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Digital images can be degraded through noise during the transmission and process of 

acquisition, it is still a fundamental challenge is to eliminate as much noise as possible 

while preserving the main features of the image, for instance, edges, texture, and corners. 

This paper proposes for image denoising a new Improved Hybrid Genetic Algorithm 

(IHGA), whose combined a Genetic Algorithm (GA), with some image denoising 

methods. Wherein this approach uses mutation operators, crossover, and population 

reinitialization as default operators available in evolutionary methods with applied some 

state-of-the-art image denoising methods, such as local search. Tests are conducted on 

some digital images, commonly used as a benchmark by the scientific community, where 

different standard deviations are used for digital images. Experimental results indicate that 

the proposed method is very effective and competitive in comparison with previously 

published works.  
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1. INTRODUCTION

Image denoising is one of the exemplary issues of image 

handling, numerous methodologies have been acquainted with 

eliminate commotion from advanced image literature [1], yet 

eliminating noise from computerized images stay a difficult 

issue. 

Digital images can be collected from various instruments, 

such as laser scanners, medical scanners, cameras, and weather 

satellites [2]. It is therefore important to remove the noise 

while maintaining the important features of the image, such as 

edges and corners. Noise can eventually corrupt images during 

processing, transmission, and compression processes. 

This research describes a method for suppressing noise with 

an Improved Hybrid Genetic Algorithm (IHGA) for a digital 

image that combines genetic algorithm with some image 

denouncing techniques from BM3D [3], Anisotropic 

Diffusion [4], and Wiener-chop [5] literature. In this work, the 

IHGA implemented Improved Genetic Hybrid Algorithm 

which eliminates Gaussian noise in digital images. Our 

experimental results display that IHGA improves in general. 

The remainder of the paper is as below. Section 2 describes 

the proposed Improved Genetic Hybrid Algorithm in this 

paper, and we present in detail the reviews of different 

techniques to denoise pictures. Section 3 summarizes the 

findings of the Section 4 experiments, and ends remarks in 

Section 5.  

2. BACKGROUND

The key aim of the image denoising approach is to restore 

an original picture that has been polluted with additive noise 

without losing the image's edge information, such as texture 

and corners. 

Some linear filtering [6] was suggested in the original 

images to eliminate the uniform and Gaussian noise. The 

filters used to eliminate the noise in optical images are known 

as linear filters, for example, is the Wiener filter, while non-

linear filters are categorized as a median filter, for example. In 

linear filters, a kernel filter is transformed to the required result 

through a noise signal, whereas non-linear filters [7] cannot be 

regarded as a convolution process [1]. These filters are used to 

eliminate the noise in the image with white Gaussian noise 

applied without the need for any previous information. 

Rational operators [8] have been applied to progress 

denoising techniques. Approaches based on computational 

fluid dynamics (CFD) and partial differential equations (PDE) 

have also been advanced, total variation (TV) methods [9], 

level set methods [10] non-linear isotropic and anisotropic 

diffusion [11]. 

Other methods have combined filtering techniques to 

remove impulse to suppress noise and local adaptive filtering 

in the transform domain [9]. Non-local filtering has been 

confirmed to be strong for image denoising, one of these 

methods is the BM3D [3] filter Singular Value Decomposition 

(SVD) has also been applied in the filtering of image noise 

[12]. Other methods collected wavelet transformations, 

spatially adaptive methods and hidden models of Markov [13]. 

In recent years several methods have been proposed using 

Evolutionary Algorithms for image denoising. Such methods 

generally attempt to implement the shrinkage rule by 

estimating thresholds on an image for the noisy wavelet 

coefficients [14-16].  

A genetic algorithm is used to eliminate noise from image 

in the process suggested by de Paiva et al. [17, 18]. In this 

approach, a noisy picture is used as a contribution and certain 

methods of denotation are used to initialize mutation operators, 

crossover processing and population growth. 

Review of Computer Engineering Studies 
Vol. 8, No. 1, March, 2021, pp. 14-21 

Journal homepage: http://iieta.org/journals/rces 

14

https://crossmark.crossref.org/dialog/?doi=10.18280/rces.080103&domain=pdf


 

This work improves on several essential aspects of the 

approach introduced by de Paiva et al. [17]. First, it uses a new 

collection of mutations based on methods of image restoration. 

Secondly, a whole new range of crossovers. Second, a new 

approach to initializing a population is implemented, in this 

method by randomly crossing two people from the initial 

population group. In addition, there are other significant 

differences such as using a different selection method as 

selection of roulette wheels.  

 

 

3. METHODOLOGIES 

 

Algorithm: Proposed Improved Hybrid Genetic Algorithm 

Input: Noisy image I. 

Step 1: (Initialization) Create a group of three new 

individuals G= {IBM3D, IAD, IWiener -Chop} as the 

initial population by Apply filters BM3D, AD and Wiener-

Chop over input image I. 

Step 2: while the initial population size is less than 

PopSize do 

Step 3: Select a two individual randomly of individuals 

from a set G. 

Step 4: Procedure a random crossing for two individual 

of this selected pair and integrate each individua of the 

resulting individuals into the initial population. 

Step 5: end while 

Step 6: (Evaluation) Each individual of the initial 

population is evaluated by a fitness function. 

Step 7: while the Runtime is less than MaxTime and the 

iteration number is less than MaxIter do. 

Step 8: repeat 

Step 9: (Parent selection) Select a pair of individuals 

from the population using a Roulette Wheel Selection. 

Step 10: (Crossover) The offspring are created by 

recombining pairs of the selected parents to a new 

generation. 

Step 11: (Mutation) Mutate to each offspring using one 

of three mutations are proposed which are also selection 

randomly to be used with probability Pm. 

Step 12: (Evaluation) Evaluate the fitness of each 

offspring. 

Step 13: (Local Search) If a randomly selected value 

from [0, 1] is Less than the local search rate, apply local 

Search operator at the end of each evolutionary step to the 

best individual found. 

Step 14: end if 

Step 15: (Elitism) generate a new generation of PopSize 

individuals using deterministic fitness-based replacement. 

Step 16: (Reset population) if the runtime is less than 

MaxTime integrate the best individual of the previous 

generation previous with created a new population by the 

same process used to the initial population. 

Step 17: end if 

Step 18: (Evaluation) Evaluate each new population's 

fitness 

Step 19: until complete PopSize generations. 

Step 20: end while 

Step 21: the best image of the last generation returns. 

 

This section describes IHGA, our proposed Improved 

Genetic Hybrid Algorithm which suppresses image noise. The 

input of the proposed algorithm is a gray-scale image that I 

was interrupted by Gaussian noise. The Denoised image of I is 

the production of the initial population each person in IHGA 

is represented as a denoised image of I. The proposed 

algorithm outlines. 

 

3.1 Initialization 

 

Initial populations with PopSize are generated by Lines 1-5 

of our algorithms. In which a double-dimensional (2D) pixel 

array of values within [0,255] range represents each person in 

the population. An updated version of image I entry reflects all 

users. After each of the subsequent denoising filters, the first 

three population individuals use a denoted graphic. BM3D, 

AD, Wiener Chop. 

These methods are classified as computationally fast filters 

to take advantage of their strength due to their image denoising 

competency as well as their short computational time. Those 

methods are considered to be the best literature findings. 

The algorithm IHGA creates the other individuals of the 

initial population by selecting from the set {IBM3D, IAD, 

Iwiener-Chop} two individuals IX and IY. The outputs are 

submitted by a random crossing between the two individuals, 

which exchanges pixels point-to- point. This new individual 

recombination operation output is included in the initial 

population and used this operation repetitively until PopSize 

individuals were attained by the initial population. Figure 1 

shows a block diagram of the initial population created. 

 

 
 

Figure 1. Creation of the initial population of IHGA 

 

3.2 Fitness function 

 

Lines 6, 12 and 18 of our Algorithm evaluate the fitness of 

the population. The algorithm is guided based on a fitness 

function represented by minimizing Eq. (1). As stated in the 

study [19]. 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) = {∑ √1 + 𝛽2|𝛻𝐼|2 +
𝜆

2
𝛺

 (𝐼 − 𝐼0)2} (1) 

 

Mindful the edges of the image and attempts to save 

significant highlights of the image work portrayed in the 

parameter, I is the picture being assessed, I0 the loud picture, 

β and λ are adjusting boundaries and Ω is the group of all 

focuses in the image. 

Full names of authors are required. The middle name can be 

abbreviated. 

 

3.3 Parent selection 

 

Line 9 of our Algorithm create parents by selects pairs of 

individuals who are selected through roulette wheel selection. 

 

3.4 Crossover 

 

Following a selection of our algorithm's step parents in line 
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9, line 10, the new person is generated by randomly selecting 

one of three crossover operators shows next:  

Single-point: On both parents a single crossover picked a 

point, one of the two that we randomly pick in this process.  

One-point column: Random arrangement of a progression 

of pixels. The pixels over this line originate from one parent. 

The pixels from the subsequent parent are all beneath this line.  

One-point row: Similar to the past methodology yet rather 

than picking a segment from a column.  

Two-point: Two-point hybrid chose two focuses on the two 

guardians; we arbitrarily pick one of the two in this cycle.  

Two point column: two hybrid focuses are chosen 

haphazardly from the exhibit, all pixels duplicated from the 

beginning of the chromosome to a parent's first hybrid point, 

at that point all pixels are replicated from the principal hybrid 

purpose of the parent to the second traverse purpose of the 

parent, and the rest of replicated from the first of the parent.  

Two-point row: segment like the past structure, yet favor a 

segment as opposed to a column.  

Cross grid: a solitary point and one-point administrator 

blend is utilized to fragment each image into four quadrants, 

however not actually equivalent measurements. In several 

image, he shares a quadrant. In Figure 2, this Fusion reveals 

the effect. 

 

 
(a) One-point row 

   
(b) One-point column               (c) Two-point row 

   
(d) Two-point: column              (e) Cross Grid 

 

Figure 2. Examples of the crossover 

3.5 Mutation 

 

Line 11 of the proposed Algorithm executes a grid mutation 

operator which provides population diversity. This operator 

takes a single Ix with probability mutation rate as its input. 

Next, it selects two rows and two Ix columns at random. Then 

it labels the rectangle formed by the rows and columns that 

were selected. Second, by randomly applying one of the three 

filters presented next, it treated the area:  

Filter motion blur: filters a filter motion in the picture, this 

filter produces a motion blur. 

Median filter: filters the image by means of a median filter, 

the size is randomly selected between 3 pixels and 5 pixels. 

Intensity: Each pixel of the image is multiplied by the same 

factor chosen randomly between the interval [0.8, 1.2]. 

This operator created a mutated offspring Ix’, Figure 3 

shows a result of this mutation operator. 

 

 
 

Figure 3. Example of the grid mutation operator 

 

3.6 Local search 

 

Line 13 of our algorithm explains that when the randomly 

selected value of [0, 1] is less than the local search rate of the 

algorithm, a local search operator is applied to the best 

individual found in a new individual using the denoising 

method of the three described previously BM3D [3], AD [4], 

and Wiener-chop [5]. 

 

3.7 Population replacement 

 

Line 15 of the proposed algorithm is a modified step that 

only guarantees that the right person is available. The fitness 

replacement scheme is formed by the union of some of the 

parents of the previous generation and some of their 

offspring’s in order to perform with a sorting algorithm to 

choose certain people. 

 

3.8 Reset population 

 

The population is reset in line 16 of our algorithm to retain 

the best people and build the majority of the new people in the 

same method with the first generation. 

 

3.9 Termination condition 

 

Lines 8 to 19 of our Algorithm repeats the algorithm until it 

completes Pop Size generations even a condition is met in line 

7. Next, the algorithm returns the best individual present in the 

last generation (see Line 21). 
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4. EXPERIMENTAL RESULTS 

 

The experimental results from the proposed improved 

genetic hybrid algorithm (IHGA) for image denoise are 

presented in this section with the intention of testing the 

efficiency of our proposed developmental algorithm and 

compared the proposed algorithm to state-of-the-art images 

denoise methods. For this function the additive Gaussian noise 

disrupted each of the seven images with 11 different standard 

variants σ = 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 and 60. For 

this purpose we used 7 images. 

We measure the objective quality metrics to evaluate the 

quality of the image restored after a filtering process. Eq. (2) 

presented the Peak Signal to Noise Ratio (PSNR) measure via 

the Mean Square Error (MSE) of Eq. (3). 

 

𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
) (2) 

 

The MSE is the mean squared error between the original (O) 

and the recovered images (K). M and N It is dimensions of the 

image. 

 

𝑀𝑆𝐸 =  
1

𝑀 𝑁
 ∑ ∑[𝑂(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

 (3) 

 

4.1 Setting parameter 

 

To test the performance of IHGA parameters, tests were 

performed using different parameters for each test, and the 

target quality metrics were calculated to select the best 

parameter. 

The basic configuration of the IHGA after performing all 

these tests are shown in Table 1. 

 

Table 1. The basic configuration of the IHGA 

 
Selection Pressure 8 

Mutation rate 0.2 

Population size 15 

β 1.5 

MaxTime 20 minutes 

 

MaxIter = 5, locale search rate=0.8, and λ was 1/√(𝜈) 

where ν is the estimated variance of the noise, except for the 

parameters maxIter, λ and local search rate which were chosen 

empirically. 
 

4.2 Comparison of the results 

 

The results of the IHGA in this section against the other 

approaches used in the literature used in contrast were Bayes 

[20], Wiener [1], median [1], TV [9]. Wavelets. The results of 

the PSNR were given in Table 2., Wiener-chop [5], AD [4], 

BM3D [3], and HGA [17]. For the noise ratio, the value 

displayed in bold is the highest value and the underlined values 

are the lowest. 

Results also demonstrated that IHGA is comparable with 

some of the best picture denoising approaches available in the 

literature, even though in some cases its worst results (IHGA 

Min) also yielded better results. In most cases, IHGA proposed 

innovative technique gives superior results than those 

techniques used as local search operators. In addition, the 

effects of this hybrid technique would be entitled to 

outperform other available approaches published in the 

literature. 

In order to validate this process, IHGA is compared with 

HGA, which has been able to obtain better results than the ones 

described in the study [17]. This indicates that some changes 

in the HGA and its combining with other techniques will help 

to provide the better output solution. The suggested HGA was 

introduced for the same runtime of the IHGA run at [17]. This 

amendment was introduced in order to allow for a rational 

distinction of the two approaches. 

Table 2 illustrates the minimum (Min), maximum (Max) 

and average (Avg) PSNR obtained by the IHGA. It is also 

presented the HGA and other methods found in the literature. 

When examining the maximum results, the proposed method 

IHGA was the optimum method in terms of PSNR presented 

the greater results in 59 out of 77 tests (77%). When examining 

the number of times that the IHGA, it was top PSNR than the 

other methods with all tested noise levels, against the 88 

results for the other methods. The proposed IHGA is greater 

than other methods in 84 times for Man (96% of the cases), 

96% for Boat image, 97% for Lenna image, 99% for Glasses 

image, 96% for Peppers image, 99% for Lightning image, and 

96% for Cameraman image.  

Instead of analyzing the best cases Such as those mentioned 

in the previous paragraph, we conducted an analysis of the 

worst cases and the average cases, with taking into account the 

same comparisons the proposed method. IHGA was best than 

the other methods. In the average and worst cases, 

respectively, PSNR found by the proposed IHGA is greater 

than PSNR values of other methods, for the Man image at 81% 

and 60% of the time, 73% and 58% for Boat image, 82% and 

76% for Lenna image, 97% and 93% for Glasses image, 85% 

and 77% for Peppers image, 96% and 93% for Lightning 

image, and 78% and 70% for Cameraman image. 

IHGA is now compared against Best methods for denoising 

images it uses as local search, when making the same 

comparisons as those that were made in the previous, but 

taking into account it against only BM3D, AD, and Wiener-

chop. The maximum PSNR outperforms these methods for the 

Man image at 90% of the time, 87% for Boat image, 90% for 

Lenna image, 100% for Glasses image, 90% for Peppers 

image, 100% for Lightning image, and 87% for Cameraman 

image. In the average case and worst cases. Respectively, 

IHGA has the best PSNR than the theses methods at for the 

Man image at 63% and 36% of the time, 73% and 30% for 

Boat image, 66% and 54% for Lenna image, 90% and 78% for 

Glasses image, 66% and 54% for Peppers image, 87% and 

87% for Lightning image, and 51% and 42% for Cameraman 

image.  

When Comparison of the results of the proposed method 

IHGA for it against only HGA show that the Image quality is 

improved without losing image features, indicates that our 

technique has an advantage over HGA. For PSNR metric, our 

analysis shows that the IHGA is better than HGA 94% of the 

time in the best case, 92% in the average case, and 72% in the 

worst result for the 10 executions. 

The IHGA algorithm is more efficient in eliminating 

Gaussian noise than a IHGA, especially at the high noise level 

For example σ =60 (see Figures 4, 5, 6, 7, 8, 9, and 10). 
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Table 2. PSNR results for all the tested methods 
 

Images σ Bayes WC Median Wiener AD BM3D TV 
HGA 
avg 

HGA 
max 

HGA 
min 

IHGA 
avg 

IHGA 
max 

IHGA 
min 

Man 10 31,31 32,11 30,204 30,49 32,57 33,62 30,74 32,51 32,66 32,27 32,58 33,61 32,10 
 15 29,75 30,50 28,744 29,485 30,465 31,718 30,268 30,556 30,719 30,374 30,554 31,605 30,328 
 20 28,69 29,45 27,402 28,562 29,158 30,452 29,182 29,461 29,937 29,215 29,885 30,012 29,248 
 25 27,75 28,56 26,106 27,641 28,136 29,542 27,601 28,990 29,576 28,146 28,980 29,56 28,143 

 30 26,96 27,82 24,964 26,811 27,311 28,821 25,884 27,75 28,526 27,266 28,530 28,846 27,228 

 35 26,41 27,12 23,872 26,063 26,655 28,176 24,232 27,091 27,637 26,407 27,160 28,197 26,824 
 40 25,85 26,61 22,984 25,354 26,129 27,598 22,814 26,301 26,677 25,879 26,570 27,625 26,411 

 45 25,40 26,05 22,039 24,635 25,528 27,057 21,414 25,887 26,236 25,498 26,310 27,088 26,060 
 50 25,00 25,55 21,294 24,027 25,064 26,616 20,307 25,465 25,778 24,975 25,880 26,627 25,574 
 55 24,604 24,967 20,566 23,467 24,623 26,237 19,217 25,039 25,518 24,182 25,559 26,245 24,98 

 60 24,192 24,534 19,907 22,969 24,175 25,742 18,397 24,651 25,087 24,24 25,135 25,756 24,77 

Boat 10 30,32 32,24 29,412 30,042 32,338 33,587 30,461 32,30 32,382 32,081 32,252 33,297 32,080 
 15 29,05 30,55 28,178 29,013 30,388 31,930 29,867 30,481 30,598 30,099 30,58 31,631 30,002 

 20 27,94 29,37 26,958 28,120 28,986 30,791 28,879 29,223 30,047 28,711 29,415 30,791 28,652 

 25 26,95 28,39 25,768 27,185 27,867 29,782 27,355 28,281 29,056 27,785 28,405 29,785 27,65 
 30 26,19 27,60 24,673 26,354 26,971 28,978 25,72 27,589 28,678 26,985 27,602 29,252 26,971 

 35 25,59 26,96 23,721 25,627 26,26 28,362 24,125 26,392 27,390 25,410 27,100 28,452 26,884 

 40 24,99 26,35 22,820 24,871 25,599 27,585 22,687 25,859 26,615 24,725 26,560 27,674 26,150 
 45 24,58 25,72 21,954 24,200 25,026 26,906 21,329 25,393 25,854 24,847 26,156 26,987 25,706 

 50 24,15 25,22 21,225 23,626 24,512 26,476 20,228 24,753 25,433 24,122 25,700 26,547 25,420 

 55 23,79 24,66 20,504 23,035 24,003 25,925 19,142 24,389 24,995 23,016 25,147 26,025 24,720 
 60 23,37 24,22 19,877 22,558 23,611 25,426 18,250 23,909 24,585 23,138 24,865 25,777 24,289 

Lenna 10 33,33 34,35 32,116 32,661 34,177 35,873 33,06 34,287 34,481 34,084 34,344 35,773 34,178 
 15 31,84 32,72 30,042 31,215 32,155 34,248 32,227 32,456 32,633 32,171 32,720 34,107 32,047 

 20 30,56 31,50 28,361 29,996 30,786 32,999 30,586 31,809 32,717 31,213 32,414 32,901 31,191 

 25 29,48 30,47 26,815 28,847 29,672 32,014 28,457 31,209 32,025 30,095 31,144 32,014 30,017 
 30 28,75 29,65 25,533 27,868 28,831 31,184 26,478 30,09 30,735 29,207 30,012 31,304 29,101 

 35 27,98 28,87 24,38 26,992 28,162 30,507 24,63 28,742 29,079 28,248 30,104 30,611 29,301 

 40 27,51 28,07 23,297 26,084 27,38 29,932 22,991 28,195 28,910 27,599 29,411 29,999 28,61 
 45 27,02 27,423 22,432 25,366 26,867 29,338 21,628 27,477 28,239 27,019 28,438 29,414 28,251 

 50 26,50 26,753 21,589 24,632 26,264 28,775 20,388 26,916 27,372 26,341 28,215 28,810 27,321 

 55 25,99 26,227 20,802 24,043 25,798 28,284 19,369 26,639 27,333 25,643 27,64 28,381 26,984 
 60 25,47 25,645 20,117 23,485 25,288 27,746 18,448 25,966 26,853 25,137 27,248 27,819 26,61 

Glasses 10 39,64 40,961 35,166 37,74 40,088 43,348 40,165 40,933 41,296 40,632 43,347 43,610 42,21 

 15 37,32 38,333 31,944 34,895 37,665 41,455 37,928 39,457 40,702 38,457 41,445 41,601 40,278 
 20 35,53 36,018 29,494 32,555 35,844 39,727 33,684 38,709 39,453 37,155 39,727 39,793 38,415 

 25 34,78 34,574 27,652 30,978 34,366 38,458 30,207 38,496 38,501 38,443 38,453 38,501 37,458 

 30 34,05 33,485 26,16 29,798 33,352 37,286 27,566 35,374 36,575 33,669 37,346 37,483 37,286 

 35 33,25 32,475 24,885 28,765 32,36 36,379 25,492 34,165 35,116 32,667 36,489 36,616 36,379 

 40 32,38 31,077 23,627 27,633 31,226 35,390 23,627 32,935 33,825 31,773 35,405 35,495 35,39 

 45 31,56 30,511 22,779 26,863 30,614 34,840 22,344 32,566 33,256 32,121 34,842 34,999 34,105 
 50 30,91 29,502 21,856 26,044 29,696 33,760 21,156 31,577 31,922 30,727 33,765 33,820 33,76 

 55 29,85 28,567 21,024 25,148 28,912 32,455 20,122 30,567 30,975 30,078 32,590 32,877 32,255 

 60 28,94 27,646 20,351 24,502 27,998 31,448 19,21 29,739 30,496 28,747 31,865 31,968 31,148 
Peppers 10 30,93 32,617 30,101 30,641 33,378 34,500 32,097 33,444 33,601 33,246 33,517 34,420 33,114 

 15 28,33 30,735 28,63 29,55 31,204 32,578 31,161 31,279 31,701 30,244 31,571 32,575 30,114 

 20 26,52 29,261 27,285 28,422 29,607 31,115 29,646 29,999 30,322 29,798 30,301 31,105 29,625 
 25 24,94 28,017 25,908 27,334 28,379 30,073 27,667 28,795 29,451 28,267 29,412 30,240 28,171 

 30 24,38 27,114 24,821 26,493 27,269 29,070 25,98 27,926 28,521 26,992 28,415 29,178 27,601 

 35 23,75 26,152 23,7 25,605 26,412 28,328 24,269 26,566 27,018 26,184 27,61 28,521 27,008 
 40 23,26 25,253 22,774 24,852 25,637 27,531 22,708 25,769 26,339 25,215 27,031 27,610 26,328 

 45 23,03 24,555 21,935 24,19 24,857 26,784 21,401 25,181 25,501 24,762 26,251 26,888 25,48 

 50 22,48 23,887 21,212 23,555 24,257 25,971 20,372 24,316 25,026 23,847 25,441 26,101 24,81 
 55 22,13 23,329 20,415 22,947 23,644 25,675 19,228 23,719 24,115 23,194 25,257 25,901 24,644 

 60 21,90 22,834 19,837 22,446 23,151 25,101 18,389 23,172 23,575 22,762 24,611 25,301 24,045 

Lightning 10 33,52 37,535 33,73 36,009 38,359 40,169 37,477 38,939 39,059 38,695 40,16 40,369 40,017 

 15 31,61 35,202 31,144 33,848 36,101 38,171 35,988 36,909 37,271 36,593 38,247 38,341 38,17 

 20 30,29 33,301 28,989 31,902 34,37 36,662 32,769 35,879 36,457 35,218 36,742 36,777 36,66 

 25 29,43 32,127 27,298 30,445 33,062 35,533 29,819 35,449 35,542 34,933 35,341 35,542 34,633 
 30 28,86 31,117 25,828 29,106 32,006 34,707 27,214 33,756 34,618 33,037 34,814 34,847 34,41 

 35 28,52 30,148 24,581 27,967 31,062 33,659 25,132 32,168 32,548 31,61 33,74 33,744 33,659 

 40 27,74 29,415 23,535 26,898 30,182 33,166 23,441 31,155 31,809 29,927 33,168 33,216 33,166 
 45 27,09 28,692 22,597 26,102 29,483 32,507 22,012 30,802 31,208 29,395 32,617 32,807 32,507 

 50 26,46 27,928 21,667 25,164 28,481 31,711 20,765 29,901 30,422 28,784 31,715 31,810 31,715 

 55 25,90 27,461 20,987 24,655 28,084 31,152 19,787 29,495 30,084 28,427 31,156 31,262 30,156 
 60 25,64 26,61 20,231 23,866 27,100 30,466 18,816 28,379 29,021 27,411 30,468 30,567 30,466 

Cameraman 10 31,36 31.194 26.567 29.146 33.086 33.548 29.177 32.747 33.045 31.185 33.087 33.414 32.577 

 15 28,55 29.255 23.810 29.255 30.807 31.538 28.891 30.613 30.839 30.134 30.447 31.417 30,038 
 20 26,98 27.874 23.810 29.255 29.236 30.200 27.907 29.381 29.591 29.176 29.477 30.110 29,047 

 25 25,76 26.806 23.810 29.255 27.906 29.246 26.768 28.218 27.666 27.929 28.147 29.141 27,87 

 30 25,03 26.001 23.810 29.255 26.797 28.260 26.421 27.136 27.481 26.924 27.571 28.310 26,722 
 35 24,25 25.184 23.810 29.255 25.817 27.535 23.882 26.044 26.297 25.531 26.018 27.644 25,541 

 40 23,67 24.563 23.810 29.255 24.992 26.748 22.638 25.230 25.448 24.427 25.351 26.887 24,86 
 45 22,98 23.904 23.810 29.255 24.170 25.789 21.315 24.266 24.662 23.363 24.630 25.977 24,135 

 50 22,25 23.288 23.810 29.255 23.389 25.299 20.237 23.651 23.838 23.185 23.515 25.319 23,425 

 55 21,90 22.833 19.940 21.644 22.785 24.514 19.231 23.166 23.322 22.808 23.208 24.718 23,052 
 60 21,53 22.454 19.481 21.212 22.320 24.162 18.482 22.631 22.851 22.193 22.744 24.241 22,425 
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(a) image Original                     (b) image Noisy (σ =60)                        (c) HGA                                    (d) IHGA 

 

Figure 4. Results of the methods for Boat image by HGA and IHGA 

 

             
(a) image Original                  (b) image Noisy (σ =60)                        (c) HGA                                    (d) IHGA 

 

Figure 5. Results of the methods for Cameraman image by HGA and IHGA 

 

       
(a) image Original                 (b) image Noisy (σ =60)                       (c) HGA                                    (d) IHGA 

 

Figure 6. Results of the methods for Cameraman image by HGA and IHGA 

 

             
(a) image Original            (b) image Noisy (σ =60)                   (c) HGA                               (d) IHGA 

 

Figure 7. Results of the methods for Lenna image by HGA and IHGA  

 

    
(a) image Origin               (b) image Noisy (σ =60)                 (c) HGA                                  (d) IHGA 

 

Figure 8. Results of the methods for Man image by HGA and IHGA 
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(a) image Original             (b) image Noisy (σ =60)                       (c) HGA                                    (d) IHGA 

 

Figure 9. Results of the methods for Lightning image by HGA and IHGA 

 

             
(a) image Original              (b) image Noisy (σ =60)                     (c) HGA                                    (d) IHGA 

 

Figure 10. Results of the methods for Peppers image by HGA and IHGA 

 

5. CONCLUSIONS 

 

In this paper, we have presented an Improved Hybrid 

Genetic Algorithm (IHGA), this method, although inspired by 

HGA has a number of fundamental changes, such as the use 

different operators of mutation and crossover, local search 

operators used only the best candidate that was identified at 

the conclusion of and evolutionary process. We also have 

changed the method selection process. IHGA was evaluated 

against other denoising methods, where were used seven 

different images with the 11 levels of noise. Experimental 

results present that IGHA outperformed a previous an 

approach based on HGA, which indicates that we have found 

an improves solution for image denoising problem. In 

comparison with the other denoising image found. 

In the literature, especially images with high noise levels. 

Taking the best solutions into consideration, the average and 

the worst solutions found, which measured using PSNR. 

IHGA is still slow compared to some image denoising 

methods. This problem becomes more apparent when several 

executions. As future work, we intend to reduce the 

computational cost through proposed new fitness functions 

and other image denoising techniques can be proposed as local 

search. 
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