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The choice of nonstationary stochastic models for the study is fully justified by the 

limitation of acceleration time series number. The three acceleration time series under 

consideration are used to generate a new, artificial series of ten per historical one using 

autoregressive moving average model. Subsequently, the average of nonlinear is 

utilized for the ten acceleration time series in order to obtain the spectral response of a 

system with single degree of freedom. 

Modeling of acceleration time series involves critical estimation of metrics that 

characterize nonstationary acceleration time series. Thus, for the stiffness degrading 

systems and bilinear systems, the metrics of hysteretic energy demand and displacement 

ductility demand during displacement are used. 

The applicability of artificially generated acceleration time series for the qualitative 

description of information was shown. More specifically, ARMA (2,2) showed the best 

results in the study for three accelerated time series through nonlinear response analysis. 

In addition, as a result, normalized hysteretic energy demand, empirically valid 

displacement ductility relationships, and model parameters were proposed.  
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1. INTRODUCTION

Both time and frequency domains are utilized to generate 

acceleration time series from stochastic models. Extensive 

reviews of acceleration time series process models in the 

frequency and times domain have been presented by Kozin [1]; 

Shinozuka et al. [2] and Chang et al. [3]. A number of papers 

in the literature have reported ARMA models. ARMA models 

are discussed in detail by Box and Jenkins [4]. The basic 

concept of using artificial acceleration in the seismic analysis 

was proposed by Housner and Jennings [5] and Jack [6], and 

other researchers have studied the correlation between model 

parameters [7, 8]. 

2. ARMA MODELS

The autoregressive moving average ARMA models at any 

time step “t” may be represented as follows: 

𝑍𝑡 − 𝜑1𝑍𝑡−1 − ⋯ − 𝜑𝑝𝑍𝑡−𝑝

= 𝑊𝑡 − 𝜃1𝑊𝑡−1 − ⋯ − 𝜃𝑞𝑊𝑡−𝑞
(1) 

where, 𝜑𝑖, 𝜃𝑗 are constant coefficients.

The Eq. (1)'s left side represents the autoregressive, AR, 

part of the order “p.” Thus, the measured data sequence used 

is time series [𝑍𝑘]. Meanwhile, the Eq. (1)'s right side as part

of order “q” is the moving average, MA. Then, the sequence 

[ 𝑊𝑡 ] is a set of identically distributed and independent

Gaussian variables. 

It must be said that the digitized data 𝐴𝑡 is first normalized

in this study. Estimating the variance or modulating function 

is a critical problem in modeling acceleration time series since 

it controls the non-stationarity of the process and statistical 

parameters, such as the extreme values of acceleration and 

structural response. The root mean square of 𝑆𝑡 is calculated

for a moving window of hundredfold steps centered on time 

step “t.” The given acceleration time series is then normalized 

to obtain a stationary acceleration time series, [𝑍𝑡], with zero

mean and unit variance. 

[𝑍𝑡] = [𝐴𝑡]/[𝑆𝑡] (2) 

Hence, [𝑍𝑡] is considered as a stationary process of the Eq.

(1). 

Referring to the pattern of the partial autocorrelation and 

autocorrelation functions is a necessary step to clarify 

information about the ARMA process's order selection (p,q). 

Estimation of the number of parameters and their numerical 

values to fit a model to a time series is a basic problem. The 

estimation of parameters is based on the nonlinear least 

squares, but the order of the model is based on the Akaike [8] 

Information criterion. 

3. APPLICATION OF ARMA MODELS FOR 

ACCELERATION TIME SERIES 

3.1 Data 

In this study, the data consist of three acceleration time 

series were measured: Afroun with 16000 data points digitized 
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at 0.005 seconds, Ain Defla with 5000 data points digitized at 

0.005 seconds, and Dar Beida with 5528 data points digitized 

at 0.005 seconds. Shown in Figure 1, Figure 2, Figure 3 are 

plots of the measured acceleration time series. 

 

 
 

Figure 1. Afroun acceleration time series 

 

 
 

Figure 2. Ain defla acceleration time series 

 

 
 

Figure 3. Dar El beida acceleration time series 

 

3.2 Modeling procedure 

 

The following five-step algorithm must be performed when 

installing the ARMA model in an acceleration time series: 

1) Calculate the experimental modulating function 𝑆𝑡  and 

normalize the given acceleration time series. 

2) Suppose a simple general analytical form f(t) to fit the 

modulating function 𝑆𝑡 , and estimate the parameters 

𝛼, 𝛽, 𝑎𝑛𝑑 𝛾. 

 

𝑓(𝑡) = 𝛼𝑒
−(

𝑡−𝛽
𝛾

)2

 (3) 

 

Shown in Figure 4, Figure 5, and Figure 6 are the 

modulating and envelope functions for the three measured 

acceleration time series. 

3) Select the order (p,q) based on the partial autocorrelation 

and autocorrelation and functions. 

4) Estimate the coefficients 𝜑𝑖 , i=1, 2…, p and 𝜃𝑗 , 𝑗 =

1,2, … , 𝑞. 

5) Select the model order based on the AIC (p,q) criterion. 

It must be said that to perform steps 3 and 4 it is necessary 

to apply STATGRAPHICS [9]. The ARMA parameters and 

envelope function parameters are shown in Table 1.  

 

Table 1. ARMA and envelope function parameters 

 
ARMA & Envelope  

Function Parameters 
Afroun Ain Defla Dar Beida 

𝜑1 1.8635 0.944 1.9080 

𝜑2 -0.922845 -0.963 -0.9590 

𝜃1 -1.28836 -0.469 -1.1503 

𝜃2 -0.954263 -0.295 -0.8881 

𝜎𝑤  0.0407843 0.0210 0.03357 

𝛼 27.36 6.081 126.2 

𝛽 18.26 8.098 8.130 

𝜸 3.290 8.991 3.290 

 

 
 

Figure 4. Afroun measured and envelope functions 

 

 
 

Figure 5. Ain defla measured and envelope function 

 

 
 

Figure 6. Dar beida measured and envelope functions 

 

3.3 Acceleration time series simulation 

 

To simulate acceleration time series, stationary time series 

are first generated using the fitted ARMA model and then 

multiplied by the fitted parametric envelope function Eq. (3). 

Since ARMA model is a linear combination of past values of  

𝑍𝑡  and Gaussian values 𝑊𝑡 , simulated time series can be 

generated recursively. 𝑊𝑡 are Gaussian random variables with 

zero mean and variance 𝜎𝑤
2 . Shown in Figure 7, 8, and 9, are 

simulated acceleration times series from the ARMA (2,2) 
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models as fitted to Ain Defla, Dar Beida, and Afroun 

acceleration time series. 

 

 
 

Figure 7. Ain defla simulated acceleration time series 

 

 
Figure 8. Dar beida simulated acceleration time series 

 

 
 

Figure 9. Afroun simulated acceleration time series 

 

 

4. RESPONSE SPECTRA  

 

The ARMA models provide an effective means in 

characterizing the non-stationarity of records which can be 

used as input in structural analysis. Each acceleration time 

series is an output time-series event from a representative class 

of stochastic processes characterized by the ARMA models. 

Structural response spectra provide an excellent means to 

describe a ground acceleration time series. A single degree of 

freedom system with viscous damping is used to obtain the 

spectral response. Figure 10. System stiffness can be bilinear 

or stiffness degrading. Then, it is necessary to apply a stepwise 

numerical integration of the general equation that considers 

the linear acceleration at each time step [10]. This strategy is 

used to obtain the spectral response for a unique acceleration 

time series. The equation is: 

 

𝑀�̈�(𝑡) + 𝑐�̇�(𝑡) + 𝑅(𝑈, 𝑡) = −𝑀�̈�𝑔(𝑡) (4) 

 

where, 𝑈(𝑡) is the relative mass displacement for the ground, 

𝑐 is the damping coefficient, 𝑀 is the mass, and �̈�𝑔(𝑡) is the 

acceleration of 𝑀  relative to the fixed reference axis, and 

𝑅(𝑈, 𝑡) is the restoring force. 

 

 
 

Figure 10. Single degree of freedom system 

 

 

5. DAMAGE MEASURES 

 

Several measures have been proposed by a number of 

investigators. These damage measures are expressed as 

functions of structural response parameters to summarize the 

effect of acceleration time series on linear and no-linear 

systems. A comparative of damage measures study was made 

by Grigoriu [11], the implementation of these arrangements 

has been carried out by Pappas et al. [12] and Chopra [13]. 

 

5.1 Maximum displacement 

 

For design purposes, it is generally essential to know the 

maximum absolute value of the response subjected to an 

acceleration time series. 

 

𝑈𝑚𝑎𝑥 = max | 𝑈(𝑡) | (5) 

 

This dependence function, reflecting the relationship 

between the maximum value and the period or frequency of 

natural vibration, provides a classical spectrum for systems 

with the same damping value and periodic range. 

 

5.2 Maximum displacement ductility 

 

If the maximum absolute value of the displacement 

response calculated at its full excitation is divided by the value 

of the yield displacement of the system, it becomes possible to 

obtain the maximum displacement ductility realized as a 

normalized value. Thus, the maximum displacement ductility 

𝜇 less than one indicates an elastic response. 

 

5.3 Normalized hysteretic energy 

 

If the amount of energy expended by the system to dissipate 

in the case of full excitation is divided by twice the energy 

absorbed at the first yield plus one, it is possible to obtain 

hysteretic energy, defined as the normalized value. The energy 

dissipated in a structure with the hysteretic load-deformation 

relationship is given by 
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𝐸ℎ(𝑡) = ∫ 𝑅(𝑢, 𝑡)�̇�
𝑡

0

(𝑡)𝑑𝑡 − 𝐸𝑠(𝑡) (6) 

 

where, 𝐸𝑆 is the elastic strain energy given by: 

 

𝐸𝑆 =
1

2
𝐾𝑦𝑈𝑦

2 (7) 

 

𝑅(𝑢, 𝑡) is the restoring force 𝑑𝑢 = �̇�(𝑡)𝑑𝑡. 

The normalized hysteretic energy will be then  

 

𝐸𝑁𝐻 = 1.0 +
𝐸𝐻

𝑅𝑦𝑈𝑦

 (8) 

 

where, 𝑅𝑦 = 𝐾𝑦𝑈𝑦 is the yield force.  

 

 

6. APPLICATIONS AND RESULTS 

 

Multiple ARMA models were successfully used to analyze 

the three acceleration time series, with empirical data recorded 

for further processing. For ease of visualization, information 

on the projected ARMA parameters and envelope functions 

are summarized in Table 1. Consequently, the following steps 

were used to build the models. First, a sample of ten artificial 

acceleration time series was generated for each parameter set 

of the three natural series, and as illustrated in Figures 7, 8, 

and 9, even the simple model generally described well the 

periodicity of events peculiar to the Afroun, Ain Defla,  and 

Dar Beida acceleration series. 

Then, the damping ratio numerical values 𝜀 = 0.05  with 

yield ratio 𝑌 = 𝑅𝑌/𝑀𝑔 of 0.05, 0.1, 0.15, 0.2, 0.3 were used 

for the response analysis. Other yield ratios were used for the 

hysteretic energy 𝑌 =  0.01, 0.02, 0.03, 0.04. 

Subsequently, the hysteretic energy demand spectra 

coupled with the mean displacement ductility were calculated 

for the three acceleration time series. To establish a confidence 

interval, the standard deviation was computed for each output 

event. The results are shown in Figure 11. In addition, the 

results were obtained using bilinear and stiffness degrading 

systems. 

As a general remark, the spectra ordinates decrease with an 

increase in the period. The mean response spectra show a 

stable and smooth curve with changing frequencies. Spectral 

ordinates for both stiffness degrading systems and bilinear 

ones are in general similar spectral shapes.  

Since the inelastic response is affected by the initial yield 

displacement, the yield strength ratio, which provides the 

initial yield displacement, is the most critical factor in the 

analysis of nonlinear systems. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

 
(e) 

 

 
(f) 
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(g) 

 

 
(h) 

 

 
(i) 

 

 
(j) 

 

 
(k) 

 
(l) 

 

Figure 11. One 𝜎 confidence intervals for displacement 

ductility 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure 12. Effect of yield strength ratio (Sample of 10) 

 

Figure 12 shows typical examples of displacement ductility 

for yield ratios of 0.05, 0.1, 0.15, 0.2, 0.3, assuming 5% 

damping for a bilinear system. Figure 13 shows examples of 

Afroun, Ain Defla, and Dar Beida using same yield ratios and 

damping. 
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(a)                                                                                            (b)                                                 

 

 
(c) 

 

Figure 13. Effect of yield strength ratio 

 

Several useful patterns emerged from this analysis. First of 

all, the results obtained for the spectral response for the two 

quantities showed that the logarithm of the average nonlinear 

response demand spectrum was linearly related to the 

logarithm of the natural period under certain conditions. Then, 

based on the empirical relationships for the normalized 

hysteretic energy demand spectra 𝐸𝐻 and for the displacement 

ductility 𝜇, the following relationships can be inferred: 

 

log(𝜇) = 𝑐1 + 𝑐2log (𝑇) (9) 

 

log(𝐸𝐻) = 𝑐3 + 𝑐4log (𝑇) (10) 

 

where, 𝑐1, 𝑐2, 𝑐3, 𝑐4 are constants related to Model and system 

parameters, and T natural period. 

 

 

7. CONCLUSIONS 

 

(1) In fact, the application of the time-domain approach 

using ARMA models provides uncomplicated results for a 

limited number of parameters, while practical implementation 

requires imposing restrictions on the number of model 

parameters. 

(2) A good description of the average spectral response can 

be derived from the assumption that the acceleration time-

series event is one of the sampling realizations for the set of 

such time series corresponding to the baseline event  

(3) A generally linear relationship was also found between 

the logarithm of the average spectra of the nonlinear response 

of the two quantities and the logarithm of the system's natural 

period. 

(4) For a given system period and damping, the response 

spectra (displacement ductility and Hysteretic energy) 

decrease when the logarithm of the system period increases. 
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