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The aim of this study is to determine the optimal combination of process parameters 

when machining commercially pure titanium grade 2. The unification of Multi objective 

optimization based on ratio analysis (MOORA) and fuzzy approach has applied to 

optimize the process parameters. Three process parameters i.e. cutting speed, tool 

overhang, and microhardness have been varied at three levels each and a total of twenty 

seven experiments have been conducted based on Taguchi’s L27 design of experiment 

technique. Cutting force, tool flank wear, and average surface roughness have been 

considered a machinability indicators to measure the process performance. Feed rate 

and depth of cut have been kept constant. Successful optimization is done and results 

show that machining titanium at higher cutting speed (140 m/min) and higher tool 

overhang length (65 mm) with medium hardness (1934 HV) results in lower cutting 

force, tool flank wear, and surface roughness. Outcomes of the present work reveal that 

the hybrid fuzzy-MOORA method is convincing enough to obtain the best process 

parameter combination for the best machinability while machining titanium type 

difficult-to-machine materials.  
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1. INTRODUCTION

Optimization of manufacturing processes has been 

developed as a main strategy to obtain the desired process 

performance and product quality. Machining sector is one of 

the major contributors to attain the global manufacturing 

requirements. Most of the products undergo machining to get 

the required shape, size, and finish. Engineering materials 

have different responses when subject to machining operations. 

Some are soft and easily machinable, whereas some are hard 

and difficult-to-machine. Titanium and its alloys are very 

important materials for biomedical, industrial, and aerospace 

applications. They possess superior properties such as high 

strength-to-weight ratio, excellent corrosion resistance, and 

superior biocompatibility [1, 2]. But on the other hand, their 

machinability is extremely poor. Their machining, in general, 

results in extreme tool wear, excessive consumption of cutting 

fluid and energy, deteriorated part surface quality, and 

therefore escalated cost and environmental degradation. To 

address the aforementioned challenges as regards to the 

machining of titanium and its alloys, several attempts have 

been made by researchers. Machining with optimum process 

parameters, using green cutting fluids, employing treated tools, 

utilizing hybrid machining techniques such as heat and 

vibration assisted machining etc. have majorly been 

investigated [2]. 

As far as optimization of machining parameters is 

concerned, many statistical and soft computing based 

techniques have been developed and used to enhance the 

machinability of titanium and its alloys type of difficult-to-

machine materials. 

During turning, cutting force, surface roughness, and tool 

wear are the leading response variables that play a key role to 

achieve a low-cost product with better surface quality. It is 

evitable that cutting tool with lower tool wear produces good 

surface finish with lower cutting force as well as low tooling 

cost. Therefore, to attain the aforesaid objective there is a 

strong need of optimization technique through which the 

optimal combinations of cutting parameters, that affect the 

response variables, can be determined. Some researchers 

performed the statistical and prediction modeling using design 

of experiment (DOE) method to identify the optimum cutting 

parameters using various optimization techniques.  

Jhodkar et al. [1] has determined the optimal cutting 

parameters viz. speed, feed and depth of cut using Taguchi 

based desirability approach for the turning of AISI 1040 steel. 

The authors suggested that the predicted models were best 

suited to optimize the machining performance of microwave 

treated tool inserts in terms of tool wear, cutting force and 

surface roughness. Ramanujam et al. [2] optimized the cutting 

parameters during the turning of AI-SiC(10p) using Grey 

relational technique. The machining performance were 

evaluated by surface roughness and specific power. Results 

revealed that the obtained optimum combination of cutting 

speed, feed, and depth of cut produces a good surface finish. 

Similarly, Yang and Tarng [3] determined the optimum cutting 

parameters during turning of the S45C steel bar using WC 

inserts to obtain better surface roughness and longer tool life. 

The Taguchi based optimization method employed to 

determine the optimum combination. Aggarwal and Singh [4] 
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reviewed various optimization techniques for optimizing the 

machining parameters in turning process. In another study, the 

tool geometry parameters were optimized using response 

surface methodology during turning of AISI 1040 steel [5]. 

 A wide range of multi-criteria decision making (MCDM) 

techniques such as Multi-Objective Optimization Based on 

Ratio Analysis (MOORA), Gray Relation Analysis (GRA), 

Technique for Order of Preference by similarity to Ideal 

Solution (TOPSIS), Taguchi Grey Relational Analysis 

(TGRA), Fuzzy logic, Analytical network process (ANP), and 

Analytical hierarchy (AHP), etc. are used for prediction and 

optimization of multi-attribute problems in machining [3].  

Some of the important works are discussed here as under.  

Tansel and Sebla [6] implemented the MOORA-based 

Taguchi method to solve the multi-response optimization 

problem for the improvement of process quality. On the other 

hand, Rajesh et al. [7] determined the optimal combination of 

wear parameters and coefficient of friction of the red mud 

reinforced aluminum metal matrix composite using MOORA 

based Taguchi method. They obtained significant 

improvement in wear resistance through MOORA method. 

Chinchanikar and Choudhury [8] evaluated the optimal cutting 

conditions using response surface methodology based 

desirability approach. Results indicated that while turning 35 

and 45 HRC work material by limiting the cutting speed to 235 

and 144m/min at lower feed and depth of cut, the minimum 

surface roughness and cutting forces with better tool life can 

be obtained during machining of titanium alloy. 

Khan and Maity [9] studied the VIKOR based MCDM 

method combined with the Taguchi technique for the 

optimization of cutting variables to obtain the best values of 

surface roughness, material removal rate (MRR), and cutting 

force. Taguchi L27 was used for the turning of commercially 

pure (CP) titanium grade 2 workpiece. Results showed that 

cutting speed was the most influencing parameter followed by 

feed rate. In another important study, Khan and Maity [10] 

used a hybrid fuzzy-TOPSIS approach and obtained an 

optimal combination of cutting parameters (speed, feed, and 

depth of cut) that offered a significant reduction in tool wear, 

cutting force, and surface roughness.  

During turning of medium carbon steel, Wang et al. [11] 

employed the hybrid fuzzy-grey optimization technique to 

determine uncertainty in cutting force. Results indicated that 

fuzzy-grey model has predicted the cutting force significantly. 

Sahu and Andhare [12] performed multiobjective 

optimization using Teaching learning-based optimization 

(TLBO) and genetic algorithm (GA) during machining of Ti-

6Al-4V titanium alloy. They investigated that higher cutting 

speed (171.4 m/min) and lower feed rate (55.6 mm/rev) 

produced optimal surface roughness and cutting force. In 

another study, Gok [13] successfully obtained the optimal 

cutting parameters using fuzzy TOPSIS and multi-objective 

grey design for surface roughness and cutting force when 

turning ductile iron. The depth of cut was identified as the 

most significant parameter.  

Available literature revealed that an extensive study has 

been carried out to solve the multi-objective turning problems. 

From the literature survey, it is observed that a wide range of 

MCDM based optimization articles have been published 

which deals with multi-objective problems. However, the 

vague phenomenon of the cutting parameters such as cutting 

speed, tool microhardness and tool overhang, and output 

responses viz. cutting force, flank wear and surface roughness 

were not studied adequately using the hybrid-MCDM 

optimization technique so far. No article is available in which 

tool microhardness and tool overhang length followed by 

cutting speed have been considered to evaluate the optimal 

parametric combination during turning of CP-Ti grade 2 using 

MCDM based approach.  

The present work fulfills the gap where cutting speed, 

cutting tool microhardness, and tool overhang have been 

considered as the input variable machining parameters while 

turning commercially pure titanium grade 2 (CP-Ti grade 2). 

Tool wear, cutting force, and surface roughness have been 

considered as the output parameters as machinability 

indicators. Before describing the optimization methodology, 

it’s important to mention about the two unique input 

parameters namely tool microhardness and overhang. The 

performance of the cutting tool is largely affected by tool 

vibration that occurs due to tool overhang length. Tool 

overhang length effects tool rigidity and tool vibrations that 

consequently affect tool wear and surface quality of the 

workpiece [9, 10]. Microhardness of cutting tool is also an 

important mechanical property and complement it to withstand 

adverse machining conditions [11]. Higher the microhardness, 

higher the tool strength will be to resist wear and failure.  

In this study, the main objective is to obtain the best 

parametric combination of input variables using fuzzy 

embedded MOORA method. The hybrid MCDM based 

approach using fuzzy embedded MOORA method has been 

introduced to obtain the best parametric combination during 

turning of CP-Ti grade 2 using carbide tool inserts in dry 

cutting conditions. Taguchi’s L27 array orthogonal array has 

been used to design the experiments. 

This section has introduced the machining of difficult-to-

machine materials. It also reported some important past work 

on optimization of machining parameters for machinability 

enhancement of these materials along with summary of 

literature review and scope of the work presented in this paper. 

Next section 2 describes the optimization methodology 

adopted in this work. Section 3 sheds light on design of 

experiment technique i.e. Taguchi robust technique and 

experimentation strategy followed in the present work. Section 

4 presents the analysis and discussion of results. Finally, 

section 5 concludes the paper and provides recommendation 

for future work. 

 

 

2. METHODOLOGY 

 

2.1 Optimization 

 

2.1.1 MOORA 

The multi-criteria decision making based MOORA method 

is suitable to identify the combination of best parameters. This 

method was developed by Braurers and Zavadkas in the year 

2004. It is used to optimize two or more conflicting objectives 

(criteria) subject to certain constraints [3, 6]. The reference 

point and ratio system are the two important elements in this 

method that determine the overall performance of each 

alternative.Ithas wide application in various sectors such as 

industrial sectors, manufacturing plants, banking, and 

insurance sectors, etc. In these aforementioned areas, multi 

objectives problems mostly occur where two or more 

conflicting attributes take place and need to identify one 

optimal choice [14, 15].  

The proposed approach in MOORA is outlined in the 

following steps [3, 13]: 
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Step 1: MOORA method initiates with the decision matrix 

as shown in Equation 1 that illustrates the performance of all 

responses with respect to the selected input process parameters. 
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where, P is a performance measure of the ith alternative on jth 

criterion and pij represents the output responses of the ith 

alternative on jth criterion, a and b are the number of 

alternatives and several criteria. 

Step 2: The data of decision matrix gets normalized by the 

formation of the ration system as shown in Eq. (2). 
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here, 𝑝𝑖𝑗
∗  represents the normalized value that lies between 0 

and 1is dimensionless quantity of the i th alternative on j th 

criterion. 

Step 3: In this step, the ranking scores are identified by 

MOORA index, or overall assessment values (qi) are obtained 

by the addition and subtraction of weighted normalized values 

corresponding to each alternative shown in Eq. (3). For multi-

objective optimization to measure the overall assessment 

values benefit response (higher-is-better) are added in 

normalized values in case of maximization whereas in case of 

minimization the non-beneficial (lower-is-better) are 

subtracted. 
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where, x represents the number of criteria to be maximized 

belongs to benefit responses, whereas number of criteria is 

denoted by (y-x) which needs to be minimized. The 

normalized assessed value of i th alternative with respect to all 

criteria is represented by qi. 

Primarily, it was observed that a few of the criteria are more 

essential than others. Hence, in such circumstances, the more 

importance is given to weight criteria and it can be multiplied 

with the corresponding weight. In such condition Eq. (3) 

would be written as Eq. (4): 

 

* *

1 1
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i j ij j ij

j j x

q r p r p
= = +

= −   (4) 

 

where, rj is the weight of jth criteria. 

Step 4: In the decision matrix, the calculated overall 

assessment values can be obtained positive or negative 

depending upon beneficial(maxima) and non-beneficial 

(minima) attributes. The optimal value is determined by larger 

MOORA value (qi) which shows the best result and the lowest 

value of qi represents the worst result.  

2.1.2 Fuzzy set theory 

In the real-time manufacturing system, multi-criteria 

decision making (MCDM) related problems occur several 

times, due to the presence of multiple conflicting criteria. At a 

large scale, these problems are more complicated because of 

uncertain situations. In such circumstances, Fuzzy set theory 

helps to treat uncertainties in the form of vagueness and 

ambiguity to provide the best results. In the fuzzy set theory, 

the linguistic approach has constructed by fuzzy logic in which 

variables can assume linguistic values. With the help of fuzzy 

set theory, the opinions given by decision makers are term as 

specified linguistic variables. A fuzzy membership function 

converts aforesaid linguistic variables into a different fuzzy 

number. In this way, the fuzzy set theory has the ability to 

solve the MCDM problems effectively with ease. Fuzzy 

membership function can be represented in the triangular form 

as shown in Figure 1. Some important definitions of fuzzy 

numbers and fuzzy set theory are explained below [3, 16-18]: 

Definition 1: A fuzzy set �̃� in a universe of discourse Xis 

described by a membership function 𝜇𝐴(𝑔)  which is 

characterized as the grade of membership of g in �̃�. 

 

 
 

Figure 1. A triangular fuzzy membership function 

 

Definition 2: �̃�= (p1, p2, p3), are triangular fuzzy numbers 

(TFNs) where �̃�  is the membership function of the fuzzy 

number can be written as below (Eq. (6)): 
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Definition 3: The fuzzy sum and fuzzy subtraction of two 

different TFNs are also triangular fuzzy numbers. But, the 

multiplication of two different TFNs is only an approximate 

TFN. For example, if there are two triangular fuzzy numbers 

�̃� = (𝑝1, 𝑝2, 𝑝3) and �̃� = (𝑞1, 𝑞2, 𝑞3) , and a positive real 

number w = (w, w, w), some important operations of fuzzy 

numbers can be written as follows: 
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1 1 2 2 3 3(/) ( / , / , / )P Q p q p q p q= (9) 

1 2 3( ) ( , , )P w p w p w p w = (10) 

Definition 4: A triangular fuzzy number �̃� = (𝑝1 , 𝑝2, 𝑝3),
then the defuzzified value 𝑎(�̃�) can be determined using Eq. 

(11): 

1 2 3( )
3

p p p
a P

+ +
= (11) 

Definition 5: The two triangular fuzzy numbers are �̃� =
(𝑝1, 𝑝2, 𝑝3)and �̃� = (𝑞1, 𝑞2, 𝑞3), and the distance between (�̃�)
and (�̃�) can be computed using Eq. (12): 

2 2 2
1 1 2 2 3 3

1
( , ) ( ) ( ) ( )

3
d P Q p q p q p q= − + − + − (12) 

Definition 6: By applying center of area approach, the best 

non-fuzzy performance (BNP) value can be determined and 

expressed as Eq. (13): 

 ( ) ( )
,

3
i i

r p q p
BNP p

− + −
= +  (13) 

2.1.3 Fuzzy embedded MOORA method 

The extension of the MOORA method is a systematic 

approach to solve the multi-criteria decision making in the 

fuzzy environment. Various researchers of real-time 

manufacturing attempted the hybridization of two approaches. 

Hence, this hybrid approach used to identify optimal 

parametric combinations to confirm improvement in the 

machining performance of WC cutting tool inserts. In this 

hybrid fuzzy-MOORA method, the opinions of decision-

makers express in the terms of a set of linguistic variables. The 

fuzzy embedded MOORA method followed by the following 

steps: 

Step 1: Between all alternatives(rows) and criteria 

(columns) the fuzzy decision matrix has been formed that 

belong to fuzzy triangular numbers as shown in Eq. (14) 
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Step 2: Using Eqns. (15-17), the normalized fuzzy decision 

matrix has been calculated 
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Step 3: Calculate the weighted normalized fuzzy decision 

matrix using Eqns. (18-20). 

*a a

ij j ijW r p= (18) 

b b

ij j ijW r p = (19) 

c c

ij j ijW r p = (20) 

rj is the weight criteria of each attribute in aforesaid 

equations. 

Step 4: The non-fuzzy value(crisp) has converted from 

overall fuzzy assessment value (�̃�𝑖). Eq. (21) can be used to

calculate the best non-fuzzy performance (BNP) as expressed 

below: 

( ) ( )
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3

c a b a

i i i i a

i i i

q q q q
BNP q q
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= + (21)

where, �̃�𝑖 = (𝑞𝑖
𝑎, 𝑞𝑖

𝑏 , 𝑞𝑖
𝑐)

Step 5: In this step the overall fuzzy assessment value can 

be computed by applying Eq. (22). 

i ij ijq W W+ −= − (22) 

�̃�𝑖𝑗
+ and �̃�𝑖𝑗

− are overall assessment value of beneficial and

non-beneficial criteria respectively. 

Step 6: Allocate ranking to all the computed closeness 

values in descending order. In which the best alternative refer 

by higher closeness value that indicates the best performance, 

and vice versa. 

3. EXPERIMENTATION

3.1 Design of experiment 

3.1.1 Taguchi technique 

Taguchi’s optimization method has wide applications to 

minimize the number of experiment trials without affecting the 

quality of results [19]. Taguchi recommended a three-stage 

process (a) system design (b) parameter design (c) tolerance 

[20, 21]. In system design, the optimum condition and working 

levels of design parameters are identified which affects the 

minimum variation to system performance. Whereas, in 

parameter design, the levels of the parameters are selected that 

result in the best performance of the process during 

experiments. Signal to the noise ratio analysis, variance study, 

and orthogonal arrays are important tools used for parameter 

design [22]. In tolerance design, the selected parameters that 

influence outcome of the process product are finely tuned by 

tightening the tolerance of parameters [21, 23]. 
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Table 1. Input machining parameters and levels 

 
S 

No. 
Parameters Units 

Levels 

Low Medium High 

1. Cutting speed m/min 50 95 140 

2. 
Microhardness 

(Avg) 
HV 1689 1934 2307 

3. Tool overhang mm 25 45 65 

 

Table 2. Experimental combinations and responses 

 

Run 
Input parameters Responses 

A (m/min) B (HV) C (mm) Fc (N) VBc (mm) Ra (µm) 

1 50 1689 25 69.31 0.136 2.27 

2 50 1689 45 117.43 0.154 2.48 

3 50 1689 65 101.48 0.277 2.71 

4 50 1934 25 137.49 0.158 2.55 

5 50 1934 45 112.53 0.141 2.45 

6 50 1934 65 80.50 0.286 2.75 

7 50 2307 25 128.48 0.153 3.12 

8 50 2307 45 80.10 0.153 2.85 

9 50 2307 65 98.53 0.220 3.19 

10 95 1689 25 78.65 0.248 2.47 

11 95 1689 45 118.97 0.295 2.49 

12 95 1689 65 103.08 0.279 2.58 

13 95 1934 25 155.29 0.211 2.80 

14 95 1934 45 114.73 0.147 2.77 

15 95 1934 65 70.61 0.284 2.67 

16 95 2307 25 131.14 0.200 2.85 

17 95 2307 45 81.73 0.165 3.25 

18 95 2307 65 99.79 0.250 2.97 

19 140 1689 25 79.66 0.164 1.79 

20 140 1689 45 120.81 0.178 1.87 

21 140 1689 65 104.53 0.222 1.85 

22 140 1934 25 141.28 0.082 2.15 

23 140 1934 45 115.80 0.157 1.79 

24 140 1934 65 72.40 0.171 1.57 

25 140 2307 25 131.93 0.165 2.02 

26 140 2307 45 86.37 0.179 2.09 

27 140 2307 65 101.91 0.193 1.96 

 

In the current study, three levels viz low, medium and high 

of each process parameter were analyzed because the 

nonlinear behavior among the process parameters, if exists, 

can only be revealed if more than two levels of the parameters 

are investigated. Three input variable parameters viz. cutting 

speed (v), microhardness hardness (m), and tool overhang 

length (l)with their three levels are given in Table 1. In the 

experiment, the total degree of freedom (DOF) calculated is 

18 because of three parameters at three levels and three 

second-order interactions. Three parameters have two degree 

of freedom (N-1) and each second-order interaction has four 

degree of freedom. Therefore, [3 × (3-1)+3× (2×2) =18]. 

According to the Taguchi‘s technique, the selected orthogonal 

array (OA) and its total degree of freedom must be greater than 

or equal to the total degree of freedom required for the 

experiment. Therefore, in this study, Taguchi’s robust 

technique with L27 (33) orthogonal array which having 26 

degree of freedom has been used to design experiments. The 

process parameters were allocated according to the linear 

graph shown in Figure 2. Each experiment was performed for 

a fixed duration in order to remove the biasedness. All twenty-

seven experimental combinations/settings with corresponding 

values of output parameters i.e. cutting force (Fc), tool flank 

wear (VBc), and average surface roughness (Ra) are listed in 

Table 2.  

Figure 3 illustrates the process flow chart of the 

methodology adopted in this study to obtain optimal 

combination using fuzzy-MOORA hybrid method. 

 

 
 

Figure 2. Linear graph of L27 orthogonal array (OA) 

 

 
 

Figure 3. Process flow chart presents the methodology 

 

3.2 Experimental procedure 

 

Turning experiments have been performed on a heavy duty 

H.M.T lathe to machine commercial pure (CP) titanium alloy 

grade 2 having a diameter of 60 mm and length of 500 mm. 

The chemical compositions of workpiece are Carbon 0.08-

0.1%, Nitrogen 0.03-0.05, Oxygen 0.25%(max), Iron (Fe) 

0.30%, Hydrogen 0.015%, Titanium balance% and others 

0.4%. Square-shaped uncoated tungsten carbide (WC) tool 

inserts SNMG 120408 manufactured by Kennametal have 

been used for machining. Figure 4 presents the schematic 

representation of the experimental setup used in the present 

work. 
 

 
 

Figure 4. Schematic of the experimental setup used in the 

present work 

 

In this study, the microwave treatment is done on cutting 

tool inserts in order to vary the tool microhardness. The 

microhardness variation is as follows: 

Microhardness (HV) of WC tool inserts untreated- 1689 HV, 

Microhardness (HV) of WC tool inserts 20 min treated- 1934 

HV, Microhardness (HV) of WC tool inserts 30 min treated 

2307 HV. The levels of cutting speed, and constant values of 

feed and depth of cut have been selected based on literature 
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review, machine constraints, and tool manufacturer’s 

recommendation. Cutting force (Fc), flank wear (VBc), and 

Surface roughness (Ra.) were selected as output responses to 

assess the performance. After each turning 

operation/experiment, tool inserts were removed from tool 

holder for the offline measurement of flank were (Vb) under 

Axio Cam USB microscope. At four different places of 

workpiece, average surface roughness (Ra) was measured by 

Taylor Hobson surface roughness tester, and theaverage value 

was considered. KISTLER (Type 9257A) three-component 

piezoelectric dynamometer was used to measure the cutting 

force. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 FUZZY-MOORA based optimum parameters 

 

In the present research work, the best parametric 

combination of input variables was determined during the 

machining of CP-Ti grade 2 using fuzzy embedded MOORA 

method. The objective was to minimize the tool wear, cutting 

force, and surface roughness. The interaction effects between 

the complexness of machining characteristics and process 

parameters create difficulties to recommend the best 

parametric combinations during machining.  

When the decision-maker faces troubles to express 

quantitative values and dealing with situations that are too ill-

defined and complex, in such conditions, decision-maker uses 

the non-numerical form in words known as linguistic terms 

such as excellent, good, very good, low, very low, poor etc., to 

express values in the qualitative thoughts of the prepared 

workpiece [24]. Therefore, selecting the optimum among the 

available parameters is a challenging task. Assessment of 

machining parameters of all alternatives i.e. very poor, poor, 

average, very good etc. with their triangular fuzzy numbers are 

shown in Table 3. The aforesaid linguistic variables are 

represented by triangular fuzzy numbers. The first linguistic 

variable (very very low) having TFN 0,0,0.1 whereas the last 

linguistic variables (very very high) of Table 3 having TFN 

(0.9, 1.0, 1.0), Therefore, the assigned triangular fuzzy 

numbers lie between 0 to 1. 

Furthermore, mentioned linguistics variables and triangular 

fuzzy numbers are used to express the relative weight of each 

machining response. The specified linguistic variables were 

obtained by the relative weight of selected output responses 

such as flank wear, cutting force, and surface roughness as 

shown in Table 4. Tool wear is an unavoidable phenomenon 

during machining and it affects the cutting force and surface 

roughness of the workpiece. Therefore, relative weight for tool 

wear is kept at very very high (VVH) priority in Table 4 as 

compared to the cutting force and surface roughness. Whereas, 

cutting force and surface roughness are also essential criteria 

during machining are given relative weight very high (VH). 

The corresponding triangular fuzzy number values of criteria 

(Table 4) are referred from linguistic variables values of Table 

3. 

Furthermore, all the available alternatives were evaluated 

and validated based on linguistic variables. The values of 

triangular fuzzy nubers for linguistic variables are lied 

between 0 to 10. The seven different fuzzy linguistics 

variables such as very very good (VVG), very good (VG) good 

(G) fair (F), poor (P), very poor (VP) and very very poor (VVP) 

were obtained during the valuation as shown in Table 5. 

Table 3. Linguistic variables used for each criterion 

 
Linguistic variable Triangular fuzzy numbers (TFNs) 

Very very low (VVL) (0, 0, 0.1) 

Very low (VL) (0, 0.1, 0.3) 

Low (L) (0.1, 0.3, 0.5) 

Medium (M) (0.3, 0.5, 0.7) 

High (H) (0.5, 0.7, 0.9) 

Very high (VH) (0.7, 0.9, 1.0) 

Very very high (VVH) (0.9, 1.0, 1.0) 

 

Table 4. Relative weights of each criterion 

 
Criteria Decision maker Fuzzy numbers 

Fc VH (0.7, 0.9, 1.0) 

VBc VVH (0.9, 1.0, 1.0) 

Ra VH (0.7, 0.9, 1.0) 

 

Table 5. Linguistic variables used for each alternative 

 

Linguistic variable 
Triangular fuzzy numbers 

(TFNs) 

Very very poor (VVP) (0, 0, 1) 

Very poor (VP) (0, 1, 3) 

Poor (P) (1, 3, 5) 

Fair (F) (3, 5, 7) 

Good (G) (5, 7, 9) 

Very good (VG) (7, 9, 10) 

Very very good (VVG) (9, 10, 10) 

 

Table 6. Results of the assessment 

 
Altern-

atives 

Output responses Fuzzy linguistic variables 

Fc VBc Ra Fc VBc Ra 

1 69.31 0.136 2.27 VVG VG G 

2 117.43 0.154 2.48 F G F 

3 101.48 0.277 2.71 G VVP P 

4 137.49 0.158 2.55 VP G P 

5 112.53 0.141 2.45 F VG F 

6 80.50 0.286 2.75 VVG VVP P 

7 128.48 0.153 3.12 P G VVP 

8 80.10 0.153 2.85 VVG G VP 

9 98.53 0.220 3.19 G P VVP 

10 78.65 0.248 2.47 VVG VP F 

11 118.97 0.295 2.49 P VVP F 

12 103.08 0.279 2.58 G VVP P 

13 155.29 0.211 2.80 VVP P VP 

14 114.73 0.147 2.77 F G VP 

15 70.61 0.284 2.67 VVG VVP P 

16 131.14 0.200 2.85 VP F VP 

17 81.73 0.165 3.25 VG G VVP 

18 99.79 0.250 2.97 G VP VP 

19 79.66 0.164 1.79 VVG G VVG 

20 120.81 0.178 1.87 P F VG 

21 104.53 0.222 1.85 G P VG 

22 141.28 0.082 2.15 VP VVG G 

23 115.80 0.157 1.79 F G VVG 

24 72.40 0.171 1.57 VVG G VVG 

25 131.93 0.165 2.02 VP G VG 

26 86.37 0.179 2.09 VG F G 

27 101.91 0.193 1.96 G F VG 

 

Furthrmore, aforementioned fuzzy linguistics variables 

have assigned to 27 alternatives to achive the best combination 

(refer Table 6). All crips values of output responses (Fc,VBc 

and Ra) converted into the linguistic variables according to the 

prirority. For example, the range of lowest tool wear (0.082 

mm) has denoted by very very good (VVG) and higher tool 

wear (0.277-0.295 mm) have denoted by very very poor 
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(VVP). The assessment of the results is shown in Table 6. The 

output responses viz. flank wear, cutting force, and surface 

roughness are represented into fuzzy linguistics variables. 

After this, suitable triangular fuzzy numbers were prepared by 

the formation of a fuzzy decision matrix that is done by 

converting the data sets obtained after assessment.  

 

Table 7. Fuzzy decision matrix 

 

Alternative 
Responses 

Fc VBc Ra 

1 9, 10, 10 7, 9, 10 5, 7, 9 

2 3, 5, 7 5, 7, 9 3, 5, 7 

3 5, 7, 9 0, 0, 1 1, 3, 5 

4 0, 1, 3 5, 7, 9 1, 3, 5 

5 3, 5, 7 7, 9, 10 3, 5, 7 

6 9, 10, 10 0, 0, 1 1, 3, 5 

7 1, 3, 5 5, 7, 9 0, 0, 1 

8 9, 10, 10 5, 7, 9 0, 1, 3 

9 5, 7, 9 1, 3, 5 0, 0, 1 

10 9, 10, 10 0, 1, 3 3, 5, 7 

11 1, 3, 5 0, 0, 1 3, 5, 7 

12 5, 7, 9 0, 0, 1 1, 3, 5 

13 0, 0, 1 1, 3, 5 0, 1, 3 

14 3, 5, 7 5, 7, 9 0, 1, 3 

15 9, 10, 10 0, 0, 1 1, 3, 5 

16 0, 1, 3 3, 5, 7 0, 1, 3 

17 7, 9, 10 5, 7, 9 0, 0, 1 

18 5, 7, 9 0, 1, 3 0, 1, 3 

19 9, 10, 10 5, 7, 9 9, 10, 10 

20 1, 3, 5 3, 5, 7 7, 9, 10 

21 5, 7, 9 1, 3, 5 7, 9, 10 

22 0, 1, 3 9, 10, 10 5, 7, 9 

23 3, 5, 7 5, 7, 9 9, 10, 10 

24 9, 10, 10 5, 7, 9 9, 10, 10 

25 0, 1, 3 5, 7, 9 7, 9, 10 

26 7, 9, 10 3, 5, 7 5, 7, 9 

27 5, 7, 9 3, 5, 7 7, 9, 10 

 

Table 8. Normalized fuzzy decision matrix 

 

Alter-natives 
Responses 

Fc VBc Ra 

1 0.9, 0.1, 0.1 0.7, 0.9, 0.1 0.5, 0.7, 0.9 

2 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0.3, 0.5, 0.7 

3 0.5, 0.7, 0.9 0, 0, 0.1 0.1, 0.3, 0.5 

4 0, 0.1, 0.3 0.5, 0.7, 0.9 0.1, 0.3, 0.5 

5 0.3, 0.5, 0.7 0.7, 0.9, 0.1 0.3, 0.5, 0.7 

6 0.9, 0.1, 0.1 0, 0, 0.1 0.1, 0.3, 0.5 

7 0.1, 0.3, 0.5 0.5, 0.7, 0.9 0, 0, 0.1 

8 0.9, 0.1, 0.1 0.5, 0.7, 0.9 0, 0.1, 0.3 

9 0.5, 0.7, 0.9 0.1, 0.3, 0.5 0, 0, 0.1 

10 0.9, 0.1, 0.1 0, 0.1, 0.3 0.3, 0.5, 0.7 

11 0.1, 0.3, 0.5 0, 0, 0.1 0.3, 0.5, 0.7 

12 0.5, 0.7, 0.9 0, 0, 0.1 0.1, 0.3, 0.5 

13 0, 0, 0.1 0.1, 0.3, 0.5 0, 0.1, 0.3 

14 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0, 0.1, 0.3 

15 0.9, 0.1, 0.1 0, 0, 0.1 0.1, 0.3, 0.5 

16 0, 0.1, 0.3 0.3, 0.5, 0.7 0, 0.1, 0.3 

17 0.7, 0.9, 0.1 0.5, 0.7, 0.9 0, 0, 0.1 

18 0.5, 0.7, 0.9 0, 0.1, 0.3 0, 0.1, 0.3 

19 0.9, 0.1, 0.1 0.5, 0.7, 0.9 0.9, 0.1, 0.1 

20 0.1, 0.3, 0.5 0.3, 0.5, 0.7 0.7, 0.9, 0.1 

21 0.5, 0.7, 0.9 0.1, 0.3, 0.5 0.7, 0.9, 0.1 

22 0, 0.1, 0.3 0.9, 0.1, 0.1 0.5, 0.7, 0.9 

23 0.3, 0.5, 0.7 0.5, 0.7, 0.9 0.9, 0.1, 0.1 

24 0.9, 0.1, 0.1 0.5, 0.7, 0.9 0.9, 0.1, 0.1 

25 0, 0.1, 0.3 0.5, 0.7, 0.9 0.7, 0.9, 0.1 

26 0.7, 0.9, 0.1 0.3, 0.5, 0.7 0.5, 0.7, 0.9 

27 0.5, 0.7, 0.9 0.3, 0.5, 0.7 0.7, 0.9, 0.1 

Table 9. Weighted normalized fuzzy decision matrix 

 

Alter- 

natives 

Responses 

Fc VBc Ra 

1 0.63, 0.9, 0.1 0.63, 0.9, 0.1 0.35, 0.63, 0.9 

2 0.21, 0.45, 0.7 0.45, 0.7, 0.9 0.21, 0.45, 0.7 

3 0.35, 0.63, 0.9 0, 0, 0.1 0.7, 0.27, 0.5 

4 0, 0.9, 0.3 0.45, 0.7, 0.9 0.7, 0.27, 0.5 

5 0.21, 0.45, 0.7 0.63, 0.9, 0.1 0.21, 0.45, 0.7 

6 0.63, 0.9, 0.1 0, 0, 0.1 0.7, 0.27, 0.5 

7 0.7, 0.27, 0.5 0.45, 0.7, 0.9 0, 0, 0.1 

8 0.63, 0.9, 0.1 0.45, 0.7, 0.9 0, 0.9, 0.3 

9 0.35, 0.63, 0.9 0.9, 0.3, 0.5 0, 0, 0.1 

10 0.63, 0.9, 0.1 0, 0.1, 0.3 0.21, 0.45, 0.7 

11 0.7, 0.27, 0.5 0, 0, 0.1 0.21, 0.45, 0.7 

12 0.35, 0.63, 0.9 0, 0, 0.1 0.7, 0.27, 0.5 

13 0, 0, 0.1 0.9, 0.3, 0.5 0, 0.9, 0.3 

14 0.21, 0.45, 0.7 0.45, 0.7, 0.9 0, 0.9, 0.3 

15 0.63, 0.9, 0.1 0, 0, 0.1 0.7, 0.27, 0.5 

16 0, 0.9, 0.3 0.27, 0.5, 0.7 0, 0.9, 0.3 

17 0.49, 0.81, 0.1 0.45, 0.7, 0.9 0, 0, 0.1 

18 0.35, 0.63, 0.9 0, 0.1, 0.3 0, 0.9, 0.3 

19 0.63, 0.9, 0.1 0.45, 0.7, 0.9 0.63, 0.9, 0.1 

20 0.7, 0.27, 0.5 0.27, 0.5, 0.7 0.49, 0.81, 0.1 

21 0.35, 0.63, 0.9 0.9, 0.3, 0.5 0.49, 0.81, 0.1 

22 0, 0.9, 0.3 0.81, 0.1, 0.1 0.35, 0.63, 0.9 

23 0.21, 0.45, 0.7 0.45, 0.7, 0.9 0.63, 0.9, 0.1 

24 0.63, 0.9, 0.1 0.45, 0.7, 0.9 0.63, 0.9, 0.1 

25 0, 0.9, 0.3 0.45, 0.7, 0.9 0.49, 0.81, 0.1 

26 0.49, 0.81, 0.1 0.27, 0.5, 0.7 0.35, 0.63, 0.9 

27 0.35, 0.63, 0.9 0.27, 0.5, 0.7 0.49, 0.81, 0.1 

 

The triangular fuzzy numbers of fuzzy decision matrix 

shown in Table 7 are obtained after conversion of linguistics 

variables of cutting force (Fc), tool wear (VBc), and surface 

roughness (Ra) of Table 6. For example, the linguistic variable 

very very good (VVG) (refer to Table 5) having a triangular 

fuzzy number (9.10,10). Therefore, all places in Table 6 the 

VVG is replaced by (9,10,10) in Table 7. 

The fuzzy decision matrix as shown in Table 7 was 

implemented using Eqns. (16-18) and the results are shown in 

Table 8 as a normalized fuzzy decision matrix. The fuzzy 

decision matrix has obtained by dividing all values of Table 7 

by ten (10). Afterward, Table 9 expresses a weighted 

normalized fuzzy decision matrix, in which the relevant 

weight of every machining criterion was multiplied with their 

adjacent values. For example, the relative weight of flank wear 

is very very high (VVH) whereas the relative weights of 

cutting force and surface roughness are very high (VH) (refer 

Table 3). Therefore, adjacent values of relative weights 

multiplied by values of normalized fuzzy decision matrix 

values. After that applying Eq. (22) the listed values of Table 

9 further converted into crisps values are represented in Table 

10. 

At last, Table 11 has been developed using Eq. (23) in which 

complete assessment of values. For example, assessment value 

(yi) of alternative 1, (row 1) is calculated by the addition of 

consecutive crips values (refer Table 10) of cutting force (Fc), 

flank wear (VBc), and surface roughness (Ra). The overall 

assessment values have been shown in decreasing order 

according to the preference ranking. The highest assessment 

values would be denoted by rank 1 whereas the lowest 

assessment value would be denoted by rank 27 because total 

twenty-seven experiments were conducted to obtain the best 

parametric combination.  

The experiment number 24 has been observed the best 

operating parameter that gives optimum responses showing 
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less flank wear, cutting force, and surface roughness. Whereas 

experiment number 11 has shown the worst responses, in 

which flank wear, cutting force, and surface roughness has the 

highest values.  

 

Table 10. Crisp values for weighted normalized fuzzy 

decision matrix 

 

Alternative 
Responses 

Fc VBc Ra 

1 0.543 0.543 0.627 

2 0.453 0.683 0.453 

3 0.627 0.033 0.490 

4 0.400 0.683 0.490 

5 0.453 0.543 0.453 

6 0.543 0.033 0.490 

7 0.490 0.683 0.033 

8 0.543 0.683 0.400 

9 0.627 0.567 0.033 

10 0.543 0.133 0.453 

11 0.490 0.033 0.453 

12 0.627 0.033 0.490 

13 0.033 0.567 0.400 

14 0.453 0.683 0.400 

15 0.543 0.033 0.490 

16 0.400 0.490 0.400 

17 0.467 0.683 0.033 

18 0.627 0.133 0.400 

19 0.543 0.683 0.543 

20 0.490 0.490 0.467 

21 0.627 0.567 0.467 

22 0.400 0.337 0.627 

23 0.453 0.683 0.543 

24 0.543 0.683 0.543 

25 0.400 0.683 0.467 

26 0.467 0.490 0.627 

27 0.627 0.490 0.467 

 

Table 11. Overall assessment value 

 

Alter-natives 
Responses  

Fc VBc Ra yi Rank 

1 0.543 0.543 0.627 1.713 3 

2 0.453 0.683 0.453 1.590 7 

3 0.627 0.033 0.490 1.140 22 

4 0.400 0.683 0.490 1.573 10 

5 0.453 0.543 0.453 1.450 13 

6 0.543 0.033 0.490 1.067 24 

7 0.490 0.683 0.033 1.207 18 

8 0.543 0.683 0.400 1.627 6 

9 0.627 0.567 0.033 1.227 17 

10 0.543 0.133 0.453 1.130 23 

11 0.490 0.033 0.453 0.977 27 

12 0.627 0.033 0.490 1.150 21 

13 0.033 0.567 0.400 1.000 26 

14 0.453 0.683 0.400 1.537 12 

15 0.543 0.033 0.490 1.047 25 

16 0.400 0.490 0.400 1.290 16 

17 0.467 0.683 0.033 1.183 19 

18 0.627 0.133 0.400 1.160 20 

19 0.543 0.683 0.543 1.761 2 

20 0.490 0.490 0.467 1.447 14 

21 0.627 0.567 0.467 1.660 5 

22 0.400 0.337 0.627 1.363 15 

23 0.453 0.683 0.543 1.680 4 

24 0.543 0.683 0.543 1.770 1 

25 0.400 0.683 0.467 1.550 11 

26 0.467 0.490 0.627 1.584 9 

27 0.627 0.490 0.467 1.583 8 

 

Therefore, results show that at higher cutting speed (140 

m/min) and higher tool overhang length (65mm) with medium 

hardness (1934 HV) level, the tool wear recorded less with less 

cutting force and good surface roughness. 

The aforementioned combination reported suitable and 

optimum for the machining, out of 27 experiments. With the 

increase in the cutting speed during machining of titanium 

alloys the cutting temperature also rises at shear zone due to 

friction during turning. The high temperature at the tool-

workpiece interface remains high enough to influence the 

surface roughness of the workpiece. This high temperature 

allows regenerating the workpiece surface due to thermal 

expansion that results in the disappearance of micro cracks and 

cavities from the surface of the workpiece [25].  

Experiment number 24 also depicted that increase in 

average microhardness reduces the cutting force and flank 

wear significantly, however, a high level of tool overhang 

length does not impact surface roughness and flank wear 

significantly. Therefore, a higher range of machining 

parameters considered in this study are fairly recommended 

for the machining of CP-Ti grade to titanium alloy. 

 

4.2 Analysis of results 

 

The main effect plots for cutting force, flank wear, and 

surface roughness are illustrated in Figures 5, 6, and 7 

respectively. In Figure 5, It is depicted that cutting speed and 

tool overhang significantly affect the cutting force and its least 

value is obtained at the middle level of microhardness.  

 

 
 

Figure 5. Main effect plot for cutting force (Fc) 

 

 
 

Figure 6. Main effect plot for tool flank wear (VBc) 
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Figure 7. Main effect plot for Surface roughness (Ra) 

 

From Figure 6, it is observed that microhardness and cutting 

speed play a significant role in flank wear because higher the 

cutting speed results in higher tool deformation and cutting 

temperature. However, an increase in microhardness results in 

an increase in wear resistance and cutting edge stability. 

Figure 7 shows the main effect plot for surface roughness, 

it is observed that cutting speed, microhardness, and tool 

overhang are significantly affecting the surface roughness. At 

lower cutting speed, surface roughness is higher, whereas at 

higher cutting speed, the surface roughness is observed lower 

due to regeneration of the workpiece surface at a higher cutting 

temperature [8]. Whereas medium level of hardness and tool 

overhang reduces the vibrations and chattering of the cutting 

tool due to which lower surface roughness is obtained. 

 

 

5. CONCLUSIONS AND FUTURE WORK 

 

In the present investigation, using fuzzy embedded 

MOORA technique, the novel parametric combination of 

variable machining parameters has been optimized for 

enhanced machinability of CP-Ti grade 2 during turning 

operation. The following conclusions can be drawn from this 

research:  

• The best parametric combination obtained in 

experiment number 24 i.e at cutting speed of 140 

m/min, tool microhardness of 1934 HV, and 65 mm 

overhang length. 

• Results attributed that at high cutting speed, change 

in microhardness will improve the performance of 

tungsten carbide insert. Whereas, tool overhang 

length does not play a significant role in the 

minimization of surface roughness and cutting force. 

• The flank wear was significantly affected by cutting 

speed followed by tool microhardness, whereas 

cutting force was affected by tool overhang followed 

by the cutting speed. 

• The proposed unification of the fuzzy-MOORA 

method has effective and faster to solve multi-criteria 

decision-making problems in the turning process. 

The best parametric combination confirms lesser 

cutting force, lower tool wear, and better surface 

roughness.  

• Since the scope of the present work is limited to the 

machining of the CP-Ti grade 2 and the variable 

machining parameters and machinability indicators 

considered, therefore much scope exists for future 

research using Fuzzy-MOORA based hybrid 

optimization technique. 

 

The possible future research avenues are as follows: 

• While machining CP-Ti grade 2, the Fuzzy-MOORA 

technique can also be used for other machinability 

indicators such as material removal rate, power 

consumption, chip related parameters, and different 

surface roughness parameters etc. Other variable 

machining parameters such as cutting speed, feed rate, 

depth of cut, and different tool materials can also be 

used. 

• Machinability enhancement of other difficult-to-

machine materials such as Inconel, Hastalloy, other 

grades of titanium etc. using Fuzzy-MOORA based 

hybrid optimization technique.  

• Implementing Fuzy-MOORA hybrid optimization 

technique for different types of materials during other 

machining operations such as milling and drilling etc. 

• A comparative study can also be conducted between 

machinability obtained after applying Fuzzy-

MOORA and other optimization techniques. 
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