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For ultrasonic phased array imaging, the most popular technique is the delay superposition 

algorithm of time domain signals with fixed weights. However, this technique and similar 

approaches cannot effectively suppress the non-scanning azimuth noise, which drags the 

imaging resolution. To overcome the problem, this paper proposes a nondestructive 

imaging method based on ultrasonic pulse integral signal, on the basis of ultrasonic phased 

array imaging. This method relies on the Green function to implement inverse Laplace 

transform on the ultrasonic pulse signal, obtains the analytical expression of the operator 

through mathematical derivations and calculations, and adopts the eigenvalues obtained 

by Laplacian matrix decomposition for image edge detection. The experimental results 

show that the operator is simple and effective, and better in imaging than other methods. 
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1. INTRODUCTION

Nondestructive testing is an effective and accurate means to 

evaluate the internal health of the structure in real time, 

without damaging the internal structure or performance of the 

material. There are many popular ways of nondestructive 

testing, including but not limited to X-ray, tomography, 

ultrasonic testing, thermal imaging, and penetration method. 

Nondestructive imaging stands out among various 

nondestructive testing methods, because of its high sensitivity, 

strong penetration, flexible and convenient use, and 

harmlessness to human body. During ultrasonic imaging, body 

wave and guided wave are the common waveforms. Body 

wave is mainly responsible for detecting thick components. 

However, body wave detection is not efficient, because the 

transducer needs to be moved many times to detect the damage 

of various components. Guided wave is mainly responsible for 

detecting thin structures, owing to its long propagation 

distance and high sensitivity. 

The ultrasonic wave propagating in thin plate structure is 

called Lamb wave. Currently, Lamb wave is mostly detected 

with an ultrasonic transducer array, composed of several 

exciting elements and receiving elements. The exciting 

element sends an excitation signal, which is received by the 

receiving element, producing the Lamb wave signal 

containing the internal damage features of the target 

component. By analyzing and processing this signal, it is 

possible to obtain the internal image of the structure, such that 

the internal state of the structure can be evaluated against the 

image. 

Since imaging resolution is critical to evaluation effect, this 

paper decides to design a nondestructive imaging method 

based on ultrasonic pulse integral signal. 

2. LITERATURE REVIEW

The imaging methods based on Lamb wave array mainly 

include time reversal imaging, migration imaging, and delay 

superposition imaging of phased array. Alleyne and Cawley 

[1] found that the time reversal algorithm can automatically

compensate for the dispersion of the Lamb wave during

damage detection. Giurgiutiu [2] applied the time reversal

algorithm to composite materials, and improved the algorithm

performance through wavelet transform. Wilcox et al. [3]

combined synthetic aperture with time reversal method, and

succeeded in damage imaging. Facing different isotropic

media, the signals from different paths can be dealt with to

compensate for the dispersion effect. During the damage

imaging phase, however, the time-domain signals must be

reversed before reconstruction, which adds to the computing

time of the algorithm, making it less efficient in damage

detection.

Migration imaging is widely adopted for damage imaging 

based on ultrasonic Lamb wave. Sicard et al. [4] were the first 

to combine migration imaging with the damage detection of 

plate and shell structure. Zhao et al. [5] developed a post-stack 

reverse time migration imaging method for damage imaging. 

Wright et al. [6] applied pre-stack migration imaging to detect 

the structural health of concrete, and successfully captured 

different types of damages in concrete members. 

The working of phased array is realized by arranging a 

regular transducer array and controlling the sending and 

receiving of signals by specific elements. In a phased array, 

the exciting element sends out exciting signals, while the 

receiving element receives the signals. The exciting and 

receiving signals are delayed for a specific time to adjust the 

focus and reorient the beam, laying the basis for ultrasonic 

imaging. By load difference method, Yu et al. [7] compared 

the difference of guided wave signals under different loads, 

without recording the lossless Lamb wave signal. Urban et al. 

[8] extracted the multi-path damage scattering signals from the

Lamb wave signals scattered by the multiple paths in the target

structure, and processed the extracted signals by the

distributed acoustic sensing (DAS) algorithm, thereby

realizing the imaging of damages.
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If each receiver receives time-domain signals excited by 

multiple excitation sources, the signals obtained by each 

receiver from those sources can be combined into a multi-

static matrix. Anand et al. [9] proposed a total focusing 

algorithm based on the full matrix capture model. The 

principle of the algorithm is as follows: The signals are excited 

separately by multiple sources, and each receiver in the array 

receives the excitation signals from each source; then, the 

multiple groups of received time-domain signals are processed 

by delay superposition to obtain the damage image. Hence, 

their algorithm can be understood as the superposition of 

multiple delay algorithms. 

 

 

3. LAPLACE TRANSFORM OF ULTRASONIC PULSE 

SIGNAL BASED ON GREEN FUNCTION 

 

3.1 Laplacian graph 

 

Suppose there is a weighted graph 𝐺 = (𝑉, 𝐸, 𝑊), with 𝑉 

being the set of vertices, E ⊑ V × V being the set of edges, and 

𝑊 being the similarity matrix. Then, the weight of edge (𝑖, 𝑗) 

can be represented by: 

 

𝑊(i, j) = {
𝑤(𝑖, 𝑗), (𝑖, 𝑗) ∈ 𝐸
0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

Let D = diag(𝑑𝑖; 𝑖 ∈ V)  be a diagonal matrix, with 𝑑𝑖 =

∑ 𝑤(𝑖, 𝑗)|𝑉|
𝑗=1  being the elements on the diagonal; 𝐿 = 𝐷 − 𝑊 

be the non-normalized Laplacian matrix of graph. Then, the 

normalized Laplacian matrix 𝐿𝑛 = 𝐷−1 2⁄ 𝐿𝐷−1 2⁄  can be 

defined as: 

 

𝐿𝑛(𝑖, 𝑗) = {

1, 𝑖 = 𝑗               

− 𝑤(𝑖, 𝑗) √𝑑𝑖𝑑𝑗⁄

0,      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,   𝑖 ≠ 𝑗 𝑎𝑛𝑑 (𝑖, 𝑗) ∈ 𝐸  (2) 

 

The Green function is the left inverse of the Laplace 

operator:  

 

𝐺∆(𝑖, 𝑗) = 𝐼(𝑖, 𝑗) − 𝑑𝑗 𝑉𝑜𝑙⁄  (3) 

 

where, 𝑉𝑜𝑙 = ∑ 𝑑𝑖𝑖∈𝑉 ; I is a |𝑉| × |𝑉| identity matrix. 

The Green function can be calculated by: 

 

G(𝑖, 𝑗) = ∫ 𝑑𝑖
1 2⁄

(𝐻𝑡(𝑖, 𝑗) − 𝑢𝑙(𝑖)𝑢𝑙(𝑗))𝑑𝑗
1 2⁄

∞

0

𝑑𝑡 (4) 

 

where, 𝑢𝑙 is the eigenvector corresponding to the eigenvalue 

of zero. 

The Green function can be normalized as 𝐺𝑛 =

𝐷1 2⁄ 𝐺𝐷−1 2⁄ . Then, the relationship between the normalized 

Green function and Laplacian spectrum can be described by:  

 

𝐺𝑛(𝑖, 𝑗) = ∑
1

𝜌𝑘

𝑢𝑘(𝑖)𝑢𝑘(𝑗)

|𝑉|

𝑘=2

 (5) 

 

where, 𝜌𝑘  and 𝑢𝑘  are the eigenvalue and eigenvector of the 

normalized Laplacian matrix 𝐿𝑛. 

Accordingly, the non-normalized Green function �̅� can be 

obtained by:  

�̅�(𝑖, 𝑗) = ∑
1

𝜎𝑘

𝑣𝑘(𝑖)𝑣𝑘(𝑗)

|𝑉|

𝑘=2

 (6) 

 

where, 𝜎𝑘 and 𝑣𝑘 are the eigenvalue and eigenvector of non-

normalized Laplacian matrix 𝐿, respectively. Obviously, the 

normalized Green function is the pseudo inverse of the 

normalized Laplacian matrix 𝐿𝑛:  

 

𝐺𝑛𝐿𝑛 = 𝐿𝑛𝐺𝑛 = 𝐼 − 𝑢1𝑢1
𝑇 (7) 

 

The relationship among the Green function G , non-

normalized Green function �̅�, and normalized Green function 

𝐺𝑛 can be calculated by:  

 

𝐺∆= �̅�𝐿 = 𝐺𝑛𝐿𝑛 = 𝐿𝑛𝐺𝑛 = 𝐼 (8) 

 

3.2 Ultrasonic pulse signal transfer function 

 

In the classical array signal processing, the signal is 

assumed as a far-field signal in most cases. When Lamb wave 

phased array is used in imaging detection, the wave front of 

the signal received by the array is spherical, when the second-

order scattering wave field, which is formed by the interaction 

between imaging and detection waves, propagates to the 

receiving element array. Therefore, the received signal 

belongs to the near-field data. In general, far and near fields 

are distinguished according to Figure 1, where 𝐿  is array 

aperture, and 𝜆 is the wavelength of the signal. 

 

 
 

Figure 1. Distinguishing between far field and near field 

 

In the Lamb wave near-field model, the beam pattern can be 

adopted to illustrate the gain of the incoming wave in different 

directions, under the effect of the array weight. The gain is 

related to the spatial coordinates (x, y) of the incoming wave. 

The beam pattern is shown as Figure 2. 

 

 
 

Figure 2. Beam pattern 
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The ultrasonic pulse signal transfer function can be defined 

as: 

 

𝐺𝑢(𝑥) = {
0                                    𝑥 < 0
2

𝑢
exp (−

𝑥

𝑢
) sin (

𝑥

𝑢
)   𝑥 > 0

 (9) 

 

𝐺𝑢(𝑥) needs to satisfy the differential equation:  

 

𝑢3

6
𝐺𝑢

′′′ +
𝑢2

2
′′ + 𝑢′ + 𝐺𝑢 = 𝜗(𝑥) (10) 

 

where, 𝜗(𝑥) is the Dirac shock function. 

Thus, the Green function can be applied to signal 

differentiation. The derivative of signal 𝐼(𝑥) can be defined as: 

 

𝐼′(𝑥) = lim
𝑢→0

𝐼(𝑥 + 𝑢) − 𝐼(𝑥 − 𝑢)

2𝑢
 (11) 

 

If 𝐼(𝑥)  is a boundary signal, there exist a boundary 

condition lim
𝑥→±∞

𝐼(𝑥) = 0. Then, the solution of the equation 

can be expressed by Green function 𝐺𝑢(𝑥): 

 

𝐼(𝑥) ≡ 𝐼(𝑥 − 𝑢) = ∫ 𝐺𝑢(𝛾)
+∞

−∞

𝐼(𝑥 − 𝛾)𝑑𝛾 (12) 

 

 

4. IMAGE EDGE DETECTION BASED ON EDGE 

EXTRACTION OPERATOR 

 

In the background medium, the Green function can be 

regarded as the time-dependent scattering wave propagating 

from the exciting and receiving elements to any point x in the 

whole plate space. The Green function starting from the 

exciting and receiving elements can be expressed as: 

 

𝑔𝑎(𝑥) = [𝑔(𝑥, 𝑥1
𝑎), … , 𝑔(𝑥, 𝑥𝑁

𝑎)]𝑇 

𝑔𝑠(𝑥) = [𝑔(𝑥, 𝑥1
𝑠), … , 𝑔(𝑥, 𝑥𝑀

𝑠 )]𝑇 
(13) 

 

According to the orthogonality of eigenvectors, the 

propagation conditions of the wave can be obtained as: 

 

𝑔𝑘
𝑎 ∙ 𝑔𝑎(𝑥) = {

‖𝑔𝑘
𝑎‖   𝑥 = 𝑥𝑘

0          𝑥 ≠ 𝑥𝑘
 

𝑔𝑘
𝑠 ∙ 𝑔𝑠(𝑥) = {

‖𝑔𝑘
𝑠‖   𝑥 = 𝑥𝑘

0          𝑥 ≠ 𝑥𝑘
 

(14) 

 

Suppose the singular vectors related to the singular values 

beyond the k-th value are generated by noise. The imaging 

conditions can be formulated from the noise signal through 

multiple signal classifications, in view of the stochasticity of 

the noise space. In this way, it is possible to image damages at 

superhigh resolution. 

The imaging indexes of the Lamb wave propagating from 

the exciting element to the damage and that propagating from 

the damage to the receiving element can be worked out 

respectively: 

 

𝐼𝑎(𝑥) =
1

∑ 𝑔𝑘
𝑎 ∙ 𝑔𝑎(𝑥)min{𝑀,𝑁}

𝑘=𝑘+1

 

𝐼𝑠(𝑥) =
1

∑ 𝑔𝑘
𝑠 ∙ 𝑔𝑠(𝑥)min{𝑀,𝑁}

𝑘=𝑘+1

 

(15) 

The final super-resolution imaging indexes can be 

synthetized from the two sets of imaging indexes obtained by 

the exciting and receiving elements, respectively: 

 

𝐼(𝑥) =
1

∑ 𝑔𝑘
𝑎 ∙ 𝑔𝑎(𝑥)min{𝑀,𝑁}

𝑘=𝑘+1 ∙ ∑ 𝑔𝑘
𝑠 ∙ 𝑔𝑠(𝑥)min{𝑀,𝑁}

𝑘=𝑘+1

 (16) 

 

In the limit 𝑢 → 0 , 𝐷𝑢(𝑥)  is the impulse response of a 

differential operator. To improve the extraction of edges, 

𝐼(𝑥 + 𝑢) can be transformed into: 

 

𝐼(𝑥) = 𝐼 (
𝑥

𝜇
+ 𝑢) (17) 

 

where, 𝜇 is a scale factor. 

According to the Green functions 𝐺𝑢(𝑥) and 𝐺𝜇𝑢(𝜔), the 

differential I can be estimated, and the operator can be 

obtained by: 

 

𝐷(x) = −
𝐴

2𝑢
{[exp (−

𝑥

𝜇𝑢
) + exp (

𝑥

𝜇𝑢
)] sin (

𝑥

𝜇𝑢
) 

+𝐾 [exp (−
𝑥

𝜇𝑢
) + exp (

𝑥

𝜇𝑢
)] sin (

𝑥

𝜇𝑢
)} 

(18) 

 

where, 𝐴 = 𝑎 (1 + 𝑎)(𝜇𝑢)2⁄ ; 𝐾 = 𝜇2 𝑎⁄ . 

The above formula is the exact expression of the edge 

detection operator by the Green function. Because the digital 

image is processed, the differential operator must be 

discretized firstly, and transformed into a digital image. The 

algorithm can be implemented in the following steps: 

Step 1. Read the grayscale image. 

Step 2. Convolute each row, and calculate the operator 

𝐷(𝑛) of the image. Then, convolute the integral form of 𝐷(𝑛) 

with the column of the image to obtain the gray gradient 

𝑔(𝑥, 𝑦) and the gradient direction 𝛼/ 

Step 3. Implement non-maximum suppression, that is, 

ensure that the boundary strength of each edge point is greater 

than that of the two adjacent pixels (positive and negative) 

along the gradient direction of that point, so as to refine the 

edge. 

Step 4. Implement lag threshold processing and edge 

connection, that is, set double thresholds T1 and T2, and judge 

each point by the following criteria: the point with gradient 

value greater than T2 must be a boundary point, the point with 

gradient value smaller than T1 cannot be a boundary point, and 

whether the point between T1 and T2 is a boundary point 

needs to be judged according to the edge information of 

adjacent points. 

 

 

5. EXPERIMENT AND RESULTS ANALYSIS 

 

  
(1) Original image (2) Image edge detection 

 

Figure 3. Image edge detection by our algorithm 
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Table 1. Comparison of fusion performance of the three algorithms in decomposing four layers 
 

Algorithm Entropy Cross entropy Mutual information RMSE PSNR/dB 

FCM 3.873 0.0377 4.0286 2.0873 39.485 

Nystrom 3.982 0.0208 4.0372 1.8735 37.398 

MSNcut 4.297 0.0119 4.1823 1.6209 41.298 

Our algorithm 4.482 0.0047 4.4982 1.2873 40.872 
Note: RMSE and PSNR are short for root mean square error and peak signal-to-noise ratio, respectively. 

 

Table 2. Influence of fusion layers on edge detection performance 

 
Number of layers Entropy Cross entropy Mutual information RMSE PSNR/dB 

2 4.387 0.0071 4.3384 3.1723 33.498 

3 4.429 0.0062 4.4109 2.8734 36.325 

4 4.482 0.0047 4.4982 1.2873 40.872 

5 4.496 0.0039 4.5287 1.0934 41.342 

6 4.592 0.0035 4.5983 0.8893 43.987 

7 4.609 0.0034 4.6002 0.7923 44.712 

8 4.617 0.0034 4.6007 0.5322 44.872 

 

To evaluate its performance, the proposed algorithm is 

compared with fuzzy c-means clustering (FCM) algorithm 

[10], Nystrom algorithm [11] and MSNcut algorithm [12]. The 

experimental images are all 381x431 pixels in size. Figure 3 

illustrates the imaging effect of our algorithm. 

Table 1 compares the fusion performance of the three 

algorithms in decomposing four layers. It can be found that our 

algorithm achieved good effect of quantitative analysis, and 

outshined the other methods in edge detection. 

Table 2 presents the influence of fusion layers on edge 

detection performance. As the number of fusion layers 

increased, the entropy and mutual information of the fused 

image grew, a sign of the growth of the amount of information 

extracted from the fused image. As the number of fusion layers 

increased, the cross entropy of the fused image decreased, the 

RMSE of the fused image declined, and the PSNR rose. The 

more layers of image decomposition and fusion, the richer the 

details and the higher the quality of edge detection. However, 

more layers complicated the operation. Thus, the number of 

fusion layers should not be too large. When there were seven 

layers, the number of layers had a negligible contribution to 

the fusion performance, but the computing cost was very high. 

The experimental results show that our method can achieve 

fast and accurate fusion from coarse to fine, and detect image 

edges accurately and efficiently. 

 

 

6. CONCLUSIONS 

 

Green function is a unique way to transform the ultrasonic 

pulse integral signal, making image edge detection more 

accurate. Based on ultrasonic pulse integral signal, this paper 

takes advantage of the spatial frequency locality, directionality, 

and multi-resolution of the Green function transform, adopts 

different fusion rules for different frequency characteristic 

regions of different decomposition layers to realize image 

edge detection. Through objective evaluation and visual 

perception, it is proved that the proposed method can achieve 

fast and accurate fusion from coarse to fine, and detect image 

edges accurately and efficiently. 
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