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 In this paper, a new configuration of Crank-Rocker (CR) model has been proposed by 

duplicating its mechanism. The method has been implemented to overcome vibration 

problem on a single-piston Crank-Rocker engine caused by system unbalance. The new 

method suggests combining conventional method of adding counterweights to reduce 

shaking forces and eliminating the inertial moments on system by implementing the 

new layout. A dynamic study of the new model is presented, then the objective function 

is derived and implemented to perform the optimization process. Related design 

variables and system constraints are introduced to determine attached counterweights 

optimized characteristics. For results validation, the simulation, dynamic analysis, and 

optimization process were conducted using ADAMS VIEW® software. The output 

results were presented and discussed to verify the validity of the suggested method. It 

was noticed that the method was very effective and has managed to reduce the total 

shaking forces by about 91%, shaking moment by about 66%; and the driving torque 

by 27%.  

 

Keywords: 

Crank-Rocker (CR) engine, Double Crank-

Rocker (DCR), engine vibration, four-bar 

mechanism, balancing 

 

 

 

 
1. INTRODUCTION 

 

Crank-Rocker (CR) mechanisms can be found in many 

applications due to their simple design, wide functionality, and 

ease of production. Many researches have introduced different 

approaches to study the kinematics and dynamic synthesis of 

this mechanism that can be used as a base for further related 

studies [1-3].  

Previous studies led to the invention of a new single piston 

engine called Crank Rocker (CR) engine by a research team at 

Centre for Automotive Research and Electric Mobility 

(CAREM), Universiti Teknologi Petronas (UTP) Malaysia [4]. 

Since then, the CR engine is under continuous investigation to 

achieve the most beneficial outcome from such design [4-9]. 

Although single piston design showed promising results in 

term of efficiency and indicated power, noticeable high 

vibrations during operation of the engine was noticed mainly 

due to the unbalance of engine. The current CR engine 

architecture requires further development owing to its 

oscillating mechanism. Fluctuating forces and moments are 

acting during CR engine operation which lead to unbalance 

and shaking of the engine, affecting its mechanical 

performance. For applications where the crank speed is high, 

a dynamic balancing to reduce shaking forces and shaking 

moments are required. Ultimate dynamic balancing of a CR 

mechanism is considered a challenge because it is a trade-off 

between balancing forces and moments [10]. 

In this research, our aim is to introduce a new engine layout 

that can be used to overcome vibrations resulted from a single 

cylinder CR engine. Therefore, a double-piston crank rocker 

(DCR) configuration is suggested in this research to achieve 

satisfactory balancing results. Although many techniques can 

be devoted to studying the dynamic balancing of four-bar 

linkages, few researches have been introduced in duplicating 

this mechanism and studying its effect on balancing [11, 12]. 

Therefore, it is attempting to study the DCR system balancing, 

where a combination between complete shaking force 

elimination using counterweights and mechanism duplication 

for shaking moment reduction are presented and discussed.  

In his paper, Arakelian [12] introduced a solution for the 

problem of shaking moment exerted on double crank-slider 

mechanism. Similarly, van der Wijk et al. [13] introduced a 

systematic study of the dynamic behaviour of a single-crank 

doble-slider mechanism to investigate the possibility of 

balancing such system.  

Basically, it can be noticed that several researchers have 

focused on developing certain methods for practical 

mechanism balancing. Some of these methods include adding 

counterweights, distributing linkages’ masses, while others 

use rotating disks or duplicating linkages [12, 14-19]. 

Mohammed et al. [20] presented a method for complete 

shaking force elimination of a crank-rocker mechanism by 

using counterweights. His method was simple to grasp and 

practical, where the first step involves adding counterweights 

to the crank and rocker links and then followed by applying 

the law of motion to obtain the balanced case. However, Xi 

and Sinatra [21] stated that adding counterweights to eliminate 

the shaking forces increased the moment of inertia of the 

mechanism, leading to the increase in the shaking moments 

and vibration. In addition, Kochev [11] conducted a review on 

methods for balancing of a four-bar mechanism and concluded 

that a total balanced mechanism could be achieved on the price 

of complexity and mass increase.  

In previous studies, scholars tried to formulate and develop 
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mathematical equations for the dynamic problem and find a 

suitable solution for these equations using different 

mathematical and programming approaches [22-25]. 

Demeulenaere et al. [26] in their research indicated that 

dynamic reactions of four-bar mechanism can be reduced by 

adding counterweights. He dealt with this problem as an 

optimization problem, which could be solved as a convex 

problem to find the optimum solution. Chaudhary and Saha 

[27] pointed some difficulties of the four-bar linkage 

balancing problem such as formulating the dynamic problem, 

the objective function and the system constraints. Therefore, 

the author proposed dynamic equations using maximum 

recursive algorithm to accomplish the optimum balancing of 

the four-bar mechanism.  

In this paper, a dynamic analysis for the crank-rocker 

mechanism is initially illustrated. Then the adopted 

optimization method for both shaking forces and moment 

balancing is introduced. Lastly, a DCR design approach, 

simulation and analysis is validated using ADAMS VIEW® 

software. 

 

 

2. MODEL DYNAMIC EQUATIONS  
 

In this section, a dynamic analysis considering the addition 

of balancing counterweights to the four-bar mechanism is 

introduced [10, 28]. Then, a mathematical model for the DCR 

mechanism is derived based on basic analysis for design 

purposes. Figure 1a shows basic configuration of a standard 

four-bar mechanism, and Figure 1b illustrates free body 

diagram of this mechanism under different dynamic forces. 
 

 
(a) 

 
(b) 

 

Figure 1. Four bar mechanism: (a) Dynamic load 

Representation; (b) Free body diagram 

From Figure 1a above, this mechanism arrangement has 

links of length Li, (where i=1 to 4). Each link has a mass, mi 

and moment of inertia, Ii. The mechanism rotates with angular 

velocity, ωi and angular acceleration, ai. The transitional 

velocity vi and transitional acceleration, ai are both vectors 

originating from each link center of gravity. External forces 

and torques exerted on the ith length are donated by 𝐹𝑒𝑖 and 𝑇𝑒𝑖  

respectively, while TD is the crank driving torque. 

Based on the free body diagram shown in Figure 1b, we can 

use the following equations to find the reaction forces on the 

coupling link joints A and B as follows [10]: 

 

𝐹23𝑥 =
(𝑅𝑣𝐵𝑥 + 𝑆𝑣𝐵𝑦 − 𝑃)𝑣𝐴𝑦 − 𝑄𝑣𝐵𝑦

𝑉
 (1) 

 

𝐹23𝑦 =
(−𝑅𝑣𝐵𝑥 − 𝑆𝑣𝐵𝑦 + 𝑃)𝑣𝐴𝑥 − 𝑄𝑣𝐵𝑥

𝑉
 (2) 

 

𝐹43𝑥 =
(𝑃 − 𝑆𝑣𝐵𝑦)𝑣𝐴𝑦 − (𝑅𝑣𝐵𝑥 − 𝑄)𝑣𝐵𝑦

𝑉
 (3) 

 

𝐹43𝑦 =
(𝑅𝑣𝐵𝑥 − 𝑃)𝑣𝐴𝑦 + (𝑆𝑣𝐵𝑦 − 𝑄)𝑣𝐴𝑥

𝑉
 (4) 

 

where: 

 

𝑅 = 𝑚3𝑎3𝑥 − 𝐹𝑒3𝑥 (5) 

 

𝑆 = 𝑚3𝑎3𝑦 − 𝐹𝑒3𝑦 (6) 

 

𝑉 = 𝑣𝐵𝑥𝑣𝐴𝑦 − 𝑣𝐵𝑦𝑣𝑎𝑥 (7) 

 

in which, 𝐹𝑖𝑗𝑥,𝑦  are the pivot reaction forces in x and y 

components by the ith link on the jth link (i, j = 1-4). Similarly, 

𝐹𝑒𝑖𝑥,𝑦 are the external forces in x and y components applied on 

each link. 𝑣𝐴𝑥,𝑦, 𝑣𝐵𝑥,𝑦 are velocity components of both point 

A and B, respectively. 𝑎𝑖𝑥,𝑦 is the acceleration component of 

centre of gravity of each link.   

 

𝑃 = ∑ 𝐾𝑖 − 𝑇𝐷𝜔2

3

𝑖=2

 (8) 

 

𝑄 = ∑ 𝐾𝑖

4

𝑖=3

 (9) 

 

TD and Ki can be found from the virtual work applied on a 

system in which: 

 

𝑇𝐷 = ∑
𝐾𝑖

𝜔2

4

𝑖=2

 (10) 

 

where: 

 

𝐾𝑖 = 𝑚𝑖𝑎𝑖v𝑖 − 𝑇𝑒𝑖𝜔𝑖 − 𝐹𝑒𝑖v𝑒𝑖 + 𝐼𝑖𝛼𝑖𝜔𝑖  (11) 

 

As a result of solving Eqns. (1)-(4), ground joints reaction 

forces can be obtained as follows:  

 

𝐹12𝑥 = 𝐹23𝑥 + 𝑚2𝑎2𝑥 − 𝐹𝑒2𝑥 (12) 
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𝐹12𝑦 = 𝐹23𝑦 + 𝑚2𝑎2𝑦 − 𝐹𝑒2𝑦 (13) 

 

𝐹12𝑦 = 𝐹23𝑦 + 𝑚2𝑎2𝑦 − 𝐹𝑒2𝑦 (14) 

 

𝐹14𝑦 = 𝐹43𝑦 + 𝑚4𝑎4𝑦 − 𝐹𝑒4𝑦 (15) 

 

And we can write the total shaking force component 𝐹𝑠𝑥 and 

𝐹𝑠𝑦 as: 

 

𝐹𝑠𝑥 = −(𝐹12𝑥 + 𝐹14𝑥) (16) 

 

𝐹𝑠𝑦 = −(𝐹12𝑦 + 𝐹14𝑦) (17) 

 

Since all free body diagram forces are calculated, it can be 

noticed that shaking forces are vector sums of the transitional 

inertia moments. Also, the shaking moments are the vector 

sum of the mass inertia moments and moments of applied 

forces [24, 29]. Hence, the total inertial force can be written as:  

 

∑ 𝐹

4

𝑖=2

= 𝐹12 + 𝐹14 = 0 (18) 

 

Similarly, for the total system moment 𝑀𝑂1  about crank 

pivot O1 is formulated as: 

 

∑ 𝑀𝑂1 = − ∑ 𝑅𝐺𝑖𝑚𝑖𝑎𝑖

4

𝑖=2

− ∑ 𝐼𝑖𝛼𝑖

4

𝑖=2

− ∑ 𝑇𝑒𝑖

4

𝑖=2

− ∑ 𝐹𝑒𝑖ℎ𝑖

4

𝑖=2

+ 𝑀12 = 0 

(19) 

 

Under balanced condition, this equation can be expressed as: 

 

𝑀12 = ∑ 𝑅𝐺𝑖𝑚𝑖𝑎𝑖 +

4

𝑖=2

∑ 𝐼𝑖𝛼𝑖

4

𝑖=2

+ ∑ 𝑇𝑒𝑖

4

𝑖=2

+ ∑ 𝐹𝑒𝑖ℎ𝑖

4

𝑖=2

 (20) 

 

where, M12 is the reaction moment about pivot O1, 𝑅𝐺𝑖 is the 

distance from center mass of gravity of each link to the crank 

joint at pivot O1, and hi is the distance from the external forces 

applied on links to the crank joint at pivot O1.   

Figure 2 below shows the initial DCR illustration with 

rocker extension and piston that resembles the CR engine 

configuration. The main component of this mechanism are the 

crank links (CR1 and CR2), coupler links (COUP1 and 

COUP2) and the rocker links (R1 and R2). All forces and 

moments are designated to relevant corresponding link, also 

force components are represented in the x-y coordinates 

system. 

 

 
(a) 

 
(b) 

 

Figure 2. DCR mechanism: (a) 3-D view with mechanism 

motion path; (b) Schematic side view 

 

Eqns. (18)-(20) represent the shaking forces and shaking 

moments of a single four-bar mechanism. Prior to 

implementing these equations to formulate a double 

mechanism model, few assumptions were made for 

simplification purposes. First, for a system where the ground 

pivots are collinear, the effect of all x-axis force components 

on reaction moment are zero, therefore only the y-axis force 

components and inertial mass moments are in effect. In 

addition, since this approach is based on planar analysis and 

for calculation simplification, the distance between the two 

crank-pivots and rocker-pivots is not considered in moment 

calculations. This is because they are having insignificant 

affect when implemented compared to their value when 

consider the distance L1 in moment calculations. Another 

assumption, since symmetry is preferred for such arrangement, 

rocker extension and crank counterweight links are set to have 

equal lengths as the crank and rocker links, respectively. 

In Eq. (10), the driving torque value is affected by rotation 

speed change, hence input speed need to be fixed to a desirable 

level to prevent any complication by adding a control system 

to the working mechanism [11, 30]. Therefore, the engine is 

assumed to rotate with constant angular velocity and having a 

rigid body. Considering these assumptions and upon applying 

dynamic theories on this system, we can rewrite the reaction 

force equations as follows: 

 

𝐹𝐶𝑅𝑥 =  −(𝐹𝐶𝑅1𝑥 + 𝐹𝐶𝑅2𝑥) (21) 

 

𝐹𝐶𝑅𝑦 =  −(𝐹𝐶𝑅1𝑦 + 𝐹𝐶𝑅2𝑦) (22) 

 

𝐹𝑅𝑥 =  −(𝐹𝑅1𝑥 + 𝐹𝑅2𝑥 ) (23) 

 

𝐹𝑅𝑦 =  −(𝐹𝑅1𝑦 + 𝐹𝑅2𝑦 ) (24) 

 

where, 𝐹𝐶𝑅𝑥,𝑦  are the sum of force components at the crank 

joints, and 𝐹𝑅𝑥,𝑦 are the sum of force components at the rocker 

joints. 

For the total shaking force 𝐹𝑡 and its components 𝐹𝑆𝑥,𝑦, the 

equations can be written as: 

 

𝐹𝑆𝑥 =  𝐹𝐶𝑅𝑥 + 𝐹𝑅𝑥 (25) 

 

𝐹𝑆𝑦 =  𝐹𝐶𝑅𝑦 + 𝐹𝑅𝑦  (26) 

 

𝐹𝑡 = 𝐹𝑆𝑥 + 𝐹𝑆𝑦 (27) 
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Similarly, the crank shaking moment 𝑀𝐶𝑅 equation about 

crank pivot can be formulated as: 

 

𝑀𝐶𝑅 =  −(𝐹𝑅1𝑦 + 𝐹𝑅2𝑦 )𝐿1

− (𝐼𝐶𝑂𝑈𝑃1𝛼𝐶𝑂𝑈𝑃1 + 𝐼𝐶𝑂𝑈𝑃2𝛼𝐶𝑂𝑈𝑃2

+ 𝐼𝑅1𝛼𝑅1 + 𝐼𝑅2𝛼𝑅2) − 𝑇𝐷 

(28) 

 

Also, rocker shaking moment MR about rocker pivot 

becomes:  

 

𝑀𝑅 =  𝐹𝐶𝑅𝑦𝐿1 − (𝐼𝐶𝑂𝑈𝑃1𝛼𝐶𝑂𝑈𝑃1 + 𝐼𝐶𝑂𝑈𝑃2𝛼𝐶𝑂𝑈𝑃2

+ 𝐼𝑅1𝛼𝑅1 + 𝐼𝑅2𝛼𝑅2) 
(29) 

 

where, I and  𝛼  are the moment of inertia and angular 

acceleration of corresponding link, respectively. For the case 

of fixed crank angular velocity, the angular acceleration of 

crank linkage is zero, and this eliminates the crank inertial 

moment effect. To achieve system balancing in term of 

shaking moments we follow: 

 

𝑀𝑡 = 𝑀𝑅 − 𝑀𝐶𝑅 = 0 (30) 

 

𝑀𝑡 = 𝐹𝐶𝑅𝑦𝐿1 + (𝐹𝑅1𝑦 + 𝐹𝑅2𝑦 )𝐿1 + 𝑇𝐷  (31) 

 

Adding the shaking moment from (27) and (28) lead into a 

minimum value of resultant moment Mt, since moments 

resulted from forces or moment of inertia tends to cancel each 

other due to the change in direction, see Figure 3. 

Normalized shaking forces and moments are introduced for 

better results visualization, these values can be formulated as 

follows [31]: 

 

𝐹𝑜 =
𝐹

𝑚2𝐿2𝜔2
2 (32) 

 

𝑀𝑜 =
𝑀

𝑚2𝐿2
2 𝜔2

2 (33) 

 

𝑇𝑜 =
𝑇

𝑚2𝐿2
2 𝜔2

2 (34) 

 

where, 𝐹𝑜, 𝑀𝑜, and 𝑇𝑜  are the normalized values of acting 

force F, moment M and torque T respectively. 

 

 

3. BALANCING OPTIMIZATION METHOD 

 

In this section, the optimization criteria for balancing of the 

DCR mechanism is introduced. Three factors are selected to 

perform the optimization process which are determining the 

objective function, assigning the design variables, and 

identifying system constraints.  

In the previous section, parameters that have impacts on the 

DCR mechanism such as links basic geometry and inertial 

moments were formulated. To overcome the vibration on this 

system, adding and optimizing counterweight masses of the 

system is performed, in such way that forces on the system 

tend to cancel each other’s effect. However, increasing 

mechanism total mass would lead to the increase in the body 

inertial moments and multiply system shaking moments which 

is not desirable. Here comes the role of duplicating the 

mechanism, where opposed momentums exert and cancel each 

other’s effects on both sides. 

For this reason, our aim during performing this optimization 

is to vary and determine the counterweight masses and 

location which will lead to the reduction in shaking forces in 

y-direction, also to minimize the total driving torque to 

maintain acceptable level of shaking moment. From Eqns. (27) 

and (31), the objective function can be written as: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) =  σ1𝐹𝑡 + σ2𝑀𝑡 (35) 

 

where, σ  is weighting factor. In this study three cases of 

weighting factor (σ1, σ2) arbitrary values are considered for 

testing trade-off impact of shaking forces and moments on 

optimization process. For case-1 (0.5,0.5), case-2 (0.7,0.3) and 

case-3 (0.3, 0,7). The design variable X identified by: 

 

𝑋 = {𝐶𝑊𝑗 , 𝑃𝑗} (36) 

 

where, 𝐶𝑊𝑗 are counterweight masses added on link (i), (j=1 

to 4) and Pj is the position distance of each counterweights 

𝐶𝑊𝑗 along the corresponding link (i) measured from coupler 

joint. The optimization is performed under constraints of crank 

rotation angle θ2 from 0° to 360° with constant angular 

velocity ω2 and specific rocker stroke determined by rocker 

extension link length 𝐿4, and oscillating angle θ4 (Figure. 2). 

These constraints were for achieving effective kinetic 

synthesis of the system and to prevent non-feasible solutions 

when performing dynamic optimization of this system. The 

model parameters have the characteristics and properties 

mentioned in Table 1 which was introduced using 

optimization method in Ref. [32]. Moreover, Figure 2(a) 

introduces this mechanism kinematic behaviour presented by 

linkages path motion.  

 

Table 1. DCR links dimensions and mass properties 

 

Link 
Length 

(mm) 

Mass 

(kg) 

Moment of Inertia [IXX, 

IYY, IZZ ], (kg.mm2) 

CR1, CR2 141.4 1.075 
[2.8 × 103, 2.7 × 103, 

172.4] 

R1, R2 690.8 4.391 
[1.9 × 105, 1.9 × 105, 

743.9] 

COUP1, 

COUP2 
282.8 1.958 

[1.64 × 104, 1.6× 104, 

319.5] 

L1 481.0 NA NA 

 

 

4. RESULTS AND DISCUSSION  

 

In this section, validation and implementation of the earlier 

dynamic and optimization approach of DCR mechanism is 

illustrated.  

This system assumed to be running under fixed angular 

velocity of 2000 rpm, where no external forces or torques were 

applied. Four counterweights with arbitrary masses and 

arbitrary positions are placed on the four crank and rocker 

linkages, as shown in Figure 3. The optimization and dynamic 

simulation were performed using ADAMS VIEW® software. 

The objective function stated in (35) was implemented to 

optimize this system with three cases, (i.e., case-1, case-2, and 

case-3) where weighting factors varied as explained in section 

3. Figure 4 shows objective function versus iteration for the 

three cases. Table 2 represents the initial, boundary limits and 

optimized values for counterweights.  
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Table 2. Counterweights parametric values prior and after optimization 

 

Design Variables Initial condition Lower limit Upper limit 
Optimized Value 

Case 1 (0.5, 0.5) Case 2 (0.7, 0.3) Case 3 (0.3, 0.7) 

CW1 (kg) 3 0.01 20 0.010 0.010 0.010 

P1 (mm) 142 0 142 97.94 130.26 83.033 

CW2 (kg) 3 0.01 20 0.119 0.042 0.511 

P2 (mm) 142 0 142 94.654 118.96 77.569 

CW3 (kg) 3 0.01 20 4.129 4.049 4.251 

P3 (mm) 0 0 700 0.000 0.000 0.0138 

CW4 (kg) 3 0.01 20 3.648 3.489 3.838 

P4 (mm) 0 0 700 0.000 0.000 0.082 

 

  
(a) (b) 

 

Figure 3. DCR moments action principle 

 

 

 

 
 

Figure 4. Objective Function Vs Iteration: (a) Case1, (b) 

Case2 and (c) Case3 

 

 

 

 
 

Figure 5. Unbalanced and balanced results for case-1 for (a) 

Normalized shaking forces, (b) Normalized shaking moment 

and (c) Normalized Driving torque 
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For the three cases considered in this study, Figures 5, 6, 

and 7 introduce plot graphs for unbalanced and balanced 

values of normalized shaking forces, shaking moments and 

driving torque. Normalized values were obtained using Eqns. 

(32)-(34). 

Figure 5 represents case-1, and it can be noticed that 

optimized results were better when compared to the original 

unbalanced mechanism. RMS results shows that shaking 

forces were reduced by a value of 90.51%, shaking moments 

were reduced by a value of 66.67% and driving torque was 

reduced by 26.97%.  

Similarly, Figure 6 represents case-2, resulted RMS for 

shaking forces were reduced by 91.64%, shaking moments 

were reduced by 65.74% and driving torque was reduced by 

27.39%. were reduced by 65.74% and driving torque was 

reduced by 27.39%. 

Figure 7 represents case-3, the results for shaking forces 

reduction, shaking moment reduction and driving torque 

reduction are 88.19%, 65.74%, and 25.31% respectively. It 

can be noticed that case-2, (σ1, σ2) values (0.7, 0.3), gives best 

results in term of reducing shaking forces and driving torque, 

while all cases giving close results in term of reducing shaking 

moments.  

 

  

  

  
 

Figure 6. Unbalanced and balanced results for case-2 for (a) 

Normalized shaking forces, (b) Normalized shaking moment 

and (c) Normalized Driving torque 

 

Figure 7. Unbalanced and balanced results for case-3 for (a) 

Normalized shaking forces, (b) Normalized shaking moment 

and (c) Normalized Driving torque 

 

Table 3. Dynamic behaviour resulted by different optimization methods, a comparison 

 

 Reference Mechanism Yan FFB Bram 
This study 

Case 1 (0.5, 0.5) Case 2 (0.7, 0.3) Case 3 (0.3, 0.7) 

Ft 

Max 7300 1264.42 655.78 1558.4 724.66 670.14 913.47 

Min -6422.48 -404.57 -32.87 -1226.6 -306.25 -110.38 -581.99 

Ave. 527.92 463.6 268.3 460.2 287.61 284.86 290.86 

RMS 4722 820.2 380.6 996.5 448 394.8 557.9 

RMS reduction % 82.63 91.94 78.9 90.51 91.64 88.19 

Mt×106 

Max 2.06 2.34 0.85 1.43 0.67 0.73 0.63 

Min -1.54 -1.27 -0.41 -0.91 -0.38 -0.38 -0.4 

Ave. 0.24 -0.17 0.54 0.89 0.95 0.83 0.11 

RMS 1.08 1.15 0.42 0.73 0.36 0.37 0.37 

RMS reduction % -6.48 61.11 32.41 66.67 65.74 65.74 

Td×106 

Max 3.65 1.98 2.61 2.13 2.66 2.63 2.7 

Min -3.19 -1.71 -2.27 -1.85 -2.32 -2.29 -2.35 

Ave. 0.72 0.73 0.52 0.42 0.53 0.52 0.53 

RMS 2.41 1.31 1.73 1.42 1.76 1.75 1.8 

RMS reduction % 45.64 28.22 41.08 26.97 27.39 25.31 
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Moreover, Table 3 introduced a comparison between the 

three cases introduced in this study, full force balance method 

(FFB) in the paper [20], optimization methods by Yan et al. 

[10], and Demeulenaere et al. [26]. It can be noticed that FFB 

and case-2 of this study give best results in term of shaking 

force reduction by about 91%. For shaking moment reduction, 

the three cases of this study introduced best results by about 

66% then comes FFB with about 61%.   

For driving torque reduction, results from the paper [10, 26] 

introduce best results by about 45% and 41% respectively, 

while this study introduces about 25 to 27% reduction in 

driving torque values. 

For better understanding of forces and moments 

cancellation effect for DCR mechanism that illustrated 

previously in Figure 3, analysis of force and moment 

component are illustrated in Figures 8 and 9. 

 

 
 

Figure 8. Normalized shaking forces components of DCR 

mechanism before and after balancing 

 

Figure 8 represents normalized forces values for force 

component acting on DCR in x- and y- direction. These forces 

show higher values and asymmetrical behaviour which leads 

to the presence of higher shaking forces on system. However, 

these forces show less amplitudes and better symmetrical 

behaviour that brings total shaking forces into an acceptable 

value.  

  

 
 

Figure 9. Normalized shaking Crank and Rocker moments of 

DCR mechanism before and after balancing. 

 

Similarly, Figure 9 represents normalized crank and rocker 

moment values for acting on DCR. These moments show 

higher values and asymmetrical behaviour which leads to the 

presence of higher shaking moments on system. On the other 

hand, these moments show less amplitudes and better 

symmetrical behaviour that brings shaking moments to cancel 

each other effect and reduce total shaking moment value. 

Even though considering both shaking forces and shaking 

moments when performing the optimization process is giving 

better results, but it is also noticed that when applying 

complete force balance on the DCR system, it can achieve high 

balancing results. since duplicating the mechanism highly 

helps in reducing shaking moments and adding the 

counterweights reduces shaking forces by this system.  

 

 

5. CONCLUSIONS 

 

In this work, a double crank-rocker (DCR) mechanism was 

suggested as a new configuration to reduce the vibration 

resulted from a single CR mechanism. The theory is based on 

combining counterweights to balance shaking forces and 

duplicating the working mechanism to overcome the resulted 

shaking moments. A dynamic study of the four-bar mechanism 

was introduced, then evolved to satisfy the balancing 

requirements of the new designed model.  

Later, based on the dynamic analysis, the objective function 

and design variables used in optimization process were 

formulated. validation of the optimized system showed that 

adding counterweights to the DCR result in reducing both 

shaking forces and shaking moments to a satisfying result. 

However, increment of mechanism weight due to mechanism 

duplicating, and counterweight addition was increased by 

about 51%. Further work on different mechanism layout 

should be done to investigate vibration behaviour due to the 

implementation of this developed mechanism. 
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NOMENCLATURE 

 

a transitional Acceleration, mm/s2 

Fe External Forces, N 

Fsh Shaking Forces, N 

f Objective function 

I Moment of Inertia, Kg.mm2 

Li Length of Link i, mm 

mi Mass of link i, Kg 

MCR Crank Joint Moment, N.mm 

MR Rocker Joint Moment, N.mm 

Pj Counter-weight j, position along link, mm 

RGi Distance from centre of mass to fixture, mm 

Te External Torques, N.mm 

TD Driving Torque, N.mm 

v Transitional velocity, mm/s 
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Greek symbols 

α Angular Acceleration, rad/s2 

β Angle between force action line and x-axis, 

rad 

ϕ Angle between centre of mass and x-axis, rad 

μ Angle between link i and counterweight, rad 

ρ Distance between counter-weight mass and 

fixed joints, mm 

θi Angle between ith link and x-axis, rad 

ω Angular velocity, rad/s 

X Design Variable 

Abbreviations 

CR Crank Rocker 

CW Counterweight 

DCR Double Crank Rocker 
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