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ABSTRACT. The significance of steel making in the modern world has made the development of 

electric arc furnaces one of the top priorities in researches. The goal of this thesis is to design 

an artificial neural network in order to optimize the function of electric arc furnaces. At first 

the current loop of electrode control system has been simulated in MATLAB Simulink for 

Cassie-Mayr mathematical model of electric arc furnace. In this case, the input of the system 

is constant impedance set-points which are implemented by operators. So, change of conditions 

and output of the furnace do not affect the system input. Then, by using the output data from 

two different steel complexes of Iran, an artificial neural network has been designed for 

simulating a compensator system. Considering the RMS data achieved by the transformers, the 

RMS of input current is used as input current of EAF. By implementing this system on the 

current loop as the external loop, which includes furnace related inputs, a coefficient factor is 

created. By this factor, the constant impedances are corrected and optimized. In addition, it is 

observed that the impedance error of the new system significantly decreased compared to the 

impedance error of the simulation of the current system. 

RÉSUMÉ. L’importance de la fabrication de l’acier dans le monde moderne a fait le 

développement des fours à arc électrique (FAE) l’une des principales priorités de la recherche. 

L’objectif de cette thèse est de concevoir un réseau de neurones artificiels afin d’optimiser la 

fonction de fours à arc électrique. Au début, la boucle de courant du système de contrôle des 

électrodes a été simulée dans MATLAB Simulink, en utilisant le modèle mathématique Cassie-

Mayr du FAE. Dans ce cas, les données saisies du système ont été des points fixes à impédance 

constante sélectionnés par l’utilisateur. Ainsi, les changements de conditions et de sortie du 

fourneau n’ont pas affecté l’entrée du système. Ensuite, en utilisant les données expérimentales 

de deux complexes d'acier Iraniens différents, un réseau de neurones artificiels a été formé 

pour simuler un système compensateur. Les données moyenne quadratique émises par les 

transformateurs ont été utilisées comme entrée du FAE. En mettant en œuvre ce système sur la 

boucle de courant, qui comprend les entrées reliées au four, un facteur de coefficient a été créé. 

Par ce facteur, les impédances constantes ont été corrigées et optimisées. De plus, on observe 

que l'impédance du nouveau système est considérablement réduite par rapport à l'erreur de la 

simulation du système. 
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1. Introduction 

Steel making industry is one of the most important industries in the world. This 

industry has undergone many changes in recent decades, and Electric Arc Furnaces 

(EAFs) have been introduced to control and save energy in the steel making industry. 

The electrode regulator system is one of the most important subsystems in the Arc 

Furnaces and its task is to regulate the arc length. This system is a complex, 

multivariate and high nonlinearity system, and conventional control methods such as 

PID (Proportional-Integral-Differential) and feedback linearization methods cannot 

meet the stability and increases energy consumption (Ping et al., 2009 ; Li et al., 2012). 

In the recent years, different methods have been used for modeling electrode 

control system of the electric arc furnaces. 

Janabi-Sharif et al. (2009) conducted a study on modeling and simulating the EAF 

electrode regulator system using adaptive neuro-fuzzy inference systems (ANFIS). In 

this article, the results show the feasibility of using ANFIS for modelling an EAF.  

Chang et al. (2010) have presented neural-network-based method for modeling 

the non-linear voltage-current characteristic of the EAF.  

Moghadasian et al. (2011) introduced a new application of a genetic-fuzzy control 

system to control the input energy to three-phase EAF. In order for that, the 

coefficients of the fuzzy PI controller are regulated by the genetic algorithm. In the 

same years, in order to control the electrode of the EAF, a PID controller was designed 

by Hong-Jun et al. (2011). In this paper, by using the traditional back propagation (BP) 

algorithm jumped out of the local minimum and achieved a good result and control 

ability.  

Li et al. (2012) used an adaptive neural network controller (ANNC) for the 

electrode regulator system. Pre-training is not required for the neural net adaptive 

control and the weights of the neural networks are directly updated online based on 

the input–output measurement.  

Ismail et al. (2011) studied the prediction of energy consumption, and specifically 

gas, by using the neural networks. In this paper, by evaluating some type of artificial 

neural network, the best one in order to optimize performance has been chosen. 

Currently, in Iran steel complexes, there is a device called TDR for controlling the 

arc furnace electrodes. This equipment is PC based. Another type of control system is 

the SIMELT control system, which is PLC based. In general, the control method of 

both control systems is the same; so the arc flow and arc voltage enter the system, and 

after processing, the suitable signal for controlling the hydraulic valves is produced. 

These valves are connected to the electrodes. So according to this signal, the 
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electrodes are raised or lowered, and their distance with scrap and also electric arc 

length is controlled. In addition there is a compensation part in these systems. By 

activating this part, another control loop is created. By creating a coefficient factor for 

current or impedance, this loop causes more accurate control of the electrodes. The 

main purpose of this research is to simulate and design an optimal neural network 

system for compensation part. In this paper, according to the SIMELT documents and 

using ANN in modeling, the compensating part is called NEC (Neural Energy 

Control). The purpose of adding this system is to improve the performance of the 

electrode control system and to optimize the energy consumption (SIMELT, 2006). 

In future development, new features can also be added to this set and improve its 

performance without the need to add new hardware and just with change in the 

software. It should be noted that existing systems, as well as articles on control of the 

electrode regulation systems of the electric arc furnaces, that have been presented so 

far, are more based on current control. According to the initial definition of this project, 

with the aim of controlling the arc furnace electrodes based on impedance, this 

research is based on impedance control. In addition, it has been shown in previous 

studies that control based on impedance makes independence in control of the phases 

(Kiyoumarsi et al., 2011).  

The structure of this paper is organized as follows. Section 2, describes the 

mathematical modeling of EAF and simulates it. Section 3 deals with the design and 

simulation of the NEC. In section 4, the current control loop and the control loop after 

implementing the compensator have been simulated. 

2. Electric arc furnace, mathematical model and simulation 

Electric arc furnaces used in the steel making industry are generally divided into 

two types, Alternating Current or AC furnaces and Direct Current or DC furnaces. 

Electric arc furnaces studied in this paper are AC electric arc furnaces. There are 

three types of AC furnaces; one-phase, two-phase or three-phase. Three-phase with 

three electrodes are common in industry. 

2.1. Mathematical model of electric arc furnace 

In different articles, various methods of modeling electric arc furnaces have been 

used such as Cassie-Mayr model, Acha model and the hyperbolic-exponential model. 

In this paper, the Cassie-Mayr model is considered. 

2.1.1. Cassie Mayr Model (Awagan et al., 2016) 

The characteristics of the arc are affected by electrode material, position of the 

electrodes and some other factor. The Cassie model yields good performance for arcs 

with high current while the Mayr model shows good behavior and results for arcs with 
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low current. 

The following equations show mathematical relations of Cassie-Mayer EAF 

model. 
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where v is the arc voltage, i is the arc current and g is the arc conductance. 

Other parameters and their values are shown in Table 1. 

Table 1. Parameters for Cassie-Mayr EAF model 

Parameter Description Value 

gmin Minimum arc conductance 0.008 

I0 Transition current 10A 

E0 Constant steady-state arc voltage 250V 

P0 constant power loss 110W 

θ0 Arc time constant 110μs 

θ1 Arc time constant 100μs 

Α Constant 0.0005 

 

In this paper, the simulation of the Cassie-Mayr model was performed precisely 

according to the relevant reference paper in this section (Awagan et al., 2016) as well 

as the extraction of some constants and values of elements from Mokhtari et al. (2002). 

The voltage-current characteristics of the simulation of this model is shown in Fig. 

1. 

 

Figure 1. Voltage-current characteristics of arc 
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3. Artificial neural network, design and simulation of NEC 

One of the main goals of any scientific-practical project is to optimize energy 

consumption. In this paper, this goal is achieved by calculating the optimal impedance 

via the neural network. 

Energy consumption prediction has always been one of the main research fields. 

ANN recently is one of the computational methods in research and used in prediction 

application. ANN can model any nonlinear relationship with good accuracy by 

adjusting the network parameters (Ismail et al., 2011).  

In this article, the goal is to simulate and design an optimal neural network system 

using the same algorithm as Ismail et al. (2011) for the NEC. In this regard, it is 

necessary to test the network with implementing input data and choosing different 

structures and different number of layers and the neurons in each network layer. So, 

according to the training error, the best structure is used as an artificial neural network 

in energy consumption prediction. 

In this article, data of two Iran steel complexes have been used for simulations. 

The ANN training is done using input and output data of various elements. In 

simulation the voltage and current of the electrodes are used as input data and the 

impedance of the electrodes is used as output data of ANN. It should be noted that the 

number of samples of each data set equal to 1,000; which randomly 70% of this 

amount is used for training, 15% is allocated for validation and the remaining 15% is 

used for testing. 

3.1. Using the MATLAB ANN tools in simulation 

As previously mentioned, the purpose is to simulate and design an optimal neural 

network using the same algorithm as Ismail et al. (2011) for the NEC. In this paper, 

the nntool toolbox is used to design and simulate the network. This toolbox has the 

ability to change most of the elements that affect the network structure.  

In all tests of this paper, feed-forward back-propagation has been used as network 

type, TRAINLM as training function and TANSIG as transfer function of the output 

layer of the two-layer network (Ismail et al., 2011). Other elements have also been 

changed step by step. Due to the importance of time in practical implementations and 

decreasing error as much as possible, we have tried to choose ANN structure in order 

to maintain acceptable training time and minimum performance. Therefore the neural 

network structure with 27 neurons, the TANSIG transfer function and the MSEREG 

performance function are selected as the optimum structure. Fig. 2 shows the obtained 

curve of this structure. As can be seen, best validation performance is achieved at 

epoch 135. It should be noted that in these tests, the validation checks are set to 100. 

This will prevent the local minimum; on the other hand it will cause increasing the 

training time, which is also the reason for the reduction of training error. As can be 

seen, generalization of analysis of the graphs behavior is not possible. So the network 
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and its structure should be selected according to the priorities of each project. 

 

Figure 2. Performance of ANN structure 

4. Simulation of the control loop 

In this section, in addition to simulation of the NEC, which was simulated in the 

previous section using the neural network toolbox, the control loop is also simulated. 

Also the results of the previous section are used to select the appropriate neural 

network structure. 

The EAF line diagram is shown in Fig. 3. As previously mentioned, this research 

is based on impedance control. The equations that have the significant role in shaping 

the control loop and its behavior are defined as follows (SIMELT, 2006; Samet et al., 

2015; Eduardo et al., 2015): 

The impedance is given by 
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22
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where z is total impedance, XL+RV  is line impedance and RB  is arc impedance. Their 

values are as follows: 
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Figure 3. EAF line diagram 
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4.1. Controller loop with constant set point (without NEC) 

In this section, as shown in Fig. 4. the constant impedance is applied to the system. 

This value and PID controller coefficients are selected in accordance with the values 

applied to the actual system. For current input of Cassie-Mayr EAF, according to i=v/z 

equation, the output voltage of transformer is divided by the controller output which 

is the impedance. This voltage is determined according to the table for arc furnace 

transformers by the steel complexes (Table 2).  

 

Figure 4. Controller loop with constant set-point 

Table 2. Information of the EAF transformer 

 NORMAL OVERLOAD 

O.L.T.C Secondary 
Secondary 

Current (A) 

Primary 

Current 

(A) 

Secondary 

Current (A) 

Primary 

Current 

(A) Pos. Voltage (V) 

1 430 

38100 

816 

47625 

1019 

2 455 863 1079 

3 480 911 1139 

4 505 959 1198 

5 530 1006 1258 

6 555 1054 1318 

7 580 1102 1377 

8 605 1149 1436 

9 630 36750 

1155 

45940 

1445 

10 655 35340 44180 

11 680 34040 42550 

12 705 32830 41030 

13 730 31700 39620 

14 755 30650 38310 

15 780 29660 37080 

16 805 28740 35920 

17 830 27870 34840 
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(a)                                   (b) 

Figure 5. (a) Arc Voltage, (b) Arc Impedance of current control loop with sinusoidal 

current 

  

    (a)                                  (b) 

Figure 6. (a) Line impedance (b) Impedance Error of current control loop with 

sinusoidal current 

It should be noted that in the actual system, the applied current to the EAF is 

sinusoidal. The following figures show arc voltage with flicker (Fig. 5(a)) and 

oscillating arc impedance (Fig. 5(b)). These curves have been obtained by 

implementing sinusoidal current. Also as can be seen in Fig. 6(a) the line impedance 

has reached to 6 mΩ set point value, so the impedance error is limited to zero (Fig. 

6(b)).  

The result of this simulation is completely similar to the results of previous 

researches (Awagan et al., 2016; Samet et al., 2015; Seker et al., 2014; Zhao et al., 

2010; Zheng et al., 2000). The goal of this research is simulating and adding the NEC 
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system to the loop. The achieved data by PT (Potential Transformer) and CT (Current 

Transformer), which are used in the training of the NEC system, are RMS. So from 

this point on the RMS of input current is considered as input current of EAF. 

To ensure the same result in line impedance and impedance error, previous 

simulation is repeated by applying the RMS current.  

The result is shown in Fig. 7. As can be seen, the line impedance curve follows 

the set point value applied to the system and converges to that value after a short 

period of time. 

 
      (a)                                    (b) 

Figure 7. (a) Line Impedance (b) Impedance Error of current control loop with RMS 

current 

4.2. Controller loop with correct set point (with NEC) 

The standard electrode controller based on constant impedance set points does not 

react to changing furnace conditions. The setup of the impedance tables is fixed, long-

term experience is necessary to find suitable settings (SIMELT, 2006). 

The NEC system is developed as an additional package unit to the Arc Control 

(AC) to optimize the electrical operating points dynamically to fulfill basic aspects of 

melting strategy (SIMELT, 2006). A block diagram of this optimizer system as part 

of the research and development project of SIEMENS can be seen in the following 

figure (Fig. 8). 

In fact, NEC system acts like a compensator loop, which by being activated creates 

another control loop. This loop generates optimized set points by generating a suitable 

coefficient for impedance. 

Access to NEC and its internal structure and program is not possible in the steel 

complexes of Iran. Some Iranian scientists have been designing an external loop 
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including a PID controller to simulate this system. In this paper, the design of this 

compensator is based on neural network and SIEMENS methods. 

4.2.1. Types of NEC structure 

In this paper, NEC is designed in two ways. The first method was investigated in 

the previous section. For the purpose of communication between the NEC and 

SIMELT, which is PLC-based, to applied the programs and setting and control the 

electrodes, it is necessary that MATLAB and PLC communicate with each other. 

Therefore, using the programming in the m-file environment, the corresponding 

neural network block is designed and produced. It should be noted that in this 

programming, it has been tried to use the results of the first method as much as 

possible.  

 

Figure 8. General overview of EAF 

The block diagram of implementation of the NEC system to the previous system 

is shown in Fig. 9. In this case the output of the NEC system is multiplied by the 

previous impedance constant value and corrects this value. 

 

Figure 9. Controller loop with NEC implementation 

The corrected set point value and the line impedance are illustrated in Fig. 10.  
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Figure 10. Corrected set-point 

As can be seen, the corrected line impedance obtained from this simulation is equal 

to 5.19 mΩ. The output line impedance also converges to the same value and then the 

steady state error reached to 763.76 nΩ (Fig. 11). So the system output is tracking the 

set point value without error. 

In order to simplify simulations comparison, the results are summarized in Table 

3. As can be seen, adding NEC system to the loop has reduced the impedance error of 

the system.  

As can be seen, the NEC system corrects and optimizes the current impedance 

which is applied to the system by the operator. In addition, according to the SIEMENS 

results of "reducing the value of the set point for some point" due to applying the NEC 

system, in this research reducing this value is obtained for a range of set points. 

According to questions from steel experts, the typical set point used by operators is 6 

to 6.5.  

To ensure system performance in other situations, the simulation results for the 

other set point values are summarized in the Table 4. It should be noted that these 

values are selected according to the range of impedance values in the measured data. 

 
       (a)                                   (b) 

Figure 11. (a) Line Impedance (b) Impedance Error of control loop with NEC 

implementation 
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Table 3. Compare error for current control loop and control loop with NEC 

implementation 

  Without NEC With NEC 

Error 4.279 μΩ 763.761 nΩ 

Fall Time 1.016 secs 1.802 secs 

 

Table 4. Simulation results for the other set point values 

Error 

(nΩ) 

Line 

Impedance (Ω) 

Correct Set-

Point (Ω) 

Correct 

Value 
SP 

763.761 5.197 5.198 1.156 4.5 

763.761 5.197 5.198 1.04 5 

763.761 5.197 5.198 0.945 5.5 

763.761 5.197 5.198 0.866 6 

763.761 5.197 5.198 0.8 6.5 

5. Conclusion 

In this paper, by using the output data from two different steel complexes of Iran, 

an artificial neural network for simulating a compensator system has been designed.  

This system is implemented on the current loop as the external loop and is affected 

by furnace related inputs. By creating a coefficient factor, the constant impedances 

are corrected and optimized. In addition, it is observed that the impedance error of the 

new system significantly decreased compared to the impedance error of the simulation 

of the current system. 

In addition, this system causes reducing set point value for a range of set points 

which includes the typical range used by operator. So, by this reduction in the set 

point, the energy consumption is reduced. 

In the future, we will try to design a neural network with online training. This will 

improve the performance of the NEC system and accepts more changes from the 

furnace output. 
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