

1. INTRODUCTION

In modern era, every computer is connected virtually. It is
very important to secure our information from eavesdroppers.
So, data security gets priority in modern life. Cryptography is
an important feature for secure communication to protect
important data. As a result, continuous research works are
going on in this field of cryptography to enhance the network
security.

Section 2 of this paper explains the proposed technique.
Section 3 deals with the algorithms for encryption, decryption
and session key generation. Section 4 explains the proposed
technique with an example. Section 5 shows the results and
analysis on different files and the comparison of the proposed
technique with TDES and AES. Conclusions are drawn in
section 6.

2. TECHNIQUE

1RS considers the input file as a finite number of binary

bits. The binary bits are split dynamically into blocks of
length 8n where n ɛ N, N is the set of natural numbers. The
block sizes are written into file to generate session based key.
The ith position bit of the original block is mapped to the jth
position of encrypted block. In nature, this mapping is
bijective. The bit position value (say value i) of the original
block having block length 2k, varies from 0 to (2k -1), is
converted into k-bit binary number and the corresponding
binary bits are sent into k-input digital circuit. For each 2k
number of combination of inputs, the output of the circuit
produces unique 2k number of k-bit binary numbers. Figures
1 and 2 show the block diagram of circuit for encryption and

decryption respectively. For encryption, the input bits are
identified by IE1, IE2, IE3, …, IEk (where IE1 is the MSB
and IEk is the LSB) and output bits are identified by OE1,
OE2, OE3, …, OEk (where OE1 is the MSB and OEk is the
LSB). The output bits of the circuit for encryption are defined
as

OEj = IE(j-1) for j=2, 3, …, k

 = IEk for j=1

Figure 1. The block diagram of circuit for encryption

Figure 2. The block diagram of circuit for decryption

The bits are converted to the corresponding decimal to find

the value of j. For decryption, the input bits are identified by
ID1, ID2, ID3, …, IDk (where ID1 is the MSB and IDk is the
LSB) and output bits are identified by OD1OD2OD3…ODk
(where OD1 is the MSB and ODk is the LSB). The output
bits for decryption are represented as

REVIEW OF COMPUTER ENGINEERING
 STUDIES

ISSN: 2369-0755 (Print), 2369-0763 (Online)
Vol. 4, No. 2, June 2017, pp. 57-61
DOI: 10.18280/rces.040203
Licensed under CC BY-NC 4.0

A publication of IIETA

http://www.iieta.org/Journals/RCES

Symmetric key cryptography using digital circuit based on one right shift

Joyita Goswami (Ghosh)*, Manas Paul

Institute of Leadership Entrepreneurship & Development, Kolkata 700010, India

Email: joyitagoswami@gmail.com

ABSTRACT

A session based symmetric key cryptographic technique has been proposed in this paper and it is termed as
1RS. The plain text is considered as a stream of bits and is chopped into variable length blocks. Bit positions
into the block are right shifted to generate the cipher text. Right shift means the bit is right shifted by one
position. The data bit is set or reset depending on the previous bit. The MSB is initialized by reset condition.
A session key is generated randomly from the chopping information of plain text. Results are generated using
twenty files of twelve different types with varying file sizes. Analyzing the results with respect to different
parameters, the proposed technique 1RS is compared with existing and industrially accepted symmetric key
techniques Triple-DES (168bits) and AES (128 bits).

Keywords: 1RS, AES, Triple DES, Session Key, Chi-square.

57

ODj = ID(j+1) for j=1, 2, …, (k-1)
 = ID1 for j=k

3. ALGORITHMS

In this section Encryption, Decryption and Session key

generation algorithms are explained in details.

3.1 Encryption algorithm

Step 1: The plain text i.e input file is considered as a finite

number of binary bits.
Step 2: The bits are chopped dynamically into blocks of

different lengths like 8 / 16 / 24 / 32 / 40 / 48 / 56
/….[i.e. 8n for n=1,2,3,4…] as follows

First n1 no. of bits is considered as x1 no. of
blocks with block length y1 where n1 = x1 * y1.
Next n2 no. of bits is considered as x2 no. of blocks
with block length y2 where n2 = x2 * y2 and so on.
Finally nm no. of bits is considered as xm no. of
blocks with block length ym (= 8) where nm = xm *
ym. So no padding is required.

Step 3: The bit position value (say value i) of the plain text
block having block length 2k, varies from 0 to (2k -
1), is converted into k-bit binary number and the
corresponding binary bits are sent into k-input
digital circuit as IE1IE2IE3…IEk (where IE1 is the
MSB and IEk is the LSB).

Step 4: The generated output bits of the digital circuit
OE1OE2OE3…OEk are expressed as

 OEj = IE(j-1) for j=2, 3, 4, …,k
 = IEk for j=1
Step 5: The output bits of the circuit are converted into

decimal number to get the corresponding bit position
value (say value j) in the encrypted block of length
8n.

Step 6: The ith bit of the plain text block is placed to jth bit of
the encrypted block. The relationship between i and
j for the block with block length 2k can also be
expressed using the function given below

 j = f(i) = { i + (2k - 1)*(i % 2) } / 2
Where / gives the integer part of the quotient and %
gives the remainder part.
The cipher text is formed by converting the
encrypted block to its corresponding characters.

3.2 Decryption algorithm

Step 1: The cipher text is considered as a finite number of

binary bits.
Step 2: Processing the session key the binary bits are sliced

into manageable sized block.
Step 3: The bit position value (say value i) of the cipher text

block having block length 2k is converted into k-bit
binary number and the corresponding binary bits are
sent into k-input digital circuit as ID1ID2ID3…IDk
(where ID1 is the MSB and IDk is the LSB).

Step 4: The generated output bits of the digital circuit
OD1OD2OD3…ODk are expressed as

ODj = ID(j+1) for j=1, 2, 3, …, (k-1)
 = ID1 for j=k

Step 5: The output bits of the circuit are converted into

decimal number to get the corresponding bit position

value (say value j) in the decrypted block of length
8n.

Step 6: The ith bit of the cipher text block is placed to jth bit
of the decrypted block. The relationship between i
and j for the block with block length 2k can also be
expressed using the function given below

 j = f(i) = 2*i + (1 - 2k)(2*i / 2k)
 where / gives the integer part of the quotient
 The plain text is regenerated by converting the

decrypted block to its corresponding characters.

3.3 Session key generation algorithm

1RS generates a session based key for one time use in a
particular session. The input bit stream is divided into 16
portions where 1st portion contains 20% of the total file size,
2nd portion contains 20% of the remaining file size and so on.
Each portion is divided into x no. of blocks with block length
y (=8n) where value of n is selected dynamically for first
fifteen portions. Finally, last (i.e. 16th) portion is divided
into x16 no. of blocks with block length 8 bits (i.e. y16 = 8).
So, no padding is required. Total length of the input binary
stream is = x1*y1+x2*y2+…….. +x16*y16. The value of n
for each portion is stored as a character in the key file. So the
key file contains sixteen characters.

4. EXAMPLE

Let consider the word “Ma”. The 8 bit representation of the
above characters “M” and “a” are ‘01001101’ and
‘01100001’ respectively. The bits are taken from MSB to
LSB as 8 bit or 16 bit block length randomly. Now the
position of 8 or 16 bit is converted into binary and following
the above logic bits are changed to generate the new position.
Figure 2 shows the encryption steps for the above example.

Case I: If block length is 8 then the encrypted string is
‘0010101101001001’. Two 8 bit binary numbers are
‘00101011’ (=[43]10) and ‘01001001’ (=[73]10) is encrypted
from binary string and the corresponding characters are “+”
and “I” respectively. So “Ma” is converted into “+I”.

Case II: If block length is 16 then the encrypted string is
‘0010010010111001’. Two 8 bit binary numbers are
‘00100100’ (=[36]10) and ‘10111001’ (=[185]10) is
encrypted from binary string and the corresponding
characters are “$” and “¹” respectively. So “Ma” is converted
into “$¹”.

5. RESULTS

 Results are generated using twenty files with different file
sizes varying from 49 bytes to 134 MB (approx.) and eleven
different file types (like .txt, .dll, .docx, .zip etc).
Comprehensive analysis and comparison has been made
between the proposed technique 1RS, Triple-DES (168bits)
and AES (128bits) with respect to the following parameters.

5.1 Encryption and decryption times

The encryption and decryption times are taken the

differences between processor clock ticks at the starting of
execution and ending of execution. The minimum time
indicates the highest speed of execution. Encryption and
Decryption times (in milliseconds) of twenty different files

58

are calculated for Triple-DES, AES and 1RS. Tables 1 and 2
show the encryption and decryption times respectively of
TDES, AES and 1RS for different source files. Files are taken
in ascending order of their size. Figures 3 and 4 indicate the
graphical representation of encryption times and decryption
times respectively for TDES, AES and 1RS of different
source files.

Table 1. Encryption times for TDES, AES and 1RS

Sl.
No.

File
type

Encryption time (in m.sec)

TDES AES 1RS

1 txt 0 0 0

2 zip 0 0 0

3 txt 15 0 0

4 txt 0 0 15

5 jpg 14 0 0

6 docx 45 15 30

7 exe 15 0 30

8 jpg 15 0 61

9 rar 30 0 106

10 dll 45 14 181

11 exe 121 31 545

12 docx 211 30 1073

13 dll 258 75 1240

14 jpg 574 91 3147

15 pdf 726 121 3918

16 avi 1300 196 6431

17 rtf 2572 408 13784

18 doc 6915 1119 38011

19 rar 12317 1998 67322

20 avi 23166 3677 125610

Table 2. Decryption times for TDES, AES and 1RS

Sl.
No.

File
type

Decryption time (in m.sec)

TDES AES 1RS

1 txt 0 0 0

2 zip 0 0 0

3 txt 0 0 0

4 txt 0 0 0

5 jpg 0 15 14

6 docx 0 0 31

7 exe 14 0 45

8 jpg 14 14 60

9 rar 30 14 91

10 dll 44 30 181

11 exe 120 60 559

12 docx 226 75 1104

13 dll 257 91 1271

14 jpg 696 195 3207

15 pdf 876 226 3964

16 avi 1407 362 6566

17 rtf 3011 877 14041

18 doc 8201 2556 38707

19 rar 14723 4267 68850

20 avi 27374 8382 128924

Figure 3. Graphical representation of encryption times
against file size in logarithmic scale

Figure 4. Graphical representation of decryption times
against file size in logarithmic scale

5.2 Avalanche, strict avalanche and bit independence

criterion

Table 3. Avalanche values for TDES, AES and 1RS

Sl.
No.

File
type

Avalanche achieved

TDES AES 1RS

1 txt 0.9608 0.9634 0.2425

2 zip 0.9561 0.9684 0.8773

3 txt 0.9658 0.9639 0.9342

4 txt 0.9696 0.9695 0.9611

5 jpg 0.9697 0.9696 0.2425

6 docx 0.9699 0.9699 0.9667

7 exe 0.9697 0.9697 0.9193

8 jpg 0.9700 0.9697 0.9689

9 rar 0.9699 0.9700 0.9684

10 dll 0.9699 0.9699 0.9159

11 exe 0.9700 0.9700 0.9470

12 docx 0.9700 0.9700 0.9698

13 dll 0.9700 0.9700 0.9432

14 jpg 0.9700 0.9700 0.9468

15 pdf 0.9700 0.9700 0.9646

16 avi 0.9700 0.9700 0.9515

17 rtf 0.9700 0.9699 0.9434

18 doc 0.9699 0.9691 0.9342

19 rar 0.9700 0.9700 0.9687

20 avi 0.9700 0.9700 0.9669

The degree of security of cryptographic technique is

measured by Avalanche, Strict avalanche and Bit
Independence cryptographic test mechanisms. The bit
changes among encrypted bytes for a single bit change in the
original message sequence for the entire or a large number of
bytes. The high degree of security is indicated by the values
of Avalanche and Strict Avalanche if it is closer to 1.0.
Tables 3, 4 and 5 show the Avalanche & Strict Avalanche
values and Bit Independence values respectively for Triple-
DES, AES and 1RS which are closer to 1. Figures 5, 6 and 7
represent the graphical representation of Avalanche and Strict
Avalanche and Bit Independence values respectively with
respect to different files where files are taken in ascending

59

order of its sizes. This analysis indicates that 1RS may
provide good security.

Table 4. Strict avalanche values for TDES, AES and 1RS

Sl.
No.

File
type

Strict Avalanche achieved

TDES AES 1RS

1 txt 0.8763 0.8982 0.1776

2 zip 0.9159 0.9432 0.8620

3 txt 0.9595 0.9592 0.9184

4 txt 0.9674 0.9688 0.9564

5 jpg 0.9690 0.9690 0.1923

6 docx 0.9695 0.9692 0.9660

7 exe 0.9691 0.9694 0.9108

8 jpg 0.9696 0.9696 0.9687

9 rar 0.9698 0.9696 0.9683

10 dll 0.9698 0.9698 0.9085

11 exe 0.9699 0.9699 0.9347

12 docx 0.9699 0.9700 0.9698

13 dll 0.9699 0.9699 0.9341

14 jpg 0.9700 0.9699 0.9451

15 pdf 0.9700 0.9700 0.9642

16 avi 0.9700 0.9700 0.9502

17 rtf 0.9698 0.9697 0.9326

18 doc 0.9698 0.9684 0.9308

19 rar 0.9700 0.9700 0.9686

20 avi 0.9700 0.9700 0.9666

Table 5. Bit independence values for TDES, AES and 1RS

Sl.
No.

File
type

Bit Independence achieved

TDES AES 1RS

1 txt 0.1517 0.2520 0.0273

2 zip 0.3817 0.3465 0.6216

3 txt 0.3994 0.3870 0.4401

4 txt 0.4657 0.4694 0.4896

5 jpg 0.9420 0.9460 0.7381

6 docx 0.9464 0.9429 0.9548

7 exe 0.6147 0.5915 0.6887

8 jpg 0.9676 0.9678 0.9601

9 rar 0.9678 0.9674 0.9676

10 dll 0.7307 0.7319 0.7447

11 exe 0.7237 0.7181 0.7521

12 docx 0.9611 0.9612 0.9608

13 dll 0.7037 0.7077 0.7728

14 jpg 0.9649 0.9649 0.9460

15 pdf 0.9461 0.9344 0.9634

16 avi 0.9635 0.9621 0.9495

17 rtf 0.3624 0.3288 0.3662

18 doc 0.3301 0.2141 0.5124

19 rar 0.9698 0.9697 0.9689

20 avi 0.9588 0.9582 0.9602

Figure 5. Graphical representation of avalanche value against
file size in logarithmic scale

Figure 6. Graphical representation of strict avalanche value
against file size in logarithmic scale

Figure 7. Graphical representation of bit independence value
against file size in logarithmic scale

5.3 Chi-square values

A high degree of non-homogeneity among source and

encrypted files may be indicated by the large Chi-square
value compared with tabulated value. The Chi-square values
for Triple-DES (168bits), AES (128bits) and 1RS is shown in
Table 6. Average chi-square values of Triple-DES (168bits),
AES (128bits) and 1RS are 34143114280, 32603653459 and
62483634354 respectively. Figure 8 shows the comparison of
the Chi-square values of all three techniques against the
twenty source files. From the figures, it is noticed that the
degree of non-homogeneity of the encrypted files with respect
to source files using the technique 1RS is very high. Hence it
may conclude that 1RS provides good security.

Table 6. Chi-square values for TDES, AES and 1RS

Sl.
No.

File
type

Chi-Square values

TDES AES 1RS

1 txt 114 111 140

2 zip 503 529 520

3 txt 1470 1546 2495

4 txt 24059 20981 28721

5 jpg 936 946 869

6 docx 18333 9343 1076

7 exe 1044334 481174 114157

8 jpg 1373 1301 4175

9 rar 1030 1038 660

10 dll 530984 473027 360601

11 exe 2027105 1848171 2235771

12 docx 54964 55574 91023

13 dll 3219750 3139562 3138115

14 jpg 78927 79298 109954

15 pdf 413610 369563 1451572

16 avi 438208 442887 254523

17 rtf 6.8E+11 6.5E+11 12.4E+11

18 doc 288821670 267709342 801726632

19 rar 61298 61037 6915

20 avi 15912744 15646387 12154750

Average 3.4E+10 3.2E+10 6.2E+10

60

Figure 8. Graphical representation of bit independence value
against file size in logarithmic scale

5.4 Other statistical measures

As a measure of non-homogeneity measure of Central

tendency in terms of median, mode and measure of
Dispersion in terms of standard deviation have been
performed. Table 7 shows the values of median, mode and
standard deviation of source stream and encrypted stream
using 1RS for three different files. Using Karl Pearson’s
Product Moment Correlation Coefficient formula, the
correlation coefficient between the source stream and cipher
stream is measured. Product moment correlation coefficient
of three types of source streams and the corresponding
encrypted streams has been also presented in Table 7 from
which it is observed that there is negligible correlation
between the source stream and the cipher stream. This result
indicates that 1RS may provide good security.

Table 7. Median, mode, standard deviation and correlation
coefficient values using 1RS

Value of Stream S08.png S10.dll S17.rtf

Median
(character

with ASCII
value)

Source 123 102 99

Encrypted 124 102 87

Mode
(character

with ASCII
value)

Source 0 0 92

Encrypted 0 0 85

Standard
Deviation

Source 93 2391 221568

Encrypted 87 1658 151033

Correlation
Coefficient

Source &
Encrypted

0.79 0.89 0.13

6. CONCLUSION

The proposed technique 1RS is simple to comprehend and

easy to implement using various high-level languages.
Because of high processing speed and the measure of the
degree of security is at par with Triple-DES and AES the
performance of 1RS is quite acceptable. It is applicable in
message transmission of any size and any form. Some of the
salient features of 1RS can be summarized as follows:
(1) Session based key implementation
(2) Bock size independency
(3) High degree of security

ACKNOWLEDGMENT

Let us express our heartiest gratitude to all who are directly
or indirectly provided all sorts of supports during the entire
development process.

REFERENCES

[1] Mandal B.K., Bhattacharyya D., Bandyopadhyay S.K.
(2013). Designing and performance analysis of a
proposed symmetric cryptography algorithm,
International Conference on Communication Systems
and Network Technologies (CSNT 2013), Gwalior, pp.
453-461.

[2] Paul M., Mandal J.K. (2013). A novel generic session
based bit level cryptographic technique based on
magic square concepts, International Conference on
Global Innovations in Technology and Sciences
(ICGITS 2013), Kottayam, pp. 156-163.

[3] Niemiec M., Machowski L. (2012). A new symmetric
block cipher based on key-dependent S-boxes, 4th
International Congress on Ultra Modern
Telecommunications and Control Systems and
Workshops (ICUMT 2012), St. Petersburg, pp. 474-
478.

[4] Cheng H., Ding Q. (2012). Overview of the block
cipher, Second International Conference on
Instrumentation, Measurement, Computer,
Communication and Control (IMCCC 2012), Harbin,
pp. 1628-1631.

[5] Paul M., Mandal J.K. (2012). A universal session
based bit level symmetric key cryptographic technique
to enhance the information security, International
Journal of Network Security & Its Application (IJNSA),
Vol. 4, No. 4, pp. 123-136.

[6] Navin A.H., Oskuei A.R., Khashandarag A.S., Mirnia
M. (2011). A novel approach cryptography by using
residue number system, 6th International Conference
on Computer Sciences and Convergence Information
Technology (ICCIT 2011), Seogwipo, pp. 636-639.

[7] Paul M., Mandal J.K. (2011). A novel generic session
based bit level cryptographic technique to enhance
information security, International Journal of
Computer Science and Network Security (IJCSNS),
Vol. 11, No. 12, pp. 117-122.

[8] Som S., Chatergee N.S., Mandal J.K. (2011). Key
based bit level genetic cryptographic technique
(KBGCT), 7th International Conference on
Information Assurance and Security (IAS), Melaka, pp.
240-245.

[9] Triple Data Encryption Standard. (1999). FIPS PUB
46-3 Federal Information Processing Standards
Publication, Reaffirmed, Department Of
Commerce/National Institute of Standards and
Technology.

61

