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In this paper, we present a novel technique based on backward-difference method and 

Galerkin spectral method for solving Black–Scholes equation. The main propose of this 

method is to reduce the solution of this problem to the solution of a system of algebraic 

equations. The convergence order of the proposed method is investigated. Also, we 

provide numerical experiment to show the validity of proposed method. 
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1. INTRODUCTION

The pricing of options is a main problem in financial 

investment. Because of both theoretical and practical 

importance then using options thrive in the financial market. 

In option pricing theory, the Black-Scholes equation is one of 

the most effective models for pricing options. Black-Scholes 

option pricing model (also called Black-Scholes-Merton 

Model) values a European-style call or put option based on the 

current price of the underlying (asset), the option’s exercise 

price, the underlying’s volatility, the option’s time to 

expiration and the annual risk-free rate of return [1]. Consider 

the Black-Scholes equation based on the following options: 

𝑃𝑡(𝑆, 𝑡) +
1

2
𝜎2𝑆2𝑃𝑆𝑆(𝑆, 𝑡) + 𝑟𝑆𝑃𝑆(𝑆, 𝑡) − 𝑟𝑃(𝑆, 𝑡)

= 0, 
(1) 

with the conditions: 

𝑃(𝑆, 𝑇) = max(𝐸 − 𝑆, 0),    𝑆 ∈ Ω = [0,∞), 

𝑃(0, 𝑡) = 𝐸𝑒−𝑟(𝑇−𝑡),      𝑃(𝑆, 𝑡) = 0,    𝑎𝑠    𝑆 → ∞.

where, 𝑃(𝑆, 𝑡) is the European call option price at asset price 

S and at time 𝑡, E is the exercise price, T is the maturity, r is 

the risk free interest rate, and 𝜎  represents the volatility 

function of underlying asset. During the past few decades, 

many researchers studied the existence of solutions of the 

Black-Scholes model using many methods in papers [2, 3]. In 

general, closed-form analytical solutions of some of these 

Black-Scholes PDEs do not exist and therefore one has to 

resort to numerical methods in order to solve them. There is an 

enriched literature regarding the numerical solution of Black-

Scholes PDE in finance using different strategies such as Ref. 

[4-8] and the references cited. 

The spectral method plays a significant role in various fields 

of applied science, especially in fluid dynamics where a large 

spectral hydrodynamics codes are now regularly used to study 

turbulence, transition, numerical weather prediction, and 

ocean dynamics [9]. This method is built on approximating the 

series solutions for differential equations in terms of classical 

orthogonal polynomials (Legendre, Chebyshev, Hermit, 

Jacobi, ...), say ∑ 𝑎𝑘𝜙𝑘. There are three well-known versions

used as popular techniques to determine the expansion 

coefficients, namely collocation, tau, and Galerkin methods. 

Classical orthogonal polynomials are used successfully and 

extensively for the numerical solution of differential equations 

in spectral methods (see [6-18]). 

In this paper, we present a new numerical method for 

solving Black–Scholes equation based on backward-

difference method and Galerkin spectral method. The main 

aim of this method is to reduce the solution of this problem to 

the solution of a system of algebraic equations. The advantage 

of using spectral Galerkin method lies in the fact that spectral 

accuracy this method over other methods. 

The layout of this paper is as follows: Section 2, presents 

some preliminaries. In Section 3, we introduce a new method 

based on the semi-discretization backward-difference method 

and Jacobi-Galerkin method. Some theoretical results, show 

the convergence and stability of the proposed method. The 

convergence analysis will be given in Section 4. The accuracy 

of the proposed method is shown by considering numerical 

example Section 5. Finally, a conclusion is drawn in Section 

6.  

2. PRELIMINARIES

In this section, we review the basic properties of the Jacobi 

polynomials and generalized Jacobi polynomials (GJPs) that 

will use in this paper.  
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2.1 The Jacobi polynomials 

The Jacobi polynomials, 𝐽𝑛
(𝑎,𝑏)

(𝑥), are eigenfunctions of the

singular Sturm–Liouville problem. 

𝑑

𝑑𝑥
((1 − 𝑥)𝑎+1(1 + 𝑥)𝑏+1

𝑑

𝑑𝑥
𝑦(𝑥)) + 𝛾(1 − 𝑥)𝑎(1

+ 𝑥)𝑏𝑦(𝑥) = 0,      𝑥 ∈ [−1,1],
(2) 

where, corresponding eigenvalues are 𝛾𝑛
(𝑎,𝑏)

= 𝑛(𝑛 + 𝑎 +
𝑏 + 1) , and satisfy the following orthogonality in 

𝐿
𝜔(𝑎,𝑏)
2 [−1,1]: 

∫
1

−1

𝜔(𝑎,𝑏)(𝑥)𝐽𝑖
(𝑎,𝑏)

(𝑥)𝐽𝑗
(𝑎,𝑏)

(𝑥) = 𝜆𝑗
(𝑎,𝑏)

𝛿𝑖,𝑗, (3) 

where, 𝜔(𝑎,𝑏)(𝑥) = (1 − 𝑥)𝑎(1 + 𝑥)𝑏  is the Jacobi weight

function and, 

𝜆𝑖
(𝑎,𝑏)

=
2𝑎+𝑏+1Γ(𝑖 + 𝑎 + 1)Γ(𝑖 + 𝑏 + 1)

(2𝑖 + 𝑎 + 𝑏 + 1)𝑖! Γ(𝑖 + 𝑎 + 𝑏 + 1)
, 

which is the normalization factor, and 𝛿𝑖,𝑗  is the kronecker

delta function. These polynomials can be computed by the 

following three-terms recursion relation:  

𝐽0
(𝑎,𝑏)

(𝑥) = 1, 𝐽1
(𝑎,𝑏)

(𝑥) =
𝑎 + 𝑏 + 2

2
𝑥 +

𝑎 − 𝑏

2
, (4) 

𝐽𝑛+1
(𝑎,𝑏)

(𝑥) = (𝑎𝑛
(𝑎,𝑏)

𝑥 − 𝑏𝑛
(𝑎,𝑏)

)𝐽𝑛
(𝑎,𝑏)

(𝑥)

− 𝑐𝑛
(𝑎,𝑏)

𝐽𝑛−1
(𝑎,𝑏)

(𝑥),      𝑛 = 1,2, . . .,
(5) 

where, 

𝑎𝑛
(𝑎,𝑏)

=
(2𝑛 + 𝑎 + 𝑏 + 1)(2𝑛 + 𝑎 + 𝑏 + 2)

2(𝑛 + 1)(𝑛 + 𝑎 + 𝑏 + 1)
, 

𝑏𝑛
(𝑎,𝑏)

=
(𝑏2 − 𝑎2)(2𝑛 + 𝑎 + 𝑏 + 1)

2(𝑛 + 1)(𝑛 + 𝑎 + 𝑏 + 1)(2𝑛 + 𝑎 + 𝑏)
, 

𝑐𝑛
(𝑎,𝑏)

=
(𝑛 + 𝑎)(𝑛 + 𝑏)(2𝑛 + 𝑎 + 𝑏 + 2)

(𝑛 + 1)(𝑛 + 𝑎 + 𝑏 + 1)(2𝑛 + 𝑎 + 𝑏)
. 

2.2 Generalized Jacobi polynomials 

For real numbers 𝛼 , 𝛽  and 𝑟 ∈ 𝐙 , we define the space: 

𝑊𝜔𝑎,𝑏: = {𝑢| 𝑢 𝑖𝑠 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒 𝑜𝑛 𝐼 𝑎𝑛𝑑    ∥ 𝑢 ∥𝜔𝑎,𝑏,𝑟< ∞},

equipped with the norm and semi-norm.  

∥ 𝑢 ∥𝜔𝛼,𝛽,𝑟= (∑

𝑟

𝑘=0

∥ ∂𝑥
𝑘𝑢 ∥

𝜔𝛼+𝑘,𝛽+𝑘
2 )1/2, 

|𝑢|𝜔𝛼,𝛽,𝑟 =∥ ∂𝑥
𝑟𝑢 ∥𝜔𝛼+𝑎,𝛽+𝑏 ,

where, ∥ 𝑢 ∥𝜔
2= ∫ 𝑣2𝜔𝑑𝑥. We denote the Generalized Jacobi

polynomials (GJPs) on [−1,1] by 𝐺𝑛
(𝑎,𝑏)

(𝑥) and define it as

[19]:  

𝐺𝑛
(𝑎,𝑏)

(𝑥)

=

{

(1 − 𝑥)−𝑎(1 + 𝑥)−𝑏𝐽𝑛−𝑛0
(−𝑎,−𝑏)

(𝑥), 𝑛0 = −(𝑎 + 𝑏),    𝑎, 𝑏 ≤ −1,

(1 − 𝑥)−𝑎𝐽𝑛−𝑛0
(𝑎,𝑏)

(𝑥), 𝑛0 = −𝑎,    𝑎 ≤ −1,    𝑏 > −1,

(1 + 𝑥)−𝑏𝐽𝑛−𝑛0
(𝑎,𝑏)

(𝑥), 𝑛0 = −𝑏,    𝑎 > −1,    𝑏 ≤ −1,

𝐽𝑛−𝑛0
(𝑎,𝑏)

(𝑥), 𝑛0 = 0,    𝑎, 𝑏 > −1,

(6) 

For all 𝑛 ≥ 𝑛0. An important property of the GJPs is that

for 𝑎, 𝑏 ∈ 𝐙+, we have,

𝑫𝒊𝑮𝒏
(−𝒂,−𝒃)

(−𝟏) = 𝟎,    𝒊 = 𝟎, . . . , 𝒂 − 𝟏,

𝑫𝒋𝑮𝒏
(−𝒂,−𝒃)

(𝟏) = 𝟎,    𝒋 = 𝟎, . . . , 𝒃 − 𝟏.

In this paper, we set 𝑎 = 𝑏 = −1 , and the shifted GJPs 

�̂�𝑛
(−1,−1)

(𝑥) on arbitrary interval [𝑙𝑚, 𝑙𝑀] as:

�̂�𝑛
(−1,−1)

(𝑥): = 𝐺𝑛
(−1,−1)

(
2𝑥 − 𝑙𝑚 − 𝑙𝑀
𝑙𝑀 − 𝑙𝑚

), (7) 

with the homogenous boundary conditions: 

�̂�𝑛
(−1,−1)

(𝑙𝑚) = �̂�𝑛
(−1,−1)

(𝑙𝑀) = 0,      𝑛 ≥ 2. (8)

It can also be easily show that {�̂�𝑛
−1,−1(𝑥): 𝑛 ≥ 2} construct

a complete orthogonal system in 𝐿𝜔−1,−1
2  (see Ref. [19]). 

Define, 

𝐵:= 𝑠𝑝𝑎𝑛{�̂�2
(−1,−1)

(𝑥), �̂�3
(−1,−1)

(𝑥), . . . , �̂�𝑁
(−1,−1)

(𝑥)},

And consider the orthogonal projection 𝜋𝑁
−1,−1: 𝐿𝜔−1,−1

2 →

𝐵 defined by: 

< 𝑢 − 𝜋𝑁
𝑎,𝑏𝑢, 𝑣 >𝜔−1,−1= 0,      ∀𝑣 ∈ 𝐵.

In the following theorem, we estimate the projection errors 

which are useful in the error analysis of spectral-Galerkin 

methods.  

Theorem 1: [19] Assume that 𝑢 ∈ 𝑊𝜔−1,−1,𝑟 , 0 ≤ 𝜇 ≤ 𝑟

and 𝐶 a generic positive constant independent of any function 

and 𝑁,  

∥ 𝑢 − 𝜋𝑁
−1,−1𝑢 ∥𝜔−1,−1,𝜇≤ 𝐶𝑁

𝜇−𝑟|𝑢|𝜔−1,−1,𝑟 (9) 

3. DESCRIPTION OF THE METHOD

At the first, we convert the problem (1) from backward to 

forward problem (a problem with initial conditions). To do this, 

change of variable 𝜏 = 𝑇 − 𝑡 in Eq. (1) yields: 

�̂�𝜏(𝑆, 𝜏) =
1

2
𝜎2𝑆2�̂�𝑆𝑆(𝑆, 𝜏) + 𝑟𝑆�̂�𝑆(𝑆, 𝜏) − 𝑟�̂�(𝑆, 𝜏), (10) 

with the initial condition: 

�̂�(𝑆, 0) = 𝑚𝑎𝑥(𝐸 − 𝑆, 0), 

And the nonhomogeneous boundary conditions, 

�̂�(0, 𝜏) = 𝐸𝑒−𝑟𝜏,  �̂�(𝑆, 𝜏) = 0,    𝑎𝑠    𝑆 → ∞, 

where, 𝑃(𝑆, 𝑡) = 𝑃(𝑆, 𝑇 − 𝜏) = �̂�(𝑆, 𝜏). Assume 𝑆𝑀: = 𝑆∞ <
∞, where is the suitably chosen positive number. Now, due to 

the application of homogeneous boundary conditions (8) of the 

GJPs, we must transform Eq. (10) into a homogeneous 

boundary condition problem. Assume that: 
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�̂�(𝑆, 𝜏) = 𝑊(𝑆, 𝜏) + 𝐸𝑒−𝑟𝜏(1 −
𝑆

𝑆𝑀
), (11) 

where, 𝑊(𝑆, 𝜏) is a new unknown function, then we get: 

�̂�𝜏(𝑆, 𝜏) = 𝑊𝜏(𝑆, 𝜏) − 𝑟𝐸𝑒
−𝑟𝜏(1 −

𝑆

𝑆𝑀
), (12) 

�̂�𝜏(𝑆, 𝜏) = 𝑊𝜏(𝑆, 𝜏) − 𝑟𝐸𝑒
−𝑟𝜏(1 −

𝑆

𝑆𝑀
), (13) 

�̂�𝑆𝑆(𝑆, 𝜏) = 𝑊𝑆𝑆(𝑆, 𝜏). (14) 

Substituting (11) and (12) into (10) yields: 

𝑊𝜏(𝑆, 𝜏) =
1

2
𝜎2𝑆2𝑊𝑆𝑆(𝑆, 𝜏) + 𝑟𝑆𝑊𝑆(𝑆, 𝜏)

− 𝑟𝑊(𝑆, 𝜏) −
𝑟𝐸𝑒−𝑟𝜏𝑆

𝑆𝑀
, 

(15) 

with the initial condition, 

𝑊(𝑆, 0) = max(𝐸 − 𝑆, 0) − 𝐸(1 −
𝑆

𝑆𝑀
), (16) 

and the homogeneous boundary conditions. 

𝑊(0, 𝜏) = 𝑊(𝑆𝑀 , 𝜏) = 0. (17) 

3.1 A semi-discretization in time for Eq. (15) 

Given the discretization of the time interval [0, 𝑇] with step 

size ℎ = 𝑇/𝑀,  

0 = 𝜏0 < 𝜏1 <. . . < 𝜏𝑀 = 𝑇.

By applying the backward-difference method for the left 

side of Eq. (15) we obtain:  

𝑊(𝑆, 𝜏𝑖+1) −𝑊(𝑆, 𝜏𝑖)

ℎ
+ 𝑂(ℎ)

=
1

2
𝜎2𝑆2𝑊𝑆𝑆(𝑆, 𝜏𝑖+1) + 𝑟𝑆𝑊𝑆(𝑆, 𝜏𝑖+1)

− 𝑟𝑊(𝑆, 𝜏𝑖+1) −
𝑟𝐸𝑒−𝑟𝜏𝑖+1𝑆

𝑆𝑀
, 

for 𝑖 = 0,1, . . . , 𝑀 − 1. Taking the 𝐹𝑖(𝑆), approximation of the

exact solution 𝑊(𝑆, 𝜏𝑖)  for 𝑖 = 0,1. . . , 𝑀 , we obtain an

ordinary differential equation: 

𝐷𝐹𝑖+1(𝑆) = 𝑅𝑖(𝑆), (18) 

with homogeneous boundary condition as follows: 

𝐹𝑖+1(0) = 𝐹𝑖+1(𝑆𝑀) = 0,    𝑖 = 0,1, . . . ,𝑀,

where, 

𝐷𝐹𝑖+1(𝑆):= ℎ
1

2
𝜎2𝑆2𝐹𝑖+1′′(𝑆) + 𝑟ℎ𝑆𝐹𝑖+1′(𝑆) − (1

+ 𝑟ℎ)𝐹𝑖+1(𝑆),

𝑅𝑖(𝑆): = ℎ
𝑟𝐸𝑒−𝑟𝜏𝑖+1𝑆

𝑆𝑀
− 𝐹𝑖(𝑆).

For each time step 𝑖  with homogeneous boundary 

conditions. It is clear that for the first step, 𝑖 = 0, from initial 

condition of (15), we have:  

𝐹0(𝑆) = max(𝐸 − 𝑆, 0) − 𝐸(1 −
𝑆

𝑆𝑀
). 

The unknown functions 𝐹𝑖(𝑆), 𝑖 = 1, . . . , 𝑀  are 

approximated in the finite dimensional space, 𝐵, as follows: 

𝐹𝑖,𝑁(𝑆) ≃∑

𝑁

𝑗=2

𝑐𝑖,𝑗�̂�𝑗
(−1,−1)

(𝑆). (19) 

Substituting (19) into (18) yields the Galerkin residual 

functions (see [3]), 𝑅𝑒𝑠𝑖(𝑆), as follows :

𝑅𝑒𝑠𝑖(𝑆) = 𝐷𝐹𝑖+1,𝑁(𝑆) − 𝑅𝑖(𝑆),      𝑖 = 0. . . 𝑀 − 1. (20) 

The application of the Galerkin method for each time step 

𝑖 = 0,1, . . . 𝑀 − 1, yields the following (𝑁 − 2) set of linear 

algebraic equations in the unknown expansion coefficients, 

𝑐𝑖,𝑗, namely,

∫
𝑆𝑀

0

𝑅𝑒𝑠𝑖(𝑆)�̂�𝑗
(−1,−1)(𝑆)𝜔−1,−1(𝑆)𝑑𝑆 = 0,

𝑖 = 0,1, . . . 𝑀 − 1, 𝑗 = 2, . . . , 𝑀, 

(21) 

or equivalently, 

< 𝐷𝐹𝑖+1,𝑁(𝑆), �̂�𝑗
(−1,−1)(𝑆) >𝜔−1,−1

=< 𝑅𝑖(𝑆), �̂�𝑗
(−1,−1)

(𝑆) >𝜔−1,−1 ,
(22) 

with weight function 𝜔−1,−1 = (𝑆𝑀 − 𝑆)
−1𝑆−1. This system

of algebraic equation can be solved for the unknown 

coefficients 𝑐𝑖,𝑗  and 𝐹𝑖,𝑁(𝑆) calculated for 𝑖 = 1, . . . , 𝑀.

4. CONVERGENCE ANALYSIS

At the first, in order to obtain the convergence of the 

solution 𝐹𝑖(𝑆) to 𝑊(𝑆, 𝜏𝑖) we begin by studying the stability

and consistency of above time semi-discrete method. For 

consistent numerical approximations, stability and 

convergence are equivalent, therefore, we obtain the 

convergence of time semi-discrete method. (For more details, 

see the papers [19-21]). 

Theorem 2: [21] Assume 𝐾𝑖+1(𝑠):=
𝑟𝐸𝑒−𝑟𝜏𝑖+1𝑆

𝑆𝑀
 and 

𝐿(𝑆): = 𝑚𝑎𝑥(𝐸 − 𝑆, 0) − 𝐸(1 −
𝑆

𝑆𝑀
) . Then, the time semi-

discrete problem (18) is unconditionally stable, i.e., if, 

�̂�(𝑆) = 𝐿(𝑆) + �̂�(𝑆),      𝐾𝑖+1(𝑆) = 𝐾𝑖+1(𝑠) + �̂�𝑖+1(𝑆)

This provides a perturbed sequence �̂�𝑖(𝑆), whose distance

from the original sequence 𝐹𝑖(𝑆), is uniformly bounded by the

maximum size of the perturbation, i.e.,  

∥ 𝐹𝑖(𝑆) − �̂�𝑖(𝑆) ∥∞≤ 𝐶(�̂�(𝑆) + max
𝑗=0,...,𝑖−1

∥ �̂�𝑗(𝑆) ∥∞).
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Theorem 3: [13] If, 

|
∂𝑖+𝑗𝑊(𝑆, 𝜏)

∂𝑖𝑆 ∂𝑗𝜏
| ≤ 𝐶,      0 ≤ 𝑗 ≤ 3,    0 ≤ 𝑖 ≤ 4, 

Then, the local truncation error 𝑒𝑛 , and global truncation

error 𝐸𝑛 associated to the semi-discrete method (18) satisfies:

∥ 𝑒𝑛 ∥∞≤ 𝐶ℎ
2 ,      ∥ 𝐸𝑛 ∥∞≤ 𝐶ℎ.

Theorem 4: [13] The time semi-discrete method (18) is first 

order convergent, i.e.,  

∥ 𝑊(𝑆, 𝜏𝑖) − 𝐹𝑖(𝑆) ∥∞≤ 𝐶ℎ.

The following theorem shows the convergence of the full 

discretization method which is obtained by: 

∥ 𝑊(𝑆, 𝜏𝑖) − 𝐹𝑖,𝑁(𝑆) ∥𝜔−1,−1,2≤

∥ 𝑊(𝑆, 𝜏𝑖) − 𝐹𝑖(𝑆) ∥𝜔−1,−1,2 +

∥ 𝐹𝑖(𝑆) − 𝐹𝑖,𝑁(𝑆) ∥𝜔−1,−1,2

and Theorems 1 and 4, respectively. The idea of the proof 

comes from Refs. [19-21].  

Theorem 5: Let 𝑊(𝑆, 𝜏)  be the solution of the initial 

boundary value problem (15)-(17) and 𝐹𝑖,𝑁(𝑆) be the Galerkin

approximation to the solution 𝐹𝑖(𝑆)  in each time steps 𝑖 =
0, . . . , 𝑀. Then,  

∥ 𝑊(𝑆, 𝜏𝑖) − 𝐹𝑖,𝑁(𝑆) ∥∞≤ 𝐶(ℎ + 𝑁
2−𝑟).

It is seen that the temporal and spatial rate of convergence 

are 𝑂(ℎ) and 𝑂(𝑁2−𝑟), respectively, where 𝑟 is an index of

regularity of the underlying function. 

5. NUMERICAL RESULTS

Consider Eq. (1) with parameters 𝐸 = 10, 𝑇 = 0.25, 𝑟 =
0.1,   𝜎 = 0.4 and 0 ≤ 𝑆 ≤ 20. The exact solution is, 

𝑃(𝑆, 𝜏) = 𝐸𝑒−𝑟(𝑇−𝜏)𝑁(−𝑑2) − 𝑆𝑁(−𝑑1),

Table 1. The absolute errors (Abs.err) and values of 𝑆 for 

𝑁 = 25 at time 𝑡 = 𝑇 

S Abs.err S Abs.err 

1 5.126000 e-05 11 7.229574 e-04 

2 2.758800 e-04 12 2.024524 e-04 

3 2.660140 e-04 13 1.626119 e-04 

4 2.244770 e-04 14 3.512227 e-04 

5 5.347300 e-05 15 3.037570 e-04 

6 2.884300 e-04 16 2.424921 e-04 

7 6.534150 e-04 17 1.357483 e-04 

8 2.637970 e-04 18 7.445729 e-05 

9 4.073430 e-04 19 4.032019 e-06 

10 9.394778 e-04 20 1.129299 e-04 

where, 

𝑁(𝑦) =
1

√2𝜋
∫
𝑦

−∞

𝑒−
𝑢2

2 𝑑𝑢, 

𝑑1 =
ln (

𝑆
𝐸
) + (𝑟 +

𝜎2

2
) (𝑇 − 𝜏)

𝜎√𝑇 − 𝜏
, 

𝑑2 =
ln(
𝑆
𝐸
) + (𝑟 −

𝜎2

2
)(𝑇 − 𝜏)

𝜎√𝑇 − 𝜏
= 𝑑1 − 𝜎√𝑇 − 𝜏.

Figure 1. Exact solution at time t=T 

Figure 2. Approximate solution at time t=T and N=25 
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Figure 3. Absolute error for various N=15,20,25 

 

The function 𝑁(𝑦)  is the cumulative probability 

distribution function for a standardized normal distribution. 

Figures 1 and 2 show the exact solution and numerical solution 

in 𝑡 = 𝑇 for 𝑁 = 25. The absolute error is shown for various 

𝑁 = 15,20,25 in Figure 3. In Table 1, the results for 𝑁 = 25 

for various values of 𝑆  are presented in Table 1. By these 

results, we observe increase the accuracy of our proposed 

method by growing as the number of basis functions 𝑁  in 

approximate solutions (19). 

 

 

6. CONCLUSION 

 

In the paper, by utilizing the backward-difference and 

shifted Jacobi-Galerkin method we reduce the problem to the 

set of system of linear algebraic equations. We also obtain the 

error estimation for the method. The solution obtained using 

the proposed technique shows that this method can solve the 

Black–Scholes equation for put options effectively.  
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