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The dynamic behavior of the rotors is influenced by the bearings mounted on them. The 

aim of this research is to study the effect of the stiffness, shaft diameters and dimensions 

of lubricated journal bearings on the stability of the system using DOE methodology. 

We first calculated the values of the real frequency and imaginary frequency of the rotor 

by the Matlab program, then we prepared a matrix containing forty eight tests according 

to the Placket Berman plan representing the number of experiments and nine columns 

representing the factors: the rotor diameters and the dimensions of the hydrodynamic 

bearing and the system stiffness, to find out the most factors affecting the frequency in 

The real part or the fictional part, and any of them, affects system stability. The results 

showed that the diameter D1 has the more significant positive effect on the real part 

frequency, compared to outer journal diameter Db that has a negative effect on the 

imaginary part frequency and vice versa, as affirmed by the plot of principal effects. By 

with this criterion one can estimate the frequency as well as the mode for which the 

system will become unstable. On the other hand, a finite element code has been written 

in MATLAB to know the eigenvalues, and critical velocity that correspond to the speed 

at which the unbalanced excitation coincides with the eigenvalue. The results of the 

tests showed that the finite element method (FEM) was very effective studying system 

stability. 
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1. INTRODUCTION

The development of efficient and accurate numerical 

procedures to analyze the dynamic phenomena involved on 

rotor-bearing systems have been motivated mainly by the 

analysis, design and commissioning of high-speed rotating 

machinery [1, 2]. In the modeling of rotating machines, some 

of the main features of the system should be considered, such 

as gyroscopic effects, rotatory inertia and the bearing 

contribution. When establishing the stiffness and damping 

coefficients associated with hydrodynamic rotating bearings in 

the rotor model, it may be demonstrated that they play an 

important role in the rotor response. 

Statistical experimental design, also known as design of 

experiments (DOE), is the methodology of how to conduct and 

plan experiments in order to extract the maximum amount of 

information with the lowest number of analyses [3]. A 

désignes experiment is a tool or set of tools used for gathering 

test data. Typical characteristics of an experimental design are 

planned testing, data analysis approach, simultaneous factor 

variability and scientific approach [4]. Various industrial 

applications relate to rotating machines, such as gas turbines, 

turbojets, turbochargers, and others. The rotor is the main 

element which generates vibrations in all rotating machines, 

particularly during their operations, these vibrations are the 

results of an unbalance fault [5]. 

A rotor can be defined as a combination of shaft and 

multiple discs suspended on rigid or flexible bearings that 

allow it to rotate freely about a fixed axis. The discs are often 

considered to be rigid and the shaft, flexible. The calculation 

and subsequent control of unbalance response amplitude and 

stability limit speed have always been of utmost importance in 

all areas related to turbo machinery. This is especially true in 

the case of high-speed machines where uncontrolled vibration 

and instability of rotating machinery can lead to catastrophic 

results. Another crucial demand in modern designs is the need 

for a higher power-to-weight ratio. Delivering better 

performance with lighter machines has added advantages of 

easier maintenance and transport as well. Considering all such 

requirements, rotors are designed to be lighter, more flexible, 

and easily operable at higher speeds. 

Earliest among the studies on optimization techniques 

applied in the field of rotor dynamics has been minimizing a 

single-objective function of the response due to system 

unbalance. Pilkey et al. [6] employed a more efficient linear 

programming model as opposed to trial-and-error methods 

that were prevalent before. Bhat et al. [7] investigated the 

influence of journal bearing parameters like bearing diameter, 

clearance, and oil viscosity in optimum rotor design by 

minimizing unbalance response amplitude in the operating 

speed range by using the method of feasible directions. Stocki 

et al. [8] minimized the vibration amplitude of a compressor 
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shaft while subject to multiple practical constraints on 

displacements that caused rubbing effects. Helfrich et al. [9] 

used optimization techniques to maximize the first critical 

speed of a multidisc rotor system with bearing and disc 

dimensions as the design variables. Yucel et al. [10] optimized 

unbalance response amplitude of a rotor-bearing system 

experimentally using the Taguchi method to determine the 

design variables having the greatest influence on the objective 

function. While the system used in Pilkey et al. [6] and Bhat 

et al. [7] do not account for mass of the shaft or gyroscopic 

effects, all the studies discussed above consider optimization 

of a single-objective function. 

Therefore, it’s essential to reduce vibrations to ensure safe 

and stable operation of considered machine. This can be 

realized by proper investigation of the system dynamics. The 

modal analysis is carried out to get an idea of the dynamic 

behavior of the system.  

A very basic model of a rotor was provided by Jeffcott [11]. 

First, he considered three hypotheses which are: (i) the rotor 

carries a point mass, (ii) axially symmetrical rotor, and (iii) no 

damping is related to the rotor. Then, the model was extended 

to take damping into account. Irretier et al. [12] constructed a 

mathematical formulation for the modal analysis of the entire 

shaft-rotor system at first as a linear time independent system 

(LTI) and later as a Linear Time Varying system (LTV). Rotor 

rotation generates additional forces such as gyroscopic, 

tangential, and rotating damping forces [13]. Because of the 

effects of these forces, the structure of system matrices 

becomes asymmetric and depends strongly on the speed [14]. 

The stability analysis of symmetrical rotor bearing systems 

was studied by Laszlo [15] using finite element method, he 

taken in consideration the internal damping. His findings 

showed that the whirling motion of the rotor system becomes 

unstable beyond the critical speed of instability; he found that 

the rotor stability is enhanced by increasing of bearings 

damping.  

Fegade et al. [16] and Patel et al. [17] in their works, thy 

studied the harmonic analysis of the rotor to identify the 

frequency using the variation of the diameter by design 

optimization (DOE) and by parametric design using ANSYS 

software. In addition, another study was carried out to develop 

an alternative procedure called harmonic analysis to identify 

the frequency of a system through critical speed, amplitude, 

and phase angle curves using ANSYS. 

A study was performed using the Plakett-Burman statistical 

method on the experimental designs in order to define the 

influence of the stiffness coefficients on the rotating machines 

dynamics in particular on the diameters which produce these 

high frequencies [18]. The factors interactions can affect by 

increasing or decreasing the principal effects as affirmed by 

the interaction and surface graphs. Their results show that the 

inclusion of the stiffness coefficients on the dynamic analysis 

of rotating machines supported on hydrodynamic bearings 

play a significant role on the estimation of the unbalance 

response of rotors.  

Naouri Abdallah et al. [19]. In their study, they considered 

that the dynamic behavior of fluid film bearings is one of the 

main factors, which affects the rotating machine performances. 

In this study, a rigid rotor supported by two identical 

hydrodynamic bearings is taken into consideration. The 

principal goal of this work is to predict the effect of the 

damping film of the hydrodynamic bearings on the rotating 

machines stability. 

This paper Concerns the optimization and the modeling of 

the stability and reliability of operation of a rotor system using 

the methodology of design of experiments (DOE). 

First, we calculated the values of real frequency and 

imaginary frequency of the rotor by the Matlab program then 

set up a matrix containing forty eight tests according to the 

Placket Berman plan which represents the number of 

experiments and nine columns representing the factors, which 

are the following the diameters of the rotor, and the 

dimensions of the hydrodynamic bearing, and the rigidity of 

the system, in order to know the most influencing factors on 

the frequency in the real part or the imaginary part, and which 

of them have an impact on the destabilization of the system. It 

was found by the results that the factors having a positive 

effect on the increase in frequency in the real part have a 

negative effect on the frequency in the imaginary part. Finite 

element code is written in MATLAB to determine the 

eigenvalues and eigen vectors. Eigenvalues are calculated in 

imaginary parts, that show the system natural frequencies, 

which are used to plot the Campbell diagram. The stability 

diagram is plotted using the maximum real fraction of all 

eigenvalues with rotational velocity. Eigenvalues are also used 

to study the effect of a typical damping factor on rotational 

speed. These diagrams show that the stability of the system 

can be studied and the rotational speed stability limit can be 

determined. 

 

 

2. GEOMETRIC CHARACTERISTICS 

 

Figure 1 illustrates the cross section of a "plain" journal 

bearing [20]. The bearing main dimensions are: DB = 2RB - 

inner bearing diameter, D = 2R -outer journal diameter, L - 

bearing length, C = RB − R - bearing clearance, 𝑒 = 𝑜𝐵𝑜𝐽 - 

eccentricity, ϕ - attitude angle and h - fluid film thickness. 

 

 
Figure 1. Geometry of a plain cylindrical bearing 

 

It is necessary to present the following dimensionless 

engineering parameters: L/D - length-to-diameter ratio; C/R - 

clearance ratio; ε = e C - eccentricity ratio; and ℎ = = h/C - 

normalized film thickness. 

The journal rotates anticlockwise with a constant angular 

speed Ω = 2π N (rad/sec), where N represents the journal spin 

speed in rps. 

 

 

3. CONSTITUIVE RELATIONS AND EQUATIONS OF 

MOTION 

 

3.1 Effects of the bearings 

 

The bearings act as external forces acting on the rotor. They 

303



 

are characterized by their stiffness and damping. 

 

u xx xz xx xzF K u k w C u C w= − − − −  

w zz zx zz zxF K w k u C w C u= − − − −  
(1) 

 

In matrix form: 
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(3) 

 

3.2 Equations of the rotor movement 

 

The application of the Lagrange equations on the different 

energies gives: 

 

For the shaft: 
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With mass and gyroscopic effect matrices. The mass matrix 

is symmetrical. The matrix C is antisymmetric. 

        
𝜕𝑈

𝜕𝛿
= (𝑘𝑐 + 𝑘𝐹)𝛿 (5) 

 

Kc takes into account the effect of shear, KF is due to axial 

forces. 

 

For the disc: 
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(7) 

 

From equations of the shaft, the disk and the bearings the 

equation of the rotor motion is written in the form: 

 

( ) 0M C K  +  + =  (8) 

 

The mass matrix contains the mass of the rotor and disks. 

The stiffness matrix contains the stiffness of the shaft and 

bearings. C contains the gyroscopic effect of the shaft and the 

disks and the matrix damping of the bearings. 

The assembly of the displacement vectors of all the rotor 

nodes into finite elements gives the global displacement vector 

{X} and the global matrices. In this case the equation of rotor 

motion becomes: 

 

   ( )   ( )   0g p r pM X C C X K K X     +  + + + =     
 

(9) 

 

The gyroscopic effect of the shaft and disks and the matrix 

damping of the bearings. F can represent unbalance or any 

other external forces. 

 

3.3 Some important phenomena in rotor dynamics 

 

We will now consider some important phenomena of rotor 

dynamics, and see in particular the concepts of critical 

velocities and instability related to rotational damping and the 

role that differences in rotor dynamics play. 

 

• Critical speeds  

 

The critical velocity corresponds with the speed at which 

the unbalanced excitation coincides with one of the natural 

frequencies of the system. In machines consisting of organs 

with significant moments of polar inertia, we observe a strong 

dependence on eigen patterns versus rotational velocity due to 

gyroscopic effects. Thus, we observe the duality of the eigen 

patterns of the system (in the case of the axial symmetry 

system) due to the gyroscopic forces as follows: 

- (FW) as the rotor rotates in the same direction as it rotates. 

Then, under gyroscopic effects, the associated resonant 

frequency increases and this is called "direct precession". 

- (BW), where the rotor rotates in the opposite direction to its 

preliminary motion, resulting in a softening effect and thus a 

decrease in the critical velocity and this is called the 

"retrograde precession". 

 

• Instability due to rotating damping  

 

In the study of stability of rotating machines where damping 

corresponds to one of the determinants of sizing systems, 

damping can be responsible for unstable phenomena at high 

speed, which may lead to rupture of rotor components. In order 

to ensure system integrity, the damping ratios on both fixed 

and moving parts must be estimated. 

 

• Stability analysis  

 

Stability analysis in the study of the vibrational and 

dynamic behavior of a flexible rotor is essential because it is 

considered a dynamic system governed by systems of 

differential equation. The definition of stability covers 

Leibunov's definition of equilibrium stability analysis and the 

Poincaré definition of the concept of orbital stability [21]. 

We can know the limits of dynamic system instability and in 

particular in rotor dynamics through the following techniques: 

 

• Sign of the real part of the complex eigenvalues of the 

equation system in free motion. If the eigenvalues is given by 

s = -a ± jb, the only instability is determined when a becomes 

negative (real positive part), with this criterion one can 

estimate the frequency as well as the mode for which the 

system will become unstable. The Routh-Hrwitz criterion 

makes it possible to analyze the stability of autonomous 

systems [22]. 

The use of this criterion is interesting for systems with a few 

degrees of freedom, since the analytical expressions of the 

characteristic polynomial associated with the perturbed 
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motion can be inferred. However, it becomes complicated for 

systems that include a large number of degrees of freedom. 

Additionally, this criterion does not provide an instability 

frequency. 

These two criteria studying the stability of a dynamic 

system restrict particular cases, or when they are described by 

linear models, for example R. Sino [23]. In the subject of his 

thesis, he uses these two methods to study and analyze the 

stability of a rotor due to rotating damping. A more general 

method is based on Floquet's theory. 

• Floquet's theory allows us to analyze, in the linear sense, 

the stability of systems with periodic coefficients [21]. The 

first step of analysis consists in applying a vector of the 

periodic solution S p to a small disturbance δ s. This brings the 

system to a new state of equilibrium. The second, we apply a 

first order Taylor expansion to the neighborhood of S p to 

estimate the nonlinear forces in (s p + δ s, ṡ p + δ ∙ s, s ∙∙ + δ ∙∙ 

s) in order to make the system linear. This technique is 

frequently used in the dynamic analysis of rotating structures, 

particularly in the dynamics of nonlinear rotors (see, for 

example, the work of Dugundji and Wendell [24]. On the 

stability analysis of a wind turbine and the analysis of the 

stabilities of a cracked rotor by Meng and Gasch [25]). 

 

 

4. METHODOLOGY  

 

The main objective of this work is to model and optimize 

the operation of the rotor system using DOE methodology and 

to know the gyroscopic effect on the subjective values of the 

rotor-bearing systems through the Campbell scheme, and to 

calculate the imbalance responses mainly during the passage 

of critical velocity. In the use of finite element method. We 

designed a mathematical model under the rotor kit name in the 

matlab program that contains the engineering data for the rotor 

group element (tree data, disk data, and engineering data for 

the rotor group component. 

In addition to the stiffness and damping matrices in the form 

of a group of nodes and elements to calculate the values of 

hardness and the imaginary and real frequency in the presence 

of speed 0-10000 rpm. This calculation mode should be able 

to give the geometry of the rotor in finite elements. The search 

for eigenvalues is an essential process in the study of rotor 

dynamics. 

 

 
 

Figure 2. Schematic model of the used model of rotor kit 

 

• Rotor Kit 

 

The used model is a rotor kit with a length of 0.42m as 

shown in Figure 2. A mass of 1.415 kg is mounted on the shaft 

which is supported by two bearings respectively 0.09 (m) and 

0.42 (m) apart from the left end. four stations are considered 

during harmonic analysis as shown in Figure 1, where station 

numbers denote different nodes in the model (1) Disc, (2) First 

bearing node, (3) Disk, (4) Second bearing. For the distributed 

rotor and the concentrated disc (1), the material density is 7850 

kg / m3 and the modulus of elasticity is 2.06E11 N / m2. with 

a mass of 0.81 kg, disk (4) with a mass of 0.6050 kg polar 

inertia (5.783e-4, 0 ,4.320e-4) kg.m2 and diametral inertia 

(3.357e-4,0, 2.433e-4) kg.m2. 

 

Calculation of real and imaginary system frequency values 

 

A mathematical model was designed under the name of 

rotor kit using Matlab which includes the data of each element 

of the rotor kit (shaft, disc, and bearing), and also the stiffness 

and damping matrices in the form of a set of nodes and 

elements were used to determine the values of the stiffness and 

the real and imaginary frequency at a speed interval ranging 

from 0 to 10,000 rpm (Table 1). 

 

Table 1. Geometric data of rotor-bearing element 

 
Element 

Node  

No 

Node 

Location 

(cm) 

Bearing 

and 

Disk 

Inner 

Diameter 

(cm) 

Outer 

Diameter 

(cm) 

1 0 disc 0 0.009525 

2 0.09 Bearing 0 0.009525 

3 0.22 disc 0 0.009525 

4 0.42 Bearing 0 0.009525 

 

 

5. RESULTS AND DISCUSSION 

 

5.1 Response 

 

The response chosen is the real frequency and the imaginary 

frequency of a rotor system - bearings, calculated by matlab 

software. 

 

5.2 Determination of factors and field of study 

 

The factors examined in this study are: 

- The diameters of the rotor kit d1, d2, d3.d4. 

- The dimensions of the hydrodynamic bearings 

Lb = length of bearings [m]. 

Db = outer journal diameter [m]. 

Cb = bearing cleareance [m]. 

- The shaft is mounted on two fluid film bearings where the 

stiffness (Kyy, Kzz) was determined using Matlab software. 

- Kyz= Kyz = 0. 
- The components of damping are taken as: Czz = Cyy = 61, 

4000 (Ns / m). The imbalance response for a counted disc 

center eccentricity of 0.635 (cm) at station (2) was estimated 

for a speed interval of 0 to 10000 rpm. 

 

5.3 Choice of the experimental design 

 

First, a screening plan is used. This is a first degree plan 

which allows you to sort the factors by highlighting the most 

influential. We chose the Plackett-Burman plan because it is 

generally the most used in similar studies due to its economy 

in terms of number of tests. 

The nine factors studied and their field of study were 

grouped together in Table 2. 
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Table 2. Caption 
 

Levels 
Units Symbol Factors 

+1  -1  

  m)) d1=d2=d3=d4 The diameters 

0.050 

0.10 

0.00009 

0.045 

0.09 

0.00005 

)m) 

(m) 

m)) 

Lb 

Db 

Cb 

The 

dimensions of 

the 

hydrodynami

c bearings 

2,2e5 0 Ns/ m Kyy= Kzz Stiffness 

6. PLACKETT-BURMAN SCREENING PLAN 

 

6.1 Carrying out the tests 

 

The tests are conducted according to the Plackett-Burman 

plan for the 9 factors. The experiments took place according 

to the matrix of this plan. It represents the fixing of factors at 

different levels, as shown in Table 3. 

 

 

Table 3. Plackett-Burman plan based on the experimental matrix 

 
 d1 d2 d3 d4 Lb Cb Db Kyy Kzz FRQ img FRQ real 

1 0.009475 0.009475 0.009575 0.009475 0.045 0.1 0.00009 2.2E+05 0.0E+00 16.463 310.192 

2 0.009575 0.009475 0.009575 0.009575 0.05 0.1 0.00009 0.0E+00 0.0E+00 44.0043 311.976 

3 0.009575 0.009575 0.009575 0.009575 0.045 0.1 0.00009 2.2E+05 2.2E+05 145.212 14.0174 

4 0.009575 0.009475 0.009575 0.009475 0.045 0.09 0.00009 2.2E+05 0.0E+00 16.463 310.263 

5 0.009575 0.009475 0.009475 0.009575 0.05 0.1 0.00009 0.0E+00 2.2E+05 16.617 279.268 

6 0.009475 0.009475 0.009475 0.009575 0.05 0.09 0.00009 2.2E+05 0.0E+00 16.616 323.984 

7 0.009575 0.009475 0.009475 0.009475 0.045 0.1 0.00005 0.0E+00 0.0E+00 44.5628 325.573 

8 0.009475 0.009575 0.009475 0.009475 0.045 0.09 0.00009 2.2E+05 0.0E+00 16.395 324.338 

9 0.009575 0.009575 0.009575 0.009475 0.045 0.09 0.00005 2.2E+05 0.0E+00 16.234 310.591 

10 0.009475 0.009475 0.009575 0.009575 0.05 0.1 0.00005 2.2E+05 2.2E+05 142.206 13.7369 

11 0.009475 0.009475 0.009475 0.009475 0.05 0.09 0.00005 0.0E+00 0.0E+00 44.5475 325.565 

12 0.009475 0.009575 0.009475 0.009575 0.045 0.09 0.00005 2.2E+05 2.2E+05 142.17 13.5302 

13 0.009475 0.009575 0.009575 0.009475 0.05 0.1 0.00005 0.0E+00 2.2E+05 16.236 310.516 

14 0.009475 0.009575 0.009475 0.009575 0.045 0.09 0.00009 2.2E+05 2.2E+05 142.17 13.5302 

15 0.009475 0.009475 0.009575 0.009575 0.05 0.09 0.00009 0.0E+00 2.2E+05 16.463 310.192 

16 0.009575 0.009475 0.009475 0.009475 0.045 0.1 0.00009 0.0E+00 2.2E+05 16.617 324.052 

17 0.009575 0.009575 0.009575 0.009575 0.045 0.09 0.00005 0.0E+00 0.0E+00 16.234 310.591 

18 0.009575 0.009575 0.009475 0.009575 0.05 0.09 0.00005 2.2E+05 0.0E+00 16.396 324.409 

19 0.009575 0.009575 0.009575 0.009575 0.05 0.09 0.00005 0.0E+00 0.0E+00 44.4545 312.228 

20 0.009475 0.009475 0.009575 0.009575 0.045 0.1 0.00005 2.2E+05 0.0E+00 16.463 310.192 

21 0.009475 0.009575 0.009475 0.009475 0.05 0.1 0.00009 0.0E+00 2.2E+05 16.395 324.338 

22 0.009475 0.009475 0.009475 0.009475 0.05 0.1 0.00005 2.2E+05 0.0E+00 16.616 323.984 

23 0.009575 0.009475 0.009475 0.009575 0.05 0.1 0.00005 2.2E+05 0.0E+00 16.617 324.052 

24 0.009475 0.009475 0.009575 0.009475 0.045 0.09 0.00005 2.2E+05 2.2E+05 142.206 13.7369 

25 0.009475 0.009575 0.009475 0.009475 0.045 0.1 0.00009 0.0E+00 2.2E+05 16.395 324.338 

26 0.009575 0.009475 0.009475 0.009575 0.045 0.09 0.00009 2.2E+05 2.2E+05 144.574 13.9962 

27 0.009475 0.009475 0.009475 0.009475 0.045 0.09 0.00005 0.0E+00 0.0E+00 44.5475 325.565 

28 0.009575 0.009475 0.009575 0.009475 0.05 0.09 0.00005 2.2E+05 2.2E+05 145.563 14.1185 

29 0.009575 0.009575 0.009575 0.009475 0.05 0.09 0.00009 0.0E+00 0.0E+00 44.4545 262.112 

30 0.009475 0.009475 0.009575 0.009575 0.045 0.1 0.00009 0.0E+00 0.0E+00 43.9888 311.966 

31 0.009475 0.009475 0.009475 0.009575 0.045 0.09 0.00005 0.0E+00 2.2E+05 16.616 323.984 

32 0.009475 0.009475 0.009475 0.009575 0.05 0.09 0.00009 0.0E+00 2.2E+05 16.616 323.984 

33 0.009575 0.009575 0.009475 0.009575 0.045 0.1 0.00005 0.0E+00 0.0E+00 44.9909 325.855 

34 0.009475 0.009575 0.009475 0.009475 0.05 0.1 0.00009 2.2E+05 0.0E+00 16.395 324.338 

35 0.009575 0.009575 0.009475 0.009475 0.05 0.09 0.00005 2.2E+05 2.2E+05 144.904 13.8962 

36 0.009575 0.009475 0.009575 0.009475 0.05 0.09 0.00005 0.0E+00 2.2E+05 16.463 310.263 

37 0.009475 0.009575 0.009575 0.009475 0.045 0.1 0.00005 0.0E+00 2.2E+05 16.395 324.338 

38 0.009575 0.009575 0.009475 0.009575 0.05 0.1 0.00009 2.2E+05 0.0E+00 16.396 324.409 

39 0.009475 0.009575 0.009575 0.009575 0.045 0.1 0.00005 2.2E+05 0.0E+00 16.236 310.516 

40 0.009575 0.009575 0.009475 0.009575 0.045 0.1 0.00005 0.0E+00 2.2E+05 16.396 324.409 

41 0.009575 0.009475 0.009475 0.009475 0.05 0.1 0.00005 2.2E+05 2.2E+05 144.574 13.9962 

42 0.009475 0.009575 0.009575 0.009475 0.05 0.09 0.00009 0.0E+00 0.0E+00 44.4388 312.217 

43 0.009475 0.009575 0.009575 0.009575 0.05 0.09 0.00009 2.2E+05 2.2E+05 142.457 13.6378 

44 0.009575 0.009475 0.009575 0.009475 0.045 0.1 0.00009 2.2E+05 2.2E+05 145.563 14.1185 

45 0.009475 0.009575 0.009575 0.009575 0.05 0.1 0.00005 0.0E+00 2.2E+05 44.4388 312.217 

46 0.009575 0.009575 0.009575 0.009475 0.05 0.1 0.00009 2.2E+05 2.2E+05 145.212 14.0174 

47 0.009575 0.009475 0.009575 0.009575 0.045 0.09 0.00009 0.0E+00 0.0E+00 44.0043 311.976 

48 0.009575 0.009575 0.009475 0.009475 0.045 0.09 0.00009 0.0E+00 0.0E+00 44.9909 325.855 
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7. STATISTICAL ANALYSIS OF THE RESULTS 

 

The processing of the experimental data was carried out by 

linear regression multiple using the MINITAB17 software. 

 

7.1 Graphic representation of effects 

 

This diagram (Figure 3) makes it possible to extract the 

most important parameters. Among all the factors studied and 

at the chosen confidence level (α=0.05), the strong factors (kzz) 

and (kyy) appear to be very influential factors, kzz, kyy having 

the most significant positive effect in the imaginary part 

frequency and affects negatively the frequency in real part. 

 

A. Pareto chart: 

 

 

 
 

Figure 3. Pareto plot of normalized effects 

 

Figure 4 reveals that kzz and kyy has the greatest significant 

positive effect on the rightmost imaginary frequency of the 

response line. However, the figure reveals a significant 

reduction effect of kzz and kyy on the real frequency of its 

effect is positioned to the left of the answer line. 

 

B. Pareto plot of normalized 

 

 

 
 

Figure 4. Pareto plot of normalized effects 

 

C. Main effects diagram 

 

The main effects diagram tells us about the simultaneous 

influence of all factors on the frequency. We can from this 

diagram (Figure 5) conclude that the stiffness kzz and kyy are 

the most influential factors positively on the imaginary part 

frequency, and negatively influential on the real part frequency. 

 

 

 
 

Figure 5. Diagram of the main effects on frequency 

imaginary- real 

 

7.2 Determination of significant effects and coefficients of 

the model 

 

The effects values and the coefficients of regression of the 

model are given as bellow in Tables 4 and 5. 
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Table 4. Factorial Regression: FRQ img versus d1; d2; d3; 

d4; Lb; Cb; Db; Kyy; Kzz 

 
Source DF Adj SS Adj MS F-Value P-Value 

Model 9 71923 7991.5 5.07 0.000 

Linear 9 71923 7991.5 5.07 0.000 

D1 1 3984 3984.4 2.53 0.120 

D2 1 0 0.2 0.00 0.991 

D3 1 1986 1985.5 1.26 0.269 

D4 1 2 2.2 0.00 0.970 

Lb 1 240 239.7 0.15 0.699 

Cb 1 3577 3577.1 2.27 0.140 

Db 1 0 0.2 0.00 0.992 

kyy 1 29663 29662.7 18.80 0.000 

kzz 1 36092 36092.3 22.88 0.000 

error 38 59946 1577.5   

Total 47 131869    

 

Model Summary 
        S                R-sq          R-sq (adj)          R-sq (pred) 

    39.7180      54.54%         43.77%              27.61% 

 

Table 5. Factorial Regression: FRQ real versus d1; d2; d3; 

d4; Lb; Cb; Db; Kyy; Kzz 

 
Source DF Adj SS Adj MS F-Value P-Value 

Model 9 595380 66153 10.83 0.000 

Linear 9 595380 66153 10.83 0.000 

D1  1 21791 21791 3.57 0.067 

D2 1 0 0 0.00 0.999 

D3 1 14753 14753 2.42 0.128 

D4 1 12 12 0.00 0.965 

Lb 1 1032 1032 0.17 0.683 

Cb 1 19436 19436 3.18 0.082 

Db 1 187 187 0.03 0.862 

 kyy 1 264891 264891 43.38 0.000 

 kzz 1 296031 296031 48.48 0.000 

error 38 232052 6107   

Total 47 827431    

 

Summary of model  

     S             R-sq         R-sq (adj)     R-sq (pred) 

78.1449      71.96%        65.31%         55.35% 

 

Table 6. The used Runs in DOE 

 
 d1 d2 d3 d4 Lb Cb Db Kyy Kzz FRQ img FRQ real 

1 0.009475 0.009475 0.009475 0.009575 0.045 0.09 0.00009 0.0E+00 2.2E+05 16.616 323.984 

2 0.009475 0.009575 0.009575 0.009475 0.05 0.09 0.00009 2.2E+05 0.0E+00 44.439 312.217 

3 0.009475 0.009475 0.009575 0.009575 0.045 0.09 0.00005 2.2E+05 2.2E+05 142.46 13.6378 

4 0.009575 0.009475 0.009575 0.009475 0.045 0.1 0.00009 2.2E+05 2.2E+05 144.9 13.8962 

5 0.009475 0.009475 0.009575 0.009575 0.05 0.1 0.00005 0.0E+00 2.2E+05 44.439 312.217 

6 0.009575 0.009475 0.009475 0.009475 0.05 0.1 0.00009 0.0E+00 2.2E+05 16.463 310.263 

7 0.009575 0.009575 0.009575 0.009475 0.05 0.1 0.00005 0.0E+00 0.0E+00 44.455 262.112 

8 0.009475 0.009575 0.009475 0.009475 0.05 0.1 0.00005 2.2E+05 0.0E+00 16.395 324.338 

9 0.009575 0.009575 0.009475 0.009475 0.05 0.09 0.00005 2.2E+05 2.2E+05 145.56 14.1185 

10 0.009475 0.009475 0.009475 0.009475 0.05 0.1 0.00005 0.0E+00 2.2E+05 16.395 324.338 

11 0.009575 0.009475 0.009475 0.009575 0.045 0.09 0.00005 2.2E+05 0.0E+00 144.57 13.9962 

12 0.009475 0.009575 0.009475 0.009475 0.05 0.09 0.00005 0.0E+00 0.0E+00 44.548 325.565 

13 0.009475 0.009475 0.009575 0.009475 0.045 0.1 0.00005 2.2E+05 2.2E+05 144.57 13.9962 

14 0.009475 0.009575 0.009475 0.009575 0.05 0.09 0.00005 0.0E+00 2.2E+05 44.991 325.855 

15 0.009575 0.009575 0.009475 0.009575 0.045 0.09 0.00009 0.0E+00 0.0E+00 16.616 323.984 

16 0.009475 0.009575 0.009575 0.009575 0.05 0.09 0.00009 2.2E+05 2.2E+05 44.439 312.217 

17 0.009575 0.009575 0.009575 0.009575 0.045 0.1 0.00005 2.2E+05 2.2E+05 142.46 13.6378 

18 0.009575 0.009475 0.009575 0.009575 0.045 0.09 0.00005 0.0E+00 2.2E+05 145.56 14.1185 

19 0.009575 0.009475 0.009575 0.009575 0.05 0.1 0.00009 0.0E+00 2.2E+05 44.439 312.217 

20 0.009575 0.009575 0.009475 0.009575 0.045 0.1 0.00009 2.2E+05 0.0E+00 16.463 310.263 

21 0.009475 0.009475 0.009575 0.009575 0.045 0.1 0.00009 2.2E+05 0.0E+00 16.395 324.338 

22 0.009575 0.009575 0.009475 0.009575 0.045 0.1 0.00009 0.0E+00 2.2E+05 16.396 324.409 

23 0.009575 0.009575 0.009475 0.009575 0.05 0.09 0.00009 2.2E+05 0.0E+00 16.236 310.516 

24 0.009475 0.009475 0.009575 0.009575 0.05 0.09 0.00009 2.2E+05 0.0E+00 16.396 324.409 

25 0.009475 0.009575 0.009475 0.009575 0.05 0.09 0.00005 0.0E+00 2.2E+05 16.616 323.984 

26 0.009475 0.009575 0.009475 0.009475 0.05 0.1 0.00005 0.0E+00 2.2E+05 16.395 324.338 

27 0.009575 0.009475 0.009575 0.009475 0.05 0.09 0.00005 2.2E+05 0.0E+00 145.56 14.1185 

28 0.009575 0.009575 0.009475 0.009475 0.045 0.1 0.00005 2.2E+05 2.2E+05 144.57 13.9962 

29 0.009575 0.009575 0.009575 0.009475 0.045 0.09 0.00009 2.2E+05 2.2E+05 145.21 14.0174 

30 0.009575 0.009575 0.009475 0.009575 0.045 0.09 0.00009 0.0E+00 0.0E+00 44.991 325.855 

31 0.009575 0.009575 0.009475 0.009475 0.05 0.1 0.00009 2.2E+05 0.0E+00 16.395 324.338 

32 0.009575 0.009575 0.009575 0.009475 0.045 0.1 0.00009 0.0E+00 0.0E+00 44.455 262.112 

33 0.009475 0.009575 0.009575 0.009575 0.045 0.1 0.00005 0.0E+00 0.0E+00 43.989 311.966 

34 0.009575 0.009475 0.009475 0.009475 0.05 0.1 0.00009 0.0E+00 2.2E+05 16.396 324.409 

35 0.009475 0.009575 0.009575 0.009475 0.05 0.1 0.00005 0.0E+00 2.2E+05 16.236 310.516 

36 0.009575 0.009475 0.009575 0.009475 0.05 0.09 0.00005 2.2E+05 0.0E+00 145.56 14.1185 

37 0.009475 0.009575 0.009475 0.009575 0.045 0.1 0.00005 0.0E+00 2.2E+05 43.989 311.966 

38 0.009475 0.009475 0.009575 0.009575 0.045 0.09 0.00009 0.0E+00 0.0E+00 16.395 324.338 
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 d1 d2 d3 d4 Lb Cb Db Kyy Kzz FRQ img FRQ real 

39 0.009475 0.009475 0.009475 0.009575 0.045 0.1 0.00005 0.0E+00 0.0E+00 16.616 323.984 

40 0.009575 0.009575 0.009575 0.009575 0.045 0.1 0.00009 0.0E+00 0.0E+00 16.396 324.409 

41 0.009475 0.009475 0.009575 0.009475 0.045 0.1 0.00005 2.2E+05 2.2E+05 142.21 13.7369 

42 0.009475 0.009575 0.009575 0.009475 0.05 0.09 0.00009 0.0E+00 2.2E+05 16.395 324.338 

43 0.009575 0.009475 0.009475 0.009575 0.045 0.09 0.00005 2.2E+05 0.0E+00 144.57 13.9962 

44 0.009475 0.009475 0.009475 0.009475 0.045 0.09 0.00009 0.0E+00 0.0E+00 44.548 325.565 

45 0.009575 0.009475 0.009575 0.009475 0.05 0.09 0.00009 2.2E+05 2.2E+05 144.9 13.8962 

46 0.009475 0.009475 0.009475 0.009475 0.05 0.09 0.00009 2.2E+05 0.0E+00 16.617 324.052 

47 0.009575 0.009475 0.009475 0.009575 0.05 0.1 0.00009 2.2E+05 0.0E+00 16.616 323.984 

48 0.009475 0.009475 0.009575 0.009475 0.045 0.09 0.00005 2.2E+05 0.0E+00 142.21 13.7369 

 

7.3 Mathematical model equation 

 

To build the model equation representing the relationship 

between the frequency (img-real) and the 9 factors studied, we 

use the regression coefficients shown in Tables 4 and 5. This 

model has been simplified, and the ranking of factors is done 

according to the diagram of Pareto (Figures 3 and 4). 

 

FRQ img = -2705 + 182863 d1 – 1239 d2 + 128641 d3 - 4289 

d4 – 897 Lb- 1733 Cb + 2952 Db + 0.000226 Kyy + 0.000252 

Kzz 

 

FRQ real = 7438 – 427644 d1 – 204 d2 – 350633 d3 – 9860 

d4 + 1862 Lb+ 4039 Cb- 98695 Db- 0.000675 Kyy- 0.000721 

Kzz 

 

• Optimization method  

 

To enhance the seven remaining response factors, the values 

are set to P < 0.05, the red reference line was changed to zero 

by moving manually the columns of the base design matrix, 

maintaining the corresponding frequency values for each row, 

and keeping the matrix balanced until building a final matrix 

as shown in Table 6 [18]. 

The goal is therefore to find the optimal polynomial 

equation. From the previous statistical analysis, eliminating 

the quadratic terms yields a new well-fitting model. The 

results are presented in Tables 7 and 8. 

 

Table 7. Factorial Regression: FRQ img versus d1; d2; d3; 

d4; Lb; Cb; Db; Kyy; Kzz 
 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 142685 15853.9 97.80 0.000 

Linear 9 142685 15853.9 97.80 0.000 

D1 1 22047 22044.9 135.99 0.000 

D2 1 3084 3083.6 19.02 0.000 

D3 1 7235 7235.1 44.63 0.000 

D4 1 6476 6476.2 39.95 0.000 

Lb 1 17393 17393.5 107.30 0.000 

Cb 1 15817 15816.9 97.57 0.000 

Db 1 32677 32677.4 201.58 0.000 

kyy 1 15627 15627.0 96.40 0.000 

kzz 1 10429 10429.3 64.34 0.000 

error 38 6160 162.1   

Total 47 148845    

 

• Model Summary 

S             R-sq              R-sq (adj)     R-sq (pred) 

      12.7320        95.86%            94.88%          93.37% 

 

• Regression Equation in Uncoded Units 

 

FRQ img = -1947 + 461686 d1 - 166044 d2 + 256755 d3 - 

255436 d4- 8302 Lb- 3822 Cb- 1379219 Db+ 0.000180 Kyy 

+ 0.000141 Kzz 

 

• Fits and Diagnostics for Unusual Observations 

 

         Obs   FRQ img      Fit          Resid         Std Resid 

          35      16.24        41.07        -24.84          -2.13  R 

 

Table 8. Factorial Regression: FRQ real versus d1; d2; d3; 

d4; Lb; Cb; Db; Kyy; Kzz 
 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 943547 104839 409.14 0.000 

Linear 9 943547 104839 409.14 0.000 

D1 1 158263 158263 617.64 0.000 

D2 1 27375 27375 106.84 0.000 

D3 1 38406 38406 149.88 0.000 

D4 1 46773 46773 182.54 0.000 

Lb 1 112402 112402 438.66 0.000 

Cb 1 75656 75656 295.25 0.000 

Db 1 193402 193402 754.77 0.000 

kyy 1 123233 123233 480.93 0.000 

kzz 1 67846 67846 264.78 0.000 

error 38 9737 256   

Total 47 104    

 

• Model Summary 

                       S                R-sq       R-sq (adj)      R-sq (pred) 

                   16.0075        98.98%      98.74%         98.37% 

 

• Regression Equation in Uncoded Units 

 

FRQ real = 4452 - 1237034 d1 + 494735 d2 - 591557 d3 + 

686467 d4 + 21104 Lb + 8358 Cb + 3355373 Db - 0.000506 

Kyy - 0.000360 Kzz 

 

• Fits and Diagnostics for Unusual Observations 

 

Obs    FRQ real      Fit       Resid       Std Resid 

45         13.90       54.53    -40.63       -2.81  R 

 

The employed model incorporates both principal effects and 

two-way interaction. We employed the values of (P) to 

estimate the coefficients and effects. To find the main effects 

using α = 0.05, the principal effects of diameter values of D1 

to kzz and their interactions which are statistically important; 

where their (P) values are lesser than 0.05. 

 

The imaginary part 

 

Diameter d1 and Stiffness kzz, kyy and their related 

interactions are all important α = 0.05 (see Figure 6).  
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Figure 6. Representation of the standardized effects as an 

imaginary part 
 

The hydrodynamic bearings dimensions of Db, Lb, Cb and 

their linked interactions are all important (α = 0.05) (see Figure 

7). 
 

 
 

Figure 7. Representation of the standardized effects as a real 

part 
 

 
 

Figure 8. Pareto chart of the standardized effects- imaginary 

part 
 

We note that it is the factor that positively affects the 

frequency in the imaginary part has negatively affected the 

frequency in the real part. 

The effects absolute values are displays by Minitab on the 

Pareto chart (see Figures 8, 9). All effects behind the reference 

line are significant at the level of 0.05, in the imaginary part. 

The diameter D1 and stiffness kyy are all important (α = 0.05), 

in the real part we find the opposite.Db and Lb all important 

(α = 0.05). 
 

 
 

Figure 9. Pareto chart of the standardized effects- real part 
 

 
 

Figure 10. Main effects plot for frequency- imaginary part 
 

 
 

Figure 11. Main effects plot for frequency- real part 
 

Then, the principal effect plots are sketched in MINITAB 

17 as illustrated in Figures 10 and 11. The different diameters 

effects, the stiffness, and the hydrodynamic bearing 

dimensions on the excitation frequency show: 
 

• For imaginary part  
 

The diameter d1 and the stiffness kzz, kyy have significant 

effect where they augment the excitation frequency. The plot 

also reports that: 

• The diameter d1 has more influence on the frequency 

compared to the stiffness kzz, kyy. 
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• The other hydrodynamic bearing diameters and 

dimensions of (Lb, Db, and Cb( don’t have an important effect 

on the excitation frequency. 
 

• For real part 
 

The hydrodynamic bearing dimensions of (Db, Lb, and Cb  

( and diameters of D4 and D2 have significant effect where 

they augment the excitation frequency. The plot also reports 

that: 

• The hydrodynamic bearing dimensions of (Db, Lb, and 

Cb( have significant effect on the frequency compared to the 

diameters D4 and D2. 

• The other diameters and the stiffness don’t have a 

significant effect on the excitation frequency. 

An improvement chart gives the effect of each factor 

(columns) on responses (rows) (Figure 12). The vertical red 

lines on the graph represent the current operator settings. The 

numbers displayed above the column indicate the current 

factor level settings (red color). The blue horizontal lines and 

numbers represent responses to the current factor level. 

Minitab calculates in the imaginary part the diametre d1 and 

kzz are manimized when all factors are at their highest settings 

(d1=0,0096, kzz=195555,556). 

In real part the hydrodynamic bearing dimensions of (Db, 

Lb, and Cb (and diameters of D4 and D2, are manimized when 

all factors are at their Its lowest settings (Db=0.0001, 

Lb=0.0450, Cb= 0.090, D4= 0.0095, D2 =0.0095).   

 

 

 
 

Figure 12. Optimum solution for nine factors 

 

You like to see how the responses change when the stiffness 

kzz =166666.667. In interactive mode, you can move the 

factor level (red) line for stiffness kzz, or enter 166666.667 in 

the stiffness kzz.The graphic shows that the expected response 

in the imaginary part (86.0828) and the expected response in 

the real part (191.2315). 

Pareto charts Figure 13 are a type of bar chart in which the 

horizontal axis represents attributes of interest, rather than a 

continuous scale. Typically, these features are "disadvantages". 

When arranging bars from largest to smallest, a Pareto chart 

can help you identify errors that are made up of a small number 

of vital elements and which are of little significance. The 

Cumulative Percentage line helps you determine the added 

contribution of each of the categories. Pareto Charts can also 

help focus improvement efforts on areas where the greatest 

gains can be made. 

 

a- The imaginary part: 

 

The vital few shortness in the imaginary part is represented 

by the following values of the imaginary frequency (Figure 13). 

 

FRQ img =142.210, FRimg =142.60, FRQ img =144.570 

    FRQ img =144.900, FRimg =145.210, FRimg =145.560 

 

 
 

Figure 13. Pareto charts " imaginary part" 

 

b-The real part: 

 

The vital few shortness in the real part is represented by the 

following values of the real frequency (Figure 14). 

 

 FRQ real =310.263, FR real =310.516. FR real =323.984. 

 FRQ real =324.052, FR real =324.409, FR real =325.855. 

 

 
 

Figure 14. Pareto charts 

 

After determining d1 as the main diameter affecting 

excitation frequency imaginary part, and the Db outer journal 

diameter as the main diameter affecting excitation frequency 

in real part, optimization charts are drawn based on values of 

frequencies obtained from matlab software. Figure 15 shows 
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the model for rotor kit with various sections, disc and bearings. 

Figure 16 illustrates the Campbell diagram of the rotor-shaft 

system, where the shafts internal material damping is taken 

into consideration. The graph is plotted using the whirl 

frequencies (found from imaginary part of the eigenvalues), 

which are two positions, the first position in reverse rotation 

"BW", where the rotor rotates in the opposite direction. The 

second position is the rotation "FW", where the rotor rotates in 

the direction of rotation. The critical speed corresponding to 

the first position and the critical speed corresponding to the 

second position appear, the values of the first critical speeds 

identified. 

 

 
 

Figure 15. Rotor kit with various sections 

 

 
 

Figure 16. Campbell diagram 

 

Critical speeds – Total number of modes studied 5. 

 Mode       (Hz)               (rpm) 

  3     2.6233e-002     1.5740e+000 

  4     2.3259e-001     1.3955e+001 

  5     4.5778e+001     2.7467e+003 

 

Figure 17 presents the evolution of the damping constant as 

a function of the rotational speed. Through the diagram, we 

notice that the values of the damping factor are negative and 

thus indicate that the rotor is stable. 

 
 

Figure 17. Stability diagram 

         

Onset of instability speeds  

 

 Mode       (Hz)                 (rpm) 

  1     2.8279e+001     1.6967e+003 

  2     9.8980e+001     5.9388e+003 

  3     0.0000e+000     0.0000e+000 

  4     0.0000e+000     0.0000e+000 

  5     0.0000e+000     0.0000e+000 

 

Table 9 gives the result of the shapes of the modes and the 

shape precession and the rotational speed for the modes 

correspondent to critical speeds. The modes 3, 4, 5, are direct 

precession (the rotor rotates in the direction of rotation). 

Figure 18 gives relative deviation as a function of tree 

length and confirms the results obtained in Table 9. 
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Figure 18. Forms of modes and precession of forms of 

modes at 0 rpm 

 

Table 9. Forms of modes and precession of forms at 0 rpm 

 
Modes Precession Spin speed rpm 

3 direct 0 rpm 

4 direct FB=56.2856 rpm 

5 direct FB=2741.7408 rpm 

 

 

8. CONCLUSIONS 

 

The Plackett-Burman method in DOE and finite elements 

were employed to optimize the rotor and investigate the effects 

of the hydrodynamic bearings dimensions and the stiffness on 

the rotating machines dynamics and also to know the 

diameters which produce considerable effects on the excitation 

frequency as well as the reactions which can increase or 

decrease the principal effects and the gyroscopic effect on the 

eigenvalues of rotor-bearing systems. Our results show that: 

-The diameter D1 has the more significant positive effect on 

the real part frequency which can be seen in the right of the 

response line compared to outer journal diameter Db that has 

a negative effect on the imaginary part frequency which is 

shown in the left of the response line and vice versa, as 

affirmed by the plot of principal effects. 

-By the consideration of the internal material damping of 

the rotor. During the forward whirl, damping decreases, as the 

spin speed augments and in backward whirl, damping 

augments, as the spin speed augments. So, the system stability 

is determined. the stability of the system indicates the positive 

value of damping factor.  

-For the system stability, it’s required to be operated at a 

speed lesser than a critical speed. From the maximum real part 

vs the spin speed plot, the stability can be determined. It’s 

concluded that the system is unstable for the positive value of 

the maximum real part, and it’s stable for the negative value 

of the real part. As conclusion, the modal analysis is a main 

tool to get an important idea about the system dynamic 

behavior.  
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NOMENCLATURE 

 

Lb length of bearings [m]. 

Db outer journal diameter [m]. 

Cb bearing clearance [m]. 

Kyy, Kzz stiffness coefficients 

Cyy, Czz damping coefficients a gyroscopic effect 

k1, k2 stiffness 

ω The speed of rotation of the shaft (rd / s) 

Ω angular velocity (shaft) (rd / s) 

[K b] 

[C b] 

dimensionless stiffness coefficients. 

dimensionless damping coefficients. 

DF Degrees of freedom from each source 

SS Sum of squares. 

MS Mean squares. 

F Calculate by dividing the factor MS by error. 

P Use to determine whether a factor is signif. 

Secoff Standard error of the coefficient. 

S Estimated standard deviation of the error. 

Seq SS Sequential sum of squares. 

Adj SS Adjusted sum of squares. 

F The degrees of freedom for the test 
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