
4* *

* *

4

3
r

dT
q

dy




= −  (5) 

 

where, γ* and δ* being Stephen Boltzmann constant and Mean 

absorption constant respectively. Further, we approximate T*4 

as a linear function of T* as follows: 

 
4 3 4* *

0

*

0

*34T TT T −  (6) 

 

The above linearization of the temperature *T obtained by a 

truncated Taylor series expansion of *T about
*

0T is valid when 

the temperature difference in the fluid is small enough.  

We introduce the following non-dimensional quantities as: 
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The Eqns. (2) and (3) becomes: 
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And the boundary condition (4)  
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where, 
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denotes as Hartmann number, Brinkmann number and 

radiation parameter respectively and 
( )0

1
a

a

a
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T
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and 
ah H

Bi
k

= − are temperature ratio and Biot Number. 

The local volumetric rate of entropy generation SG for the 

configuration under study is found as (following the authors in 

[9, 12, 13, 20, 25, 33, 34]) 
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We prescribe, 
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H T
=  (The characteristic entropy generation rate).  

*

0

*

a

T

T
 =  (The characteristic temperature ratio). 

Thus, the non-dimensional entropy generation number Ns is 

obtained as follows: 
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3. SOLUTION 

 

As evident from the Eq. (12), we require velocity and 

thermal temperature distributions and their gradients to 

compute the entropy generation number. The solution of (8) 

and (9) is straightforward is found as follows: 

 

1 2

M Mu C e C e −= +  (13) 

 

( )
( )2 2 2 2

1 2 1 2
2 1

M MBr
C e C e D D

N

   −−
= + + +

+
 (14) 

 

where, the constants of integration C1, C2, D1 and D2 are as 

follows: 
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(15) 

 

Thus, the entropy generation number Ns is obtained as 

follows  
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4. RESULT AND DISCUSSION 

 

The problem in hand is peculiar in the sense that the for 

certain sets of parameter values, the energy Eq. (10) yields 
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either two distinct real solutions or no real solution. we have a 

real dual solution regime for the temperature as evident from 

the plots reported here. Furthermore, the dual solution for the 

energy equation leads to a dual entropy distribution too. 

The reason unfolds if we look at the constants of integration. 

We find that the constant D2 depends on the constants C1 and 

C2 which involve other parameters entering into the problem. 

Keeping other parameters fixed, we worked out a range of Biot 

number Bi for which the expression

( ) ( )( )2 ' '

2 11 4Bi Bi C C+ + −  appearing in constant D2 is the 

negative i.e. the case for which there is no real solution. We 

found many combinations of parameters’ values that led to a 

dual solution or no real solution for the energy equation.  

The Tables 1-5 presented here to showcase the range of a 

few sets of parameter values for which no solution exists. To 

be specific, the Table 1 presents two pertinent information for 

given ε and other parameters fixed, the interval of Bi values 

for which there is no real solution and vice versa i.e. for given 

Bi, the interval of  values for which the solution does not exist. 

Similarly, the other tables present the respective range of 

parameter values for which real solution for the energy 

equation does not exist. 

From the Table 1 we see that (for fixed values α=0.1, 

K=0.001, M=1, Br=40, N=1, θa=-0.2, ω=0.8) when 0.001 =

is changed to 0.1 = then the range of Bi values for which no 

solution exists changes from (-0.8447, -1.1841) to (-0.2153, -

4.6456). This is worth noting that how the system may be 

significantly sensitive to the choice of the linearity constant. 

Furthermore, the Table also shows the range of  values for 

given Bi. We note that when Bi=-2, then there is no solution 

for ( ) 0.0174,    and the range for  hanges to ( )0.1118,  

when Bi=-5. Similarly, other Tables present select 

computations of other parameter values for which energy 

equation does not yield real distribution. 

 

Table 1. The range of Biot number Bi and linearity constant  for which the solution does not exist when α=0.1, K=0.001, M=1, 

Br=40, N=1, θa=-0.2, ω=0.8 

 

Epsilon () Range of Biot Number (Bi) Biot Number (Bi) Range of Epsilon () 

0.001 (-0.8447, -1.1841)  -2 (0.0174, ) 

0.01 (-0.5893, -1.6967) -3 (0.0466, ) 

0.05 (-0.3218, -3.1087) -4 (0.0786, ) 

0.1 (-0.2153, -4.6456) -5 (0.1118, ) 

 

Table 2. The range of Biot number Bi and Hartmann number M for which the solution does not exist when α=0.1, K=0.001, 

=0.1, Br=40, N=1, θa=-0.2, ω=0.8 

 
Hartmann Number (M) Range of Biot Number (Bi) Biot Number (Bi) Range of Hartmann Number (M) 

1 (-0.2153, -4.6465) -1 (0.00000001, ) 

2 (-0.1848, -5.4103) -2 (0.00000001, ) 

3 (-0.1765, -5.6749) -3 (0.00000001, ) 

  -4 (0.15, ) 

  -5 (1.37995, ) 

 

Table 3. The range of Biot number Bi and Brinkmann number Br for which the solution does not exist when α=0.1, K=0.001, 

M=1, =0.1, N=1, θa=-0.2, ω=0.8 

 
Brinkmann Number (Br)  Range of Biot Number (Bi)  Biot Number (Bi)  Range of Brinkmann Number (Br)  

30  (-0.2587, -3.8670) -1 (1.0881, ) 

40  (-0.2153, -4.6456) -2 (7.8889, ) 

50  (-0.1849, -5.4112) -3 (19.2237, ) 

 

Table 4. The range of Biot number Bi and Radiation parameter N for which the solution does not exist when α=0.1, K=0.001, 

M=1, =0.1, Br=40, θa=-0.2, ω=0.8 

 
Radiation Parameter (N) Range of Biot Number (Bi)  Biot Number (Bi)  Range of Radiation Parameter (N)  

1 (-0.2153, -4.6456) -2 (0, 9.1407) 

2  (-0.2775, -3.6029) -3 (0, 3.1615) 

3  (-0.3264, -3.0640) -4 (0, 1.5244) 

 

Table 5. The range of Biot number Bi and Brinkmann number Br for which the solution does not exist when α=0.1, K=0.001, 

M=1, =0.1, N=1, θa=-0.2, ω=0.8 

 
Brinkmann Number (Br)  Range of Biot Number (Bi)  Biot Number (Bi)  Range of Hartmann Number (Br) 

30  (-0.2476, -3.8670) -1  (0, ) 

40  (-0.2077, -4.8130) -2 (5.7128, ) 

50  (-0.1793, -5.5764) -3 (17.0475, ) 

 

 

427



 

 
 

Figure 2. Variation in temperature as varying α or K=0.001, 

M=1, =0.1, Br=40, N=1, Bi=10, θa=-0.2, ω=0.8 

 

 
 

Figure 3. Variation in temperature as varying Bi for α=0.1, 

K=0.001, M=1, =0.1, Br=40, N=1, θa=-0.2, ω=0.8 

 
 

Figure 4. Variation in temperature as varying Br for α=0.1, 

K=0.001, M=1, =0.1, N=1, Bi=10, θa=-0.2, ω=0.8 

 
 

Figure 5. Variation in temperature as varying M for α=0.1, 

K=0.001, =0.1, Br=40, Bi=10, N=1, θa=-0.2, ω=0.8 

 
 

Figure 6. Variation in temperature as varying N for α=0.1, 

K=0.001, M=1, =0.1, Br=40, Bi=10, θa=-0.2, ω=0.8 

 
Figure 7. Variation in temperature as varying  for α=0.1, 

K=0.001, M=1, Br=40, Bi=10, N=1 θa=-0.2, ω=0.8 

 
 

Figure 8. Variation in entropy generation number Ns for 

varying α for K=0.001, M=1, =0.1, Br=40, N=1, Bi=10, 

θa=-0.2, ω=0.8 

 
Figure 9. Variation in entropy generation number Ns for 

varying Bi for α=0.1, K=0.001, M=1 =0.1, Br=40, N=1, 

θa=-0.2, ω=0.8 
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Figure 10. Variation in entropy generation number Ns for 

varying Br for α=0.1, K=0.001, M=1 =0.1, N=1, Br=10, 

θa=-0.2, ω=0.8 

 
Figure 11. Variation in entropy generation number Ns for 

varying M for α=0.1, K=0.001, =0.1, Br=40, Bi=10, N=1, 

θa=-0.2, ω=0.8 

 
 

Figure 12. Variation in entropy generation number Ns for 

varying N for α=0.1, K=0.001, M=1 =0.1, Br=40, Bi=10, 

θa=-0.2, ω=0.8 

 

 
 

Figure 13. Variation in entropy generation number Ns for 

varying  for α=0.1, K=0.001, M=1, Br=40, Bi=10, N=1, 

θa=-0.2, ω=0.8 

The Figures 2-7 depict temperature distributions. Figures 8-

13 portray the local entropy generation number Ns. By these 

figures, we see that for one set of values of parameters there 

are two real distinct temperature regimes and consequently 

dual plots to the entropy are also obtained. In order to 

distinguish the two, we term these “first” and “second” 

solutions. The deciphering of graphs and their physical utility 

is a pertinent question and the information may be a useful 

basis for the intricacies required to create a system of interest 

where entropy generation analysis is instrumental for entropy 

generation minimization. This understanding gets weight in 

view of qualitative and quantitative differences observed in the 

first and second solution for temperature and entropy 

distributions. Plots for the temperature and entropy clearly 

show that the system is quite sensitive to the combination of 

parameter values and the phenomenon can be treated or 

discussed case by case. However, if we concentrate on the 

cases reported here then we see that the first and second 

distributions of temperature are the prominently distinct and 

exhibit peculiar pattern for varying values of the parameters. 

The Figure 2 shows the effect of slip coefficient α on the 

temperature. The effect is strikingly visible on both first and 

second temperature distributions. The Figure 3 depicts that the 

effect of Bi on first and second solutions (temperature 

distributions) is not similar. We see that in the case of first 

temperature distribution, the temperature shows an increase 

for increasing values of Biot number. However, for the second 

temperature distribution there is an opposite trend. Figure 4 

presents a different story that for increasing values of 

Brinkman number Br we see that the temperature increases in 

the first as well as in the second distribution. The Figure 5 also 

exhibits the same trend for the increasing values of Hartmann 

number as we have noted in the Figure 4, except in a region 

(spatial distance 0< η <0.15) for the first distribution. The 

same trend is also witnessed for both the first and second 

distribution in the case of varying radiation parameter (Figure 

6). The Figure 7 reveals the effect of the linearity constant ε 

on the temperature. It is found that a change in ε causes a 

qualitative change in the first temperature distribution in 

contrast to impact on the second distribution. The Figures 8-

13 depicting variations in Ns clearly manifest that the entropy 

generation has a defining different spatial distribution viz. first 

and the second as we would term them. One can observe a 

marked quantitative difference between the two entropy 

distributions arising out of the dual temperature regimes for a 

variety of the sets of parameter values. The question remains 

to be answered as to how the dual system may be harnessed 

for better understanding for devising tool and /or designing 

tool. 

 

 

5. CONCLUSIONS 

 

In this paper, a steady radiative MHD Couette shear flow of 

an incompressible fluid in a parallel wall channel was 

considered. The naturally permeable bottom of the channel 

was subjected to a convective flux with “weakly” temperature 

dependent convective coefficient and a hydrodynamic slip. A 

magnetic field of uniform strength was applied transverse to 

the flow direction. The model solved analytically showed that 

“weakly” temperature dependence of convection coefficient 

resulted in a peculiar situation for energy equation. It was 

found that the equation admitted either two distinct real 

solutions or no real solution for select parameter’ values. 
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Furthermore, the temperature dependent weak perturbations in 

convection coefficient not only affected temperature 

distribution but also reflected in entropy distribution too. The 

dual solution for the energy equation led to a dual entropy 

distribution too. 

The findings portrayed through tables and the graphs 

unequivocally transpire that how even a weakly temperature 

dependent convective mechanism may be altogether different 

from a convective mechanism with uniform convection 

coefficient which have unique temperature profiles system in 

latter case. The most intriguing question here was to highlight 

that convection mechanism sensitive/ prone to temperature 

dependence needed due care while devising a system where 

the thermal characteristics may be a prime concern. The paper 

computed range of parameter (when others are kept fixed) for 

which no real solution exists / dual solution exists to the energy 

equation. The mathematical simulation conducted here, in our 

opinion, would lead to revisit of many convective mechanisms. 

The key observations are: 

1. The simulation gave rise to a wide range of values of 

parameters for which either no real unique temperature 

distribution or a dual temperature distribution exists. An 

extensive computation has been done to find the range of a few 

sets of parameter values for which no real solution of the 

energy equation exists. The tables show case the situations for 

what vales of parameters solution does not exist at all. For 

example, when α=0.1, K=0.001, M=1, Br=40, N=1, θa=-0.2, 

ω=0.8 and =0.001 is changed to =0.1, then the range of Bi 

values for which no solution exists changes from (-0.8447, -

1.1841) to (-0.2153, 4.6456). This highlights that how the 

system may be significantly sensitive to the choice of the 

linearity constant i.e. perturbation in convection coefficient. 

Furthermore, when Bi=-2, then there is no solution for 

(0.0174, ) and the range for  changes to (0.1118, ) the 

text present regorous computations for parametric studies to 

peep into the issue.  

2. The simulation revealed that in the cases of dual solution 

for the energy equation, both the solutions are qualitatively 

and quantitatively distinct. In fluid mechanics, there are 

thermal configurations that admit multiple solutions for 

momentum and energy equations such as boundary layer flow 

over a shrinking sheet. the multiplicity of solutions is found 

due to suction rates. Here in our case study, the “onus” for the 

multiplicity of the solution is found on the perturbation in 

convection coefficient.  

3. The configuration undertaken here is rather simpler in 

terms of geometry and can be handled with simple 

mathematical modelling. However, the presented baby model 

has a scope for future explorations with rather more 

complexities e. g. strong temperature dependent convection 

mechanism, nonuniform physical properties of fluid, 

compressibility etc. In this paper, we excused ourselves from 

treading on these for the simple reason that we first intended 

to show pertinent shift arising out of weak perturbations in 

convection coefficient. 
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