
 

 
 
 

 
 

 
1. INTRODUCTION 

The classical case of convolution blind source separation is 

"cocktail party effect" [1]. In a multi-person simultaneous 

speaking or noisy music environment, the microphone 

receives the component weighted signals after mixing and 

delay, that’s, the convolution signals, and the required speech 

signal can be distinguished by the "Blind deconvolution" of 

the human ear. In practical applications, most of the observed 

signals to be separated are convolutionally mixed, and their 

statistical properties change with time [2]. The traditional 

instantaneous blind source separation algorithm has some 

drawbacks in dealing with convolution problems. 

2. MATHEMATICAL MODEL OF CONVOLUTION 

MIXING 

In the actual environment, the signal received by the 

microphone is mixed with pure speech signal, room 

reverberation, noise and some other interferences, with its 

model shown in Figure. 1 [3]. 

A convolution mixed signal with m source signals and n 

mixed signals is represented by Equation (1). 
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where, xj(k) is the j mixed signal, si is the i source signal, hji(p) 

is the transfer function from the i source signal to the j mixed 

signal, and P is the order of this transfer function. The above 

equation is rewritten as a matrix as shown in Equation (2).  
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where, H(p) is a mixed matrix of n×m order, each element of 

which is a filter of P order [4]. Then, the blind separation task 

of the convolution mixed signals is to solve a Q order 

separation filter matrix, so that the Equation (3) holds.  
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Figure 1. Model of speech signal transmission in actual 

environment 

 

where, y(k) is the estimation of the source signal x(k) and W(k) 
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ABSTRACT  

 
In the actual speech enhancement application, a large number of observation data need longer filters. The time 

domain algorithm has the disadvantages of large computation amount and slow processing speed. Transforming 

the time domain convolution operation into the frequency domain product operation can not only avoid the 

complicated convolution operation, but also reduce the calculation amount to a large extent, and improve the 

effectiveness of the blind source separation algorithm. Simulation experiment results show that the blind 

deconvolution algorithm in the frequency domain can improve the intelligibility and articulation of separated 

speech. 

 

Keywords: Speech Enhancement, Frequency Domain, Convolution, Blind Source Separation, Effectiveness. 

 



 

is the separation matrix of m×n, and each element therein is a 

filter of Q order. If yi(k)=aj(sj(k)), aj(·) is an unknown transfer 

function, Equation (3) may also be written as Equation (4).  
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When Equations (2) and (3) are transformed into the 

frequency domain, Equation (5) holds. 
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As can be seen from Equation (5), it’s blind source 

separation of the instantaneous mixed signal to convert the 

time-domain convolution mixed signal to the frequency 

domain. 

3 FREQUENCY DOMAIN BLIND DECONVOLUTION 

ALGORITHM 

In practical application, a large amount of observation data 

needs a long filter, and the time domain algorithm has the 

disadvantages of long time consuming and large calculation 

amount. In this case, it is necessary to transform convolution 

operation in the time domain into product operation in the 

frequency domain, to avoid complex convolution operation 

and reduce the calculation amount [5]. 

3.1 ICA blind deconvolution algorithm in frequency 

domain 

Frequency domain algorithm is the most commonly used 

method in speech signal blind separation at present. The main 

idea is to transform the time domain mixed signals into 

frequency domain product by short-time Fourier transform, 

then perform instantaneous mixed blind source separation at 

each frequency point (generally called independent 

component analysis ICA algorithm [6]). Because of the scaling 

and arrangement in frequency domain algorithm, it is 

necessary to descale and de-arrange the frequency domain 

signals, and then carry out inverse short-time Fourier 

transform of signals in the separated frequency domain to 

recover the original signals. 

The time domain signal xj is converted into a frequency 

domain time series signal Xj(w, k) by T-point windowed 

discretized short-time Fourier transform, as shown in Equation 

(6). 
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where, w(τ) is a window function, with Hanning window, 

Hamming window and others avaible, k is the position in a 

window of T width, R is the time interval of window 

movement and ω is frequency, 𝜔 = 0,
2𝜋

𝑇
, ⋯ ,

(𝑇−1)2𝜋

𝑇
.  

For each frequency point, Equation (7) holds. 
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where, H(ω) is mixed matrix. So, separated signals can be 

obtained by the separation matrix W(ω) of each frequency 

point, as shown in Equation (8). 
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In Equations (7) and (8), the following relationship is 

satisfied: 
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where, Sj(ω, k) and Yj(ω, k) are discrete short-time Fourier 

transform of source and separated signals. W(ω) can be 

iterated and updated at each frequency point until the 

components in Y(ω, k)are independent of each other. 

3.2 Second-order statistical method 

The idea of the method: for each element in the time block 

k(k=0, 1, …, K-1), it is necessary to find W(ω) to diagonalize 

the covariance matrix Ryy(ω, k) [7], and the process is as shown 

in Equation (10). 
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where, Rs(ω, k) represents covariance matrix of the source 

signals, and varies with k, Rc(ω, k) is an arbitrary diagonal 

matrix and Rxx(ω, k) is covariance matrix of X(ω), and can 

obtain via Equation (11).  
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For each frequency, the separation filter W(ω) can be 

estimated via Equation (12). 
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where, ‖ ‖2 is square of the norm Frobenius and Equation (13) 

holds. 
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The constraint conditions are as shown in Equation (14).  
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The iterative equation (15) of the second-order statistical 



 

algorithm for blind deconvolution in frequency domain can be 

obtained with the steepest descent method. 
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where, μ(ω) is the step size at each frequency point. 

3.3 Improved natural gradient blind deconvolution 

algorithm based on KL divergence 

(1) Natural gradient algorithm 

Set coefficient space: S={w∈Rn}, where, w=(w1,w2,…,wn)T. 

An objective function J(w) is defined in S, the standard 

gradient of J(w) is defined as shown in Equation (16) [8]. 
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The objective function J(w) is obtained by the standard 

gradient method, as shown in Equation (17). 
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The assumption conditions of the standard descent method: 

the parameter space S is Euclidean space with an orthogonal 

coordinate system, and the length of the coefficient vector 

increment dw can be obtained via Equation (18). 
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If the coordinate system is not orthogonal, the length of dw 

can be obtained via Equation (19). 
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(2) Selection of nonlinear functions 

Since the performance of the algorithm depends largely on 

the similarity between the selected nonlinear function and the 

probability density function of the source signals, and the 

probability density function of the actual signals is generally 

unknown, the selection of the nonlinear function is closely 

related to the performance of the algorithm. 

Assuming that the probability density function of the source 

signal S can be approximately estimated as qi(yi), the definition 

of the nonlinear function fi(yi) is as shown in Equation (20). 
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The above equation contains the probability density 

function q(y) of the source signals, which is an unknown 

quantity, and in the reference [9], the selected nonlinear 

function is generally fixed, such as for sub-Gaussian signals, 

fi(yi)=y
3 

i  is generally selected; for super-Gaussian signals, 

fi(yi)=tanh(yi) is generally selected. 

When the distribution of the source signals is inconsistent 

and includes both sub-Gaussian and super-Gaussian signals, 

the adjustable nonlinear function must be selected to adapt to 

the probability density function of different source signals by 

adjusting its parameters. 

(3) Natural gradient blind deconvolution algorithm based on 

KL divergence 

The model of convolution mixing can be expressed as 

Equation (21). 
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where, for source originals: s(k)=[s1(k), s2(k), …, sm(k)]T, when 

the filter matrix at p of the delay is Hp, the mixed signals: 

x(k)=[x1(k), x2(k), …, xn(k)]T.  

Assuming that y(k) is the estimation of the source signal s(k) 

after the mixed signal x(k) is separated by the filter W, as 

shown in Equation (22). 
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For frequency domain blind source separation of 

convolution mixed signals, the expression of the objective 

function based on KL divergence is as shown in Equation (23). 
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where, 𝑊(z, k) = ∑ 𝑊𝑝(𝑘)𝑧−𝑝∞
𝑝=−∞ , yi(k) is the i element of 

y(k), and pi(yi) is the probability density function of the i 

element. By minimizing the objective function using the 

natural gradient method with the steepest descent, a blind 

natural gradient deconvolution algorithm is obtained as shown 

in Equation (24). 
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where, 𝑦(𝑘) = ∑ 𝑊𝑝(𝑘)𝑥(𝑘 − 𝑝)𝐿
𝑝=0 , 𝑢(𝑘) =

∑ 𝑊𝐿−𝑞
𝐻 (𝑘)𝑦(𝑘 − 𝑞)𝐿

𝑞=0 , L is the length of the separation filter 

and (·)H is conjugate transpose. 

In reference [10], the good convergence property of the 

Equation (24) algorithm has been proven. Another property of 

the algorithm is the equivariant property, that’s, its separation 

effect is not related to the characteristics of the transmission 

channel. The objective funtion of Equation (24) is 𝑓𝑖(𝑦𝑖) =

−
𝑑 log[𝑝𝑖(𝑦𝑖)]

𝑑𝑦𝑖
, where pi(yi) is the probability density function of 

the i signal yi in the estimated signal y. however, pi(yi) is 

unknown in advance, and a nonlinear function is needed to 

replace the unknown objective function. However, this method 

also has limitations because the selection of source signal 



 

objective functions with different statistical characteristics 

will also be different. Therefore, it is very difficult to select the 

objective function when the statistical characteristics of the 

source signals are unknown. In this paper, Equation (23) is 

used as the objective function. For the super-Gaussian speech 

signal, the improved algorithm can perform blind 

deconvolution effectively. 

4. SIMULATION EXPERIMENT AND ANALYSIS OF 

RESULTS 

In order to verify the validity of the algorithm, two sets of 

MATLAB simulation experiments are carried out. The first set 

is the simple time delay mixed speech signals, and the second 

set is the convolution mixed speech signals. 

The original speech signal used in Experiment 1 is provided 

by the ICALAB database [11], the selected delay coefficient 

is τ12=1 and τ21=2, and the two observed signals are 

respectively: 
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Using the frequency domain method in the experiment, the 

waveforms of the original signals, the mixed signals and the 

separated signals are shown in Figure 2. 

 

 

 
(a) Original signals 

 

 
(b) Mixed signals 

 

 
(c) Separated signals 

 

Figure 2. Waveforms of the original signals, the mixed 

signals and the separated signals 

Comparing the diagrams (a), (b) and (c) in Figure 2, it can 

be seen that the waveform of separated signals is very close to 

that of original signals, and the part of the mixed signal in 

which the two voices are mixed is difficult to be observed in 

the separated signal diagram, achieving ideal separation effect.  

The speech test data used in experiment 2 is provided by 

Lucas Parra [11], which is a mixed signals of speaker and TV 

sound. The frequency domain method is adopt in the 

experiment, and the observed signals of the microphone and 

the separated signals obtained by the algorithm are shown in 

Figure 3. 

 

 

 
(a) Observed signals 

 

 

 
(b) Separated signals 

 

Figure 3. Waveforms of observed signals and separated 

signals 

 

Since the original signals of the two sounds cannot be 

obtained directly, the difference between the source signals 

and the separated signals cannot be seen intuitively from the 

above figure, but from the definition of the output signals, the 

separated signals are obviously better than the observed 

signals, indicating that the signal quality is improved to a 

certain extent to achieve the ideal separation effect. 

5. CONCLUSIONS  

In this paper, the convolution-mixed speech signal 

enhancement processing method is studied. The mixed signal 

is closer to the actual environment, and the time-domain blind 

deconvolution algorithm is complicated with longer time 

delay, so the frequency-domain algorithm is adopted to reduce 

the algorithm complexity and improve the blind source 

separation efficiency. On the basis of previous researches, this 

paper introduces a blind source separation algorithm of natural 

gradient convolution mixed signals based on KL divergence. 

Through frequency domain blind deconvolution simulation of 

two sets of mixed speech signals with different characteristics, 

the effectiveness of the improved algorithm is verified, and the 

intelligibility and articulation of the separated signals are 

improved. 
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