
 

 
 
 

 
 

 

1. INTRODUCTION 

 

Fluids that do not obey the Newton’s law of motion are 

called non-Newtonian fluids. Analysis of boundary layer flow 

of non-Newtonian fluids due to a stretching sheet is absolutely 

a prominent field of research for many researchers. Such 

significance stems because of numerous important 

applications in various fields like biological sciences, 

geophysics, astrophysical bio-fluid and petroleum industries, 

chemical industries, etc. Many constituent relations of non-

Newtonian fluids have been considered in the literature due to 

its versatile nature. Here we considered Jeffrey fluid model for 

non-Newtonian fluids. Jeffrey model is a rate type of non-

Newtonian fluid which is capable of describing the 

characteristic of relaxation and retardation times. 

Kothandapani and Srinivas [1] studied Peristaltic transport of 

a Jeffrey fluid in an asymmetric channel in the presence of 

magnetic field. Tripathi et al. [2] analysed the peristaltic flow 

of the MHD Jeffrey fluid through a tube of finite length. 

Nadeem and Akbar [3] and Khan et al. [4] studied the effects 

of variable viscosity on an incompressible Jeffrey in an 

asymmetric channel. Krishna Murthy [5] has discussed two-

dimensional MHD steady free convective mass transfer 

Couette flow of an electrically conducting Jeffrey fluid in a 

channel through a porous medium in the presence of heat 

source and chemical reaction. Akbar et al. [6] have examined 

the instinct system of cilia motion with magnetic field and slip 

for Jeffrey fluid model in a symmetric channel by long-

wavelength and low Reynolds approximation. Sandeep et al. 

[7] have investigated stagnation point flow of MHD Jeffrey 

nanofluid over a stretching surface with heat and mass transfer 

in the presence of non-uniform heat source or sink and 

chemical reaction using similarity transformation. Qasim [8] 

studied heat source/sink effects on heat and mass transfer in a 

Jeffrey fluid over a stretching sheet. Jena et al. [9] reported the 

combined effect of heat and mass transfer in Jeffrey fluid 

flow through porous medium over a stretching sheet subject 

to transverse magnetic field in the presence of heat 

source/sink. 

Viscous dissipation and Joule heating concepts play a great 

role in distinct fields like geophysical flow, nuclear 

engineering, etc. Alim et al. [10] analysed the Joule heating 

effect on MHD free convection flow from a vertical flat plate. 

Eldahab and Aziz [11] examined the viscous dissipation and 

Joule heating effects on MHD-free convection flow past a 

semi-infinite vertical flat plate by taking Hall and ion-slip 

currents. Amin and Mohammadein [12] analysed the Hiemenz 

Flow of a micropolar fluid. Newtonian heating and Joule 

heating effects on the magnetohydrodynamic (MHD) flow of 

Jeffrey liquid persuaded by a nonlinear radially stretched sheet 

were studied by Hayat et al. [13]. Unsteady MHD convective 

flow in a vertical porous channel with viscous dissipation was 

discussed by Selvi and Muthuraj [14]. Rudraswamy et al. [15] 

discussed the combined effect of viscous dissipation and Joule 

heating on three-dimensional flow and heat transfer of a 

Jeffrey nanofluid. Hayat et al. [16] studied the boundary layer 

flow and heat transfer in third grade fluid over an unsteady 

permeable stretching sheet. Ahmed et al. [17] obtained the 
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exact solution regarding convective heat transfer of a 

magnetohydrodynamic (MHD) Jeffrey fluid over a stretching 

sheet by taking joule and viscous dissipation, internal heat 

source/sink and thermal radiation effects in the flow region. 

Joule heating effect on MHD mixed convection flow of 

nanofluids between two concentric cylinders with chemical 

reaction was studied by Srinivasacharya and Shafeeurrahman 

[18]. Mabood et al. [19] proposed the radiation effects on 

Williamson nanofluid flow over a heated surface in presence 

of magnetohydrodynamics. 

One of the most important methods for highly nonlinear 

problems is the homotopy analysis method (HAM) which was 

firstly employed by Liao [20, 21] for the nonlinear problems. 

This powerful method is being employed vastly by many 

researchers in different practical aspects of engineering and 

nonlinear problems. Heat transfer analysis in Darsian porous 

medium with radiation was carried out by Mabood and Khan 

[22]. El-Aziz and Nabil [23] discussed the effect of time-

dependent heat source/sink on heat transfer characteristics of 

the unsteady mixed convection flow over an exponentially 

stretching surface are investigated analytically. Liu et al. [24] 

analyzed the asymptotic behaviors of the steady state 

responses of a fractional van der Pol oscillator. Shehzad et al. 

[25] addressed the magnetohydrodynamic (MHD) radiative 

flow of an incompressible Jeffrey fluid over a linearly 

stretched surface. Hayat et al. [26, 27] analyzed the flow of 

Jeffrey fluid under various conditions. Ibrahim et al. [28] 

studied the mixed convection on MHD flow of Casson fluid 

over a nonlinearly permeable stretching sheet with thermal 

radiation, viscous dissipation, heat source/sink, chemical 

reaction and suction. 

In this article a mathematical model has been proposed and 

analysed to study the influence of Joule heating on MHD 

Jeffery fluid flow over a moving porous stretching surface 

with thermal radiation. Homotopic algorithm is developed to 

find the expressions of velocity and temperature. Convergence 

of the developed series solutions is verified. 

 

 

2. MATHEMATICAL FORMULATION 
 

We consider a steady two-dimensional dissipative and 

radiative MHD flow of an incompressible, electrically 

conducting Jeffrey fluid over a moving porous stretching 

surface in the presence of joule heating and variable heat flux. 

A Cartesian coordinate system is chosen in such a way that x-

axis is along the stretching surface and the y-axis 

perpendicular to it. The fluid fills the porous half space y>0. 

A constant magnetic field B0 is taken normal to the sheet. Two 

equal and opposite forces are applied along the x-axis so that 

the surface is stretched keeping the origin fixed and sheet 

issues from a thin slit. The magnetic Reynolds number is 

assumed small and so the induced magnetic field can be 

considered to be negligible. It is assumed that the speed of a 

point on the plate is proportional to its distance from the slit 

and the boundary layer approximations still applicable. It is 

also assumed that the prescribed heat flux at the stretching wall 

varies as the square of the distance from the origin. The flow 

configuration and coordinate system are as shown in Figure 1. 

The constitutive equations for Jeffrey fluid can be written as 

τ = −pI + S, with S as the extra stress tensor and it defined 

by 
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where τis the Cauchy stress tensor, μ is the dynamic viscosity, 

λ and 𝜆1 are the material parameters of Jeffrey fluid and 𝑅1 is 

the Rivlin-Ericksen tensor defined by 
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Under the boundary layer approximations, the governing 

equations for conservation of mass, momentum, thermal 

energy and nanoparticle concentration of this problem can be 

expressed as 
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Subject to the boundary conditions 
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where u and v are the velocity components in x and y 

directions, ν =
𝜇

𝜌
  is the kinematic viscosity, ρ  is the fluid 

density, λ is the ratio of relaxation and retardation times, 𝜆1 is 

the relaxation time, σ is the electrical conductivity of the fluid, 

𝐾∗ is the permeability of porous medium, 𝐵0 is the transverse 

magnetic field strength, μ is the coefficient of viscosity, 𝑐𝑝 is 

the specific heat at constant pressure, T is the temperature in 

the boundary layer, k is the thermal conductivity, 𝑄0 is the heat 

source coefficient, 𝑞𝑟 is the radiative heat flux, 𝑇∞ is the free 

stream temperature, c is the proportionality constant, B is the 

stretching rate and it is a positive constant. The thermal 

boundary conditions depend on the type of heating process 

under consideration. Here we consider heating processes as 

variable surface heat flux varying with the distance.
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Figure 1. Physical configuration 

 

Following Rosseland approximation, the radiative heat flux 

is  
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where *  is the Stefan-Boltzman constant and *k  is the mean 

absorption coefficient. Further, we assume that the 

temperature difference within the flow is such that 4T is 

expressed as a linear function of temperature. Hence, 

expanding 4T  in Taylor series about T  
and neglecting 

higher order terms, we obtain 4 3 44 3T T T T   . 

Now, we introduce the following similarity 

transformations:  
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Equation (1) is automatically satisfied and the equations Eq. 

(2) to Eq. (4) cab be written as 

 

    

   

2 2''' '' '''' 1 '' '

1
1 ' 1 0,

f f f f f f f

M f Gr
K

 

  

    

 
      

     
                      (6) 

 

 2 2

4
1 '' ' 2 '

3

' ' ' 0.

R Pr f Pr f

Pr Ec f M f Pr Q

  



 
   

 

   

                                   (7) 

 

The boundary conditions are 
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where prime denotes differentiation with respect to  , 
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Expressions for skin friction coefficient fC
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 are 

2

w

f

w

C
u




  and 

 
w

x

w

xq
Nu

k T T




where 
0

,w

y

u

y
 



 
  

 
 

* 3

*

0

16

3
w

y

T T
q k

yk

 



   
         

. 

 

Using w  and wq , we have 
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3. HAM 

 

For the homotopic solutions of the equations (6) and (7) 

subjected to the boundary conditions (8), we choose 
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with the following properties 
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where ( 1 to 5)iC i   are the arbitrary constants. 

We construct the zeroth-order deformation equations as 
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where [0,1]p  is the embedding parameter, 
1

and 
2

are 

the non-zero auxiliary parameters. 

When 0p   and 1p  , we obtain 
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Thus, as p  increases from 0 to 1 then 

   ; and ;f p p    vary from initial approximations to the 

exact solutions of the original nonlinear differential equations. 

 

Now, with the help of Taylor’s series, we can write 
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If the initial approximations, auxiliary linear operators and 

non-zero auxiliary parameters are chosen in such a way that 

the series Eq. (15) and Eq. (16) are convergent at 1,p 
 
then 
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The mth-order deformation equations are follows 

 

      1 1 1 ,f

m m m mL f f R                                    (20) 

 

      2 1 2 ,m m m mL R                                     (21) 

 

with the following boundary conditions  
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  
 
 

 
  

 





 

        (24) 

 

0, 1,

1, 1.
m

m

m



 


                                                (25) 

 

The general solution can be written as 

 
*

1 2 3

*

4 5

( ) ( ) ,

( ) ( ) ,

m m

m m

f f C C e C e

C e C e

 

 

 

   





   

  
                               (26) 

 

where * *( ) and ( )m mf    are the special solutions of mth order 

deformation equations. 

 

 

4. CONVERGENCE OF HAM 

 

The convergence of the acquired solutions depends upon the 

non-zero auxiliary parameters 1 and 2 . To acquire the 

relevant values for these parameters, -curves are portrayed 

in Figure 2. From the figure, it is scrutinized that the plausible 

region of the parameters is about  1.0,0.0 . For 

1 2 0.45   , the series solutions are convergent in the 

whole region of  . Table 1 displays the convergence of the 

method when 0.1, 0.5, 0.2, 0.1M Gr     , K=10, 

S=0.1, R=0.1, Pr=1.0, Ec=0.2, Q=0.2. 

 

981



 

 
 

Figure 2. -curves of  ' ' 0f and  ' ' 0
 
for 15th order 

approximation 

 

Table 1. Convergence of HAM solution for different orders 

of approximations 

 

Order  ' ' 0f   '' 0
 

5 1.572939 2.055736 

10 1.579667 2.108476 

15 1.579621 2.110438 

20 1.579618 2.110489 

25 1.579618 2.110490 

30 1.579618 2.110490 

35 1.579618 2.110490 

40 1.579618 2.110490 

45 1.579618 2.110490 

50 1.579618 2.110490 

55 1.579618 2.110490 

60 1.579618 2.110490 

 

 

5. RESULTS AND DISCUSSION 

 

The desire of this study is to construe the outcomes of 

various parameters such as Deborah number (β), ratio of 

relaxation and retardation times (λ), magnetic parameter (M), 

permeability parameter (K), Grashof number (Gr), suction 

parameter (S), radiation parameter (R), Prandtl number (Pr), 

Eckert number (Ec) and heat source parameter (Q) on velocity, 

temperature, skin friction coefficient and Nusselt number.  

In this study following default parameter values are 

undertaken for computations: 

 

0.1, 0.5, 0.2, 0.1, 10, 0.5,R 0.1,

Pr 1.0, 0.2, Q 0.2.

M Gr K S

Ec

       

  
 

 

The impact of ratio of relaxation to retardation times   on 

the velocity and temperature profiles are illustrated in Figures 

3 and 4. It is observed that the increase of  causes the 

devaluation of both boundary layer thickness and velocity of 

the fluid. These effects are ample solider close to the surface 

of the sheet. This confirms that the increase of   gives the 

field retardation and which effects to prevent the increase of 

the fluid motion. Further, maximum temperature and thinnest 

thermal boundary layer thickness is noticed. Thus, an increase 

in   implies to an increase in relaxation time and decrease in 

retardation time. This change in relaxation and retardation 

times elucidates the higher temperature and thicker thermal 

boundary layer thickness. 

Figures 5 and 6 describe the effect of Deborah number β  on 

velocity and temperature. Velocity accelerates with β and 

opposite phenomena is noticed in the case of temperature 

profiles. This is due to the direct proportionality of β
 

retardation time. Due to the Lorentz force admitted by the 

magnetic field in the flow region, the velocity deteriorates and 

temperature enhances with the magnetic parameter M . This 

is portrayed in Figures 7 and 8. 

Figure 9 depicts the effect of permeability of the porous 

medium parameter K  on the velocity distribution. It is 

obvious that as K  increase, the velocity increases along the 

boundary layer. Also, it is expected that, an increase in the 

permeability of the porous medium leads to the rise in the fluid 

flow. Thus, the holes of the porous medium become larger and 

then the resistivity of the medium may be neglected.Figure 10 

depicts that an increase in thermal buoyancy parameter leads 

to a depreciation in the velocity profile. Figure 11 illustrates 

that an increase in the thermal buoyancy parameter leads to an 

increase in the temperature profile and thermal boundary layer 

thickness.  

Figures 12 and 13 display the velocity profile and 

temperature profile for the suction parameter S  on the 

velocity and temperature. The velocity, boundary layer 

thickness, temperature and thermal boundary layer thickness 

are decreasing function of S  
As R  increases, heat energy will be released to the fluid as 

a result amplification takes place in the temperature 

distribution with R . This is delivered in Figure 14. In case of 

higher Prandtl values the diffusion of heat away from the 

heated surface is very slow when compared to the smaller 

Prandtl values. Hence temperature depreciates with the 

acceleration of Prandtl number Pr  as delineated in Figure 15.  

The positive Eckert numbers implies cooling of the sheet 

hence temperature declines with Eckert number. This is shown 

in Figure 16. Physically 0Q   indicates 
wT T  which 

entails the supply of heat to the flow from the wall. Therefore 

temperature declines with heat source parameter as shown in 

Figure 17. 

Tables 2 and 3 show superb correlation of present results 

with the previous results for  '' 0f . Table 4 demonstrates 

the impact of effective parameters on skin friction coefficient 

and Nusselt number. From the table, it is clear that skin friction 

is increasing with Deborah number    and opposite result is 

observed in the case of Nusselt number. Skin friction 

coefficient decreases with  , Ec  and increases with R . 

Nusselt number rises with   and decreases with ,Ec R . 

 

 
 

Figure 3. Effect of   on  'f   
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Figure 4. Effect of   on     

  
 

Figure 5. Effect of   on  'f   

 

 
 

Figure 6. Effect of   on     

 

 
 

Figure 7. Effect of  M  on  'f   

 

 
 

Figure 8. Effect of  M  on     

 
 

Figure 9. Effect of K  on  'f   

 

 
 

Figure 10. Effect of Gr  on  'f   

 

 
 

Figure 11. Effect of Gr  on     
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Figure 12. Effect of S  on  'f   

 
 

Figure 13. Effect of S  on     

 

 
 

Figure 14. Effect of R  on     

 

 
 

Figure 15. Effect of Pr  on     

 

 
 

Figure 16. Effect of Ec  on     

 
 

Figure 17. Effect of Q  on     

 

Table 2. Comparison of  '' 0f  when 

0.0,S Gr K       

 

M  Chen [29] Harish Babu and 

Satya Narayana [30] 

 

HAM 

0.0 1.00000 1.00000 1.000000 

0.5 1.22425 1.22479 1.224745 

1.0 1.41421 1.41432 1.414214 

1.5 1.58114 1.58115 1.581139 

2.0 1.73205 1.73225 1.732051 

 

Table 3. Comparison of  0  when 

S 0.0,Pr 1.0, .Gr R Ec Q K           

 

M  Turkyilmazoglu [31] Kayalvizhi et al. [32] HAM 

0.0 0.750000 0.75000000 0.750000 

1.0 0.822522 0.82252217 0.822519 

 

Table 4. Values of skin friction coefficient and Nusselt 

number for different parameters when 

0.5, 10, 0.1, 0.5,Pr 1.0, 0.2M K Gr S Q      . 

 

    R  Ec  1/2
ReC xf

 
1/2

ReNux x


 

0.0 0.1 0.1 0.2 -1.563541 1.941470 

0.2 0.1 0.1 0.2 -1.447983 1.928555 

0.4 0.1 0.1 0.2 -1.358119 1.918286 

0.2 0.2 0.1 0.2 -1.458568 1.938243 

0.2 0.3 0.1 0.2 -1.478294 1.946607 

0.2 0.4 0.1 0.2 -1.503133 1.953930 

0.2 0.1 0.0 0.2 -1.444229 1.892574 

0.2 0.1 0.3 0.2 -1.455853 1.996502 

0.2 0.1 0.5 0.2 -1.464164 2.057330 

0.2 0.1 0.1 0.1 -1.450512 1.789266 

0.2 0.1 0.1 0.3 -1.445469 2.090476 

0.2 0.1 0.1 0.5 -1.440481 2.508594 
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6. CONCLUSIONS 

 

The present study describes the boundary layer flow of a 

dissipative and radiative MHD flow of Jeffrey fluid with heat 

effects. Series solutions are procured for these ordinary differential 

equations by admitting homotopy analysis method (HAM). The 

present results are validated by comparing with available literature 

and notied favorable agreement. 

The main observations of this study are as follows: 

• The Deborah number    has opposite effects on skin 

friction and Nusselt numbers. 

• The Nusselt number decreases in view of increase in 

Ec . 

• The effect of Deborah number and parameter   on 

the velocity is quite opposite. 

• The heat generation parameter leads to a decrease in 

temperature profiles. 
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NOMENCLATURE 

 
,u v  velocity components in ,x y  directions 

,x y  axian and normal coordinates 

k  thermal conductivity of the fluid, W. 

m-1. k-1  

B dimensional temperature coefficient 

B0 magnetic induction, T 

c stretching rate, s-1 

Cf skin friction coefficient 

cp specific heat at constant pressure, J. kg-

1. K-1 

k* mean absorption coefficient 

Q0 heat source coefficient 

qr radiative heat flux, W. m-1 

qw surface heat flux 

Rex local Reynoldsnumber 

T fluid temperature, K 

Tw wall temperature on sheet y=0, K 

T  temperature far away from wall, K 

0v  suction velocity across stretching sheet 

M magnetic field, N. m-1. A-1 

Pr 

Ec 

Gr 

K 

R 

Nux 

S 

Q 

Prandtl number 

Eckert number 

Grashof number 

permeability of porous medium 

radiation parameter 

Nusselt number 

suction parameter 

heat source parameter 

 

Greek symbols 

 

 

  Deborah number 

  similarity variable  

  ratio of relaxation and retardation times 

1  retardation time, s 

  dynamic viscosity, Pa. s-1 

  
  

kinematic viscosity, m2. s-1 

fluid density, kg. m-1 

  electric conductivity, W. m-2. K-4 

  non-dimensional temperature 

  Cauchy stress tensor 

w  shear stress along stretching sheet 

  

Subscripts 

 

w  

 

 

sheet surface 

  Infinity 

  

Superscript 

 
'  

 

 

differentiation with respect to  
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