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The article studies some mathematical models that represent one class of dynamical 

equations in quasi-Sobolev space. The analytical investigation of solvability of the 

Cauchy problem in the quasi-Sobolev space and theoretical results used to enhance and 

develop an algorithm structure of the numerical procedures to find approximate 

solutions for models, the steps of algorithm based on the theoretical investigation of 

models, new algorithm of numerical method allowing to find approximate solutions of 

mathematical models under study in quasi-Sobolev space. Construction a program 

implements an algorithm of numerical method that allow finding approximate solutions 

for models. To construct the theory of degenerate holomorphic semigroups of operators 

in quasi-Banach spaces of sequences, we used the classical methods of functional 

analysis, theory of linear bounded operators, spectral theory. To construct the operators 

of resolving semigroups we used the Laplace transform of operator-valued functions in 

quasi-Banach spaces of sequences. The numerical investigation for models generate 

some approximate solutions which are normally based on the modified projection 

method. The convergence of the approximate solution to the exact one theoretically is 

justified by the convergence of the corresponding series, the agreement of approximate 

computations with the theoretical solution is established. 
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1. INTRODUCTION

Sobolev type equations as abstract operator-differential 

equations in terms of the relative spectrum and the results of 

the solvability of such equations in Banach spaces are 

presented by Sagadeeva and Rashid [1], Sviridyuk [2]. The 

concept of quasi-Banach spaces is apparently inextricably 

linked with the concept of Banach spaces [3, 4]. However, an 

independent interest in quasi-Banach spaces, as an object of 

research, appeared recently, moreover, such spaces arise in the 

study of Abelian groups [5-7] and applied problems [8, 9]. The 

study of dynamical equations in quasi-Banach spaces relevant 

due to the fact that the results obtained more than twenty years 

ago in Banach spaces turned out to be applicable in the theory 

of dynamic measurements [10-13]. Mathematical models 

based on linear Sobolev-type equations were studied [14-18]. 

The space ℓ𝑞
𝑟  is a quasi-Banach space. For all r∈R. q∈R_+ 

and 𝒸 = 2
1−𝑞

𝑞  . 

Suppose that 𝑃𝑛(𝑥) = ∑ 𝑐𝑖𝑥
𝑖𝑛

𝑖=0  and 𝑄𝑚(𝑥) = ∑ 𝑑𝑗𝑥
𝑗𝑚

𝑗=0

are polynomials with real coefficients of degrees n and m 

respectively such that 𝑚 ≤ 𝑛 and do not have a common root. 

The class of dynamical equations in quasi-Sobolev defined 

by 

𝑃𝑛(Λ)𝑢 ̇ = 𝑄𝑚(Λ)𝑢 (1) 

Putting L=Pn(Λ) and M=Qm(Λ), we consider Eq. (1) in the 

range of the abstract equation of Sobolev type. 

𝐿�̇� = 𝑀𝑢 (2) 

where, a vector function 𝑢 ∈ 𝐶∞(ℝ+;  ℓ𝑞
𝑟+2𝑛)  represents a

solution for (2). u=u(t) represents a solution of the Cauchy 

problem.  

𝑢(0) = 𝑢0 (3) 

if it satisfies (2) and the Cauchy condition (3) for some 𝑢0 ∈
ℓ𝑞
𝑟+2𝑛.

2. THEORETICAL ASPECTS OF THE SOLVABILITY

OF DYNAMICAL MODELS

Suppose that 𝔘 and 𝔉 are quasi-Sobolev spaces, moreover 

𝐿.𝑀 ∈ ℒ(𝔘; 𝔉). The sets of 𝐿-resolvent and L-spectrum with 

respect to the operator M respectively which formulated as 

follows:  

𝜌𝐿(𝑀) = {𝜇 ∈ ℂ ∶  (𝜇𝐿 − 𝑀)−1 ∈  ℒ(𝔘; 𝔉)}.  𝜎𝐿(𝑀)
= ℂ\𝜌𝐿(𝑀)

The relative spectral of the operator σL(M) is defined as 

follows: 
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Now we defined the operators P1 and Q1 as follows: 
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where, 

1 1( ) ( ) , ( ) ( )L LR M L M M L M M L M  − −= − = −

are the right and left 𝐿-resolvent of an operator 𝑀 and γ1 = ∂Ω1. 

Definition 1. If there exists a∈R+, for each μ∈C(|μ|>a) such 

that μ∈ρL(M) then M a relatively spectral bounded of L and 

denoted by (L. σ)-bounded. 

Lemma 1. If M is (L. σ)-bounded then 𝑃1 ∈ ℒ(𝔘) and 𝑄1 ∈
ℒ(𝔉) are projectors. 

Proof. Since the integrand operator function is analytic, 

then 
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


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

= 

where, the contour �̀�1 is a bounded domain which containing 

the contour γ1 and not containing the points of the set 𝜎2
𝐿(𝑀),

that is it is a bit “wider” than the contour. 

1 1

1 1 1 1 1

1

2

1 2

2

1

1
( )

(2 )

1
( ( ) ( ) )

(2 )

1
( )

2

L L

L L L

L

P R R M d d
i

d d
R M R d R M d

i

R M d P
i

 

 

  

    





 


 
 

    




=

= +
− −

= =

 

    



by virtue of Fubini’s theorem, residue theorems and relatively 

resolvent identities. The operator Q is proved similarly by 

replacement the right 𝐿-resolvent identity with the left.  

Definition 2. A subspace 𝔓 of the quasi-Sobolev space 𝔘 

named as a phase space for (2), if it satisfies: 

i- ∀𝑢0 ∈ 𝔓. ∃! solution for (2)-(3).

ii- if u=u(t) a solution for (2) then 𝑢 ∈ 𝔓 and defined as a

trajectory. 

Remark 1. The projectors Q1 and P1 are define the spaces 𝔘 

and 𝔉 as direct sums (𝔘 =𝔘0⨁𝔘1 , 𝔉 =𝔉0 ⨁𝔉1).

Theorem 1. [19] If M is (L. p)- bounded and 𝑝 ∈ {0} ∪ ℕ , 

then 𝔘1  a phase space for (2).

Lemma 1. If 𝔘 = ℓ𝑞
𝑟+2𝑛 and 𝔉 = ℓ𝑞

𝑟  then 𝐿.𝑀 ∈ ℒ(𝔘; 𝔉).

Proof. By construction 𝐿 = 𝑃𝑛(𝛬): ℓ𝑞
𝑟+2𝑛 → ℓ𝑞

𝑟  linear and

bounded, that is 𝐿 ∈ ℒ(𝔘; 𝔉) . An operator  𝑀 =

𝑄𝑚(𝛬): ℓ𝑞
𝑟+2𝑛 → ℓ𝑞

𝑟+2(𝑛−𝑚)  for m≤n, therefore M is a linear

and continuous from 𝔘 to 𝔉. 

Theorem 2. [20] If λk are not common roots of the 

polynomials Pn(x) and Qm(x) then then the operator M is (L. p) 

− bounded.

Now introduce L-spectrum of operator M which possesses

following form 

( )
( ) { : , ( ) 0}

( )

L m k
k n k

n k
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P
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since λk → +∞ and m≤n, the set of L-spectrum of operator M 

tend to a finite set of points, the set σL(M) is bounded.  

Theorem 3. [1] If the operator M is (L. p)-bounded and 𝑝 ∈
{0} ∪ ℕ, then ∃! a resolution group for (2) which owns the for

1

1
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t L tU R M e d t
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


+= 

such that 𝛾 = {𝜇 ∈ ℂ ∶  |𝜇| > 𝑎. 𝑎 ∈ ℝ+} which is called the

contour set. 

From the above theorems (2) and (3), we can define the 

holomorphic resolution of the Eq. (1) as follows  

𝑈𝑡 =

{
 

∑
𝑒𝜇𝑘𝑡 <∙ . 𝑒𝑘 > 𝑒𝑘.

𝑖𝑓 𝑃𝑛(𝜆𝑘) ≠ 0       

∞

𝑘=1

∑ 𝑒𝜇𝑘𝑡 <∙. 𝑒𝑘 > 𝑒𝑘. 𝑖𝑓 ∃ ℓ

𝑘∈ℕ:𝑘≠ℓ

∈ ℕ 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑃𝑛(𝜆ℓ) = 0 

A phase space of the Eq. (2) has the form: 

𝔘1 = {
𝔘 𝑖𝑓 𝑃𝑛(𝜆𝑘) ≠ 0. 𝑘 ∈ ℕ 

{𝑢 ∈ 𝔘 ∶ 𝑢ℓ = 0. 𝑃𝑛(𝜆ℓ) = 0} 

Definition 3. A subspace 𝔍 of the phase space 𝔓 is called 

invariant subspace for the equation (2), if ∀u0 ∈ 𝔍,∃! u = u(t) 

as a solution for the problem (2)-(3) and u(t) ∈ 𝔍 ,∀t ∈ ℝ+.

Theorem 4. [2] If M is (L. p) − bounded, 𝑝 ∈ {0} ∪ ℕ and 

satisfies (4), then 

1

1

1
( ) ,

2

t L tU R M e d t
i










+= 

is an invariant space for the Eq. (2). 

Remark 2. The solution of the Eq. (2) has exponential 

dichotomy if: 

i- 𝔓 (phase space) for (2) written in the form 𝔓 = 𝔍1⊕𝔍2,

𝔍1 and 𝔍2 are invariant spaces of the Eq. (2).

ii- for any u0 ∈ 𝔍1 (u0 ∈ 𝔍2 ), 𝑢 = 𝑢(𝑡) a solution for the

problem (2)-(3) such that 

‖𝑢(𝑡)‖𝔘 ≤ 𝐶1𝑒
−𝑎1𝑡 ‖𝑢0‖𝔘 ( ‖𝑢(𝑡)‖𝔘 ≥ 𝐶2𝑒

𝑎2𝑡 ‖𝑢0‖𝔘 ), for

some 𝑎1. 𝑎2 > 0. 𝑡 ∈ ℝ+.
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3. ALGORITHM OF THE NUMERICAL METHOD

An approximate solution of the problem (2)-(3) based on the 

projection method which is modified due to the fact that the 

problem may be degenerate. 

A brief description of the essence of the numerical method 

to find an approximate solution �̃�(𝑡) by using: 

�̃�(𝑡) = 𝑢𝑁(𝑡) = ∑𝑢𝑡(𝑡) 𝑒𝑘

𝑁

𝑘=1

(5) 

where, 𝑁 ∈ ℕ. 

It is necessary when we apply the projection method to take 

in account firstly the effects of degeneracy of the equation, 

secondly fulfilment required accuracy. 

To select a number N, first of all defined a required 

estimation by: 

0

( ( ) ( ) ) ,

T
r

q
u t u t dt − 

For given ϵ. 

By substituting a quasi-norm on the left side, we get: 

1/2
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q q

k k k
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q q
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T
r

t

q

x u u dt

x u dt

x e u dt

u e







=



= +



= +

−

=

=











Hence 

0 0ln( ) ln( )
0

r r

N
q q

N

u u

T




+ −
−  (6) 

We get from (6), we find N for the approximate solution. 

In addition to the degeneracy of the equation, it is necessary 

to take a number N large enough such that xN lies to the right 

of all roots of the polynomial Pn(x). 

By substituting (5) in (2) for uN(x.t), we get 

∑𝑃𝑛(𝑥) 𝑢𝑘
′ (𝑡)𝑒𝑘 =∑𝑄𝑚(𝑥) 𝑢𝑘(𝑡)

𝑁

𝑘=1

𝑒𝑘

𝑁

𝑘=1

(7) 

which representing a finite system of equations, the equations 

in the system (8) can be differential or algebraic. 

We consider the following two cases: 

case 1. Pn (x)≠0. k=1.….N, in this case all the equations of 

the system will be first order ordinary differential equations, 

by solving a system, we get the unknown functional 

coefficients ut(t).k=1.….N, in the approximate solution �̃�(𝑡) =
𝑢𝑁(𝑥. 𝑡).
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Figure 1. Diagram of approximate solution algorithm 

case 2. Pn(x)=0, for some kj, in this case the equations of the 

system with number kj will be algebraic equations and the rest 

equations will be differential equations. 

The steps of the algorithm finding an approximate solution 

for the problem (2)-(3) are:  

i- finding the number N, we can find the approximate

solution depend on the number N; 

ii- checking mathematical model according to the given

parameters to which two cases (mentioned above) it refer; 

iii- calculation of the approximate solution for a given initial

sequence by using a modified projection method. 

The numerical study for the class dynamical mathematical 

models in quasi-Sobolev space based on the developed method 

for finding an approximate solution with a given accuracy, the 

numerical method was implemented by using programmable 

algorithm. The developed program allows us: 

1- entering the polynomials which defined from the Laplace

quasi-operator and consider dynamical mathematical models 

in quasi-Sobolev space; 

2- taking into account the degeneracy of the mathematical

model and apply the phase space method; 

3- finding non-zero terms of an approximate solution which

are necessary to fulfil a given accuracy 𝜖. 

4- finding and deriving an approximate solution for the

problem. 

5- getting the graphic of the components of obtained

solution depending on time. 

Figure 1 shows an algorithm for finding of the approximate 

solution. 

4. NUMERICAL EXPERIMENTS AND DISCUSSIONS

4.1 Computational experiments for Hoff model 

Consider the analog of the linearized Hoff model 

(𝜆 + Λ)𝑢𝑡 = 𝛼𝑢                𝜆 ∈ ℝ . 𝛼 ∈ ℝ\{0} (8)

𝑢(𝑥. 0) = 𝑢0                      𝑥 ∈ [0. 𝑙] (9)

𝑢(0. 𝑡) = 𝑢(𝑙. 𝑡) = 0        𝑡 ∈ [0. 𝑇] (10) 

In quasi-Sobolev spaces 𝔘 = ℓ𝑞
𝑟+2𝑛  and 𝔉 = ℓ𝑞

𝑟  such that

𝑟 ∈ ℝ. 𝑞 ∈ ℝ+. 𝐿 = 𝑃1(Λ) = 𝜆 + Λ and 𝑀 = 𝑄0(Λ) = 𝛼𝕀, the

operators 𝐿.𝑀 ∈ ℒ(𝔘; 𝔉). 

Example 1. To find a numerical solution of the 

mathematical model (8)-(10) construct the polynomials from 

the Laplace quasi-operator: P1(x)=2+x and Q0=-4 where λ=2 

and α=4. 

Suppose that T=5. m=1. q=3. l=2π. λk=k2 and 𝑢0𝑘 =
1

𝑘3
. 

Case 1. For ϵ=0.1, checking the degeneracy of the 

mathematical model and apply the phase space method, find 

the number of nonzero terms of the approximate solution �̃�(𝑡) 
which are necessary to fulfil a given accuracy ϵ=0.1. 

An approximate solution of the mathematical model (8)-(10) 

with the assuming parameters and components is 

�̃�(x.t)= 𝑒−1.3333𝑡𝑠𝑖𝑛(𝑥) + 0.25𝑒−0.6667𝑡𝑠𝑖𝑛(2𝑥) +
0.1111𝑒−0.3636𝑡𝑠𝑖𝑛(3𝑥) +

0.0625𝑒−0.2222𝑡𝑠𝑖𝑛(4𝑥) + 0.04𝑒−0.1481𝑡𝑠𝑖𝑛(5𝑥) +
0.0278𝑒−0.1053𝑡𝑠𝑖𝑛(6𝑥) + 0.0204𝑒−0.0784𝑡𝑠𝑖𝑛(7𝑥)

Figure 2 represent an approximate solution. 

Figure 2. Graph for example 1 case 1 

Case 2. For 𝜖 = 0.01, after getting the components of the 

approximate solution which necessary to fulfil a given 

accuracy, we get an approximate solution for (8)-(10) as 

follows: 
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�̃�(x. t) = 𝑒−1.3333𝑡 sin(𝑥) + 0.25𝑒−0.6667𝑡 sin(2𝑥)
+ 0.1111𝑒−0.3636𝑡 sin(3𝑥)
+ 0.0625𝑒−0.2222𝑡 sin(4𝑥)
+ 0.04𝑒−0.1481𝑡 sin(5𝑥)
+ 0.0278𝑒−0.1053𝑡 sin(6𝑥)
+ 0.0204𝑒−0.0784𝑡 sin(7𝑥)
+ 0.0156𝑒−0.0606𝑡 sin(8𝑥)
+ 0.0123𝑒−0.0482𝑡 sin(9𝑥)
+ 0.01𝑒−0.0392𝑡 sin(10𝑥)
+ 0.0083𝑒−0.0325𝑡 sin(11𝑥)
+ 0.0069𝑒−0.0274𝑡 sin(12𝑥)
+ 0.0059𝑒−0.0234𝑡 sin(13𝑥)
+ 0.0051𝑒−0.0202𝑡 sin(14𝑥)
+ 0.0044𝑒−0.0176𝑡 sin(15𝑥)
+ 0.0039𝑒−0.0155𝑡 sin(16𝑥)
+ 0.0035𝑒−0.0137𝑡 sin(17𝑥)
+ 0.0031𝑒−0.0123𝑡 sin(18𝑥)
+ 0.0028𝑒−0.011𝑡 sin(19𝑥)
+ 0.0025𝑒−0.01𝑡 sin(20𝑥)
+ 0.0023𝑒−0.009𝑡 sin(21𝑥)

as shown in the Figure 3. 

Figure 3. Graph for example 1 case 2 

4.2 Computational experiments for Barenblat-Zheltov-

Kochina Model 

The Barenblat-Zheltov-Kochina model is defined by: 

(𝜆 + Λ)𝑢𝑡 = 𝛼Λ𝑢                𝜆 ∈ ℝ . 𝛼 ∈ ℝ\{0} (11)

𝑢(𝑥. 0) = 𝑢0                     𝑥 ∈ [0. 𝑙] (12)

 𝑢(0. 𝑡) = 𝑢(𝑙. 𝑡) = 0         𝑡 ∈ [0. 𝑇] (13) 

In quasi-Sobolev spaces 𝔘 = ℓ𝑞
𝑟+2𝑛 and  𝔉 = ℓ𝑞

𝑟  such that

𝑟 ∈ ℝ. 𝑞 ∈ ℝ+. 𝐿 = 𝑃1(Λ) = 𝜆 + Λ  and 𝑀 = 𝑄1(Λ) = 𝛼Λ ,

the operators 𝐿.𝑀 ∈ ℒ(𝔘; 𝔉). 

Example 2. To get an approximate solution of the 

mathematical model (11)-(13), in the beginning we define the 

polynomials, by using the Laplace quasi-operator and 

assuming of the parameters of Eq. (11) then we get: 

P1 (x)=7-x and Q1=5x where λ=7 and α=5. 

Assume that T=10. m=1. q=5. l=2π. λk=k3 and 

𝑢0𝑘 = {
1

𝑘3
. 𝑘 ≠ 0

0. 𝑘 = 0
. 

Case 1. For ϵ=0.1, after checking the degeneracy of the 

mathematical model and apply the phase space method, we 

find the number of components of the approximate solution 

u˜(t) which are essentially to achieve a given accuracy ϵ=0.1.

An approximate solution of the mathematical model (11)-

(13) with the components and assuming parameters is:

�̃�(x. t) = 𝑒0.8333𝑡𝑐𝑜𝑠(𝑥)  +  0.1111𝑒−22.5𝑡𝑐𝑜𝑠(3𝑥)  +
 0.0625𝑒−8.8889𝑡𝑐𝑜𝑠(4𝑥) , an approximate solution of the

problem represented by Figure 4. 

Figure 4. Graph for example 2 case 1 

Case 2. For 𝜖 = 0.01, after computing the components of 

the approximate solution which necessary to fulfil a given 

accuracy, getting approximate solution of the mathematical 

model (11)-(13) with the components and assuming 

parameters is: 

�̃�(x. t) = 𝑒0.8333𝑡𝑐𝑜𝑠(𝑥) +  0.1111𝑒−22.5𝑡𝑐𝑜𝑠(3𝑥)
+ 0.0625𝑒−8.8889𝑡𝑐𝑜𝑠(4𝑥)
+ 0.04𝑒−6.9444𝑡𝑐𝑜𝑠(5𝑥)
+ 0.0278𝑒−6.2069𝑡𝑐𝑜𝑠(6𝑥)
+ 0.0204𝑒−5.8333𝑡𝑐𝑜𝑠(7𝑥)
+ 0.0156𝑒−5.614𝑡𝑐𝑜𝑠(8𝑥)
+ 0.0123𝑒−5.473𝑡𝑐𝑜𝑠(9𝑥)
+ + 0.01𝑒−5.3763𝑡𝑐𝑜𝑠(10𝑥)
+ 0.0083𝑒−5.307𝑡𝑐𝑜𝑠(11𝑥)
+ 0.0069𝑒−5.2555𝑡𝑐𝑜𝑠(12𝑥)

the approximate solution shown in the Figure 5. 

Figure 5. Graph for example 2 case 2 
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5. CONCLUSIONS

1. Convergence of the numerical approach of approximate

solution of mathematical models to exact one in framework of 

the dynamical mathematical models in quasi-Sobolev spaces 

theoretically is justified by the convergence of the 

corresponding series. 

2. The numerical approach of approximate solution is

appropriate, rapid and efficient to solve more complicated 

dynamical mathematical models, although such models take a 

long time when we apply other methods 

3. Getting sufficient conditions for the existence of invariant

spaces of solutions and their dichotomies for the class of 

dynamical mathematical models in quasi-Sobolev spaces. 

4. Construction an algorithm for numerical method to study

the class of dynamical mathematical models in quasi-Sobolev 

spaces. 

5. Designing a program implements an algorithm of

numerical method for studying of the class of dynamical 

mathematical models in quasi-Sobolev space. 
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NOMENCLATURE 

ℕ set of natural numbers 

ℝ set of real numbers 

ℝ+ set of positive real numbers 

ℂ set of complex numbers 

ℒ(𝔘) set of continuous linear operators defined on the 

space (𝔘)  
ℓ𝑞 space of sequences  

𝑢𝑡 partial derivative of 𝑢 with respect to t  

𝐶∞ space of the infinitely differentiable functions  

‖∙‖𝑞
𝑟  quasi-norm 
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