
 
 
 

 
 

 
1. INTRODUCTION 

The task of predicting the weather that will be observed at 

a future time is called weather forecasting. As one of the 

primary objectives of the science of meteorology, weather 

forecasting has depended critically on the scientific and 

technological advances in meteorology that have taken place 

since the latter half of the 19th century.  

Throughout most of history, forecasting efforts at any 

given site depended solely on observations that could be 

made at that site. Observations of sky, wind, and temperature 

conditions and knowledge of local climate history permitted 

a limited predictive ability. Current weather-forecasting 

techniques were initiated by the theoretical work based on by 

solving complex numerical equations involving different 

meteorological parameters. Various numerical techniques are 

used in Numerical Weather Prediction (NWP) [1] to find the 

solution of the governing equations of the atmosphere. In this 

paper we have proposed and presented technical idea about 

different mathematical tools using multi-mesh topology for 

which this network is found to be more efficient with regard 

to computational time than the corresponding mesh with the 

same number of processors. Time efficient implementations 

of algorithms for solving numerical problems, e.g., partial 

differential equation, Lagrange’s interpolation computation 

have been discussed. The time complexity of Lagrange’s 

interpolation on this network is O(n) for n2 data points 

compared to O(n2) time on mesh of the same number of 

processors. These techniques can be used efficiently for 

solving numerical equations involving different data points 

regarding NWP. 

2. MULTI-MESH TOPOLOGY 

The multi-mesh topology [2] is getting popular for its 

efficient topological properties for example: existence of 

Hamiltonian cycle, simple routing etc. In an n  n multi-mesh 

network, used n2 meshes of size n  n each, which 

themselves are again arranged in n rows and n columns so 

that there will be n4 processors in total. Each n  n mesh in 

this network is termed as a block. In a simple n  n mesh 

only (n – 2)2 internal processors have degree four, the four 

corner processors are of degree two and 4(n – 2) boundary 

processors have degree three, as opposed to degree four for 

all processors on the multi-mesh shown in Figure 1. 
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ABSTRACT  
 
Today for different Meteorological observations attempts are being made for a faster parallel computing 

method for the purpose of numerical weather forecasting. Highly faster computation technique is required to 

study raw observation data into easily understandable and accurate weather forecast today. Faster technique 

will make it possible for meteorological data investigations successfully as well as to run complex weather 

forecasting models in lesser time, using highly complex set of weather models. The methodology that is used 

by meteorological study of weather forecasting consists usually of technique called numerical weather 

prediction. Numerical modeling of atmosphere is a complex process of solving a number of equations 

involving the future changes of weather variables, like temperature, pressure, humidity, wind speed etc. A 

simultaneous calculation of different parameters is a necessary part for accurate weather prediction. The 

multi-mesh topology is getting popular for its efficient topological properties for example: existence of 

Hamiltonian cycle, simple routing etc. In an n  n multi-mesh network used n2 meshes of size n  n each, 

which themselves are again arranged in n rows and n columns so that there will be n4 processors in total. Each 

n  n mesh in this network is termed as a block. Using this topology different numerical equation for weather 

prediction can be solved very faster. This paper presents an efficient and faster way for solving different 

numerical equation using multi-mesh topology with multiple processors acting simultaneously. 
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Figure 1. A Multi-mesh network with n=3 (all inter-block 

links are not shown) 

 

A processor on the multi-mesh can be identified with a 

four tuple P(, , x, y) where ,  give the block address as 

the throw and th column, and x, y denote the processor 

address as xth row and yth column  within that block. Each 

processor P(,, x, y) is connected to P(, , x  1, y  1), if 

they exist, using bi-directional links referred as intra-block 

links. There exist however, some additional bi-directional 

connections termed as inter-block links among the corners 

and boundary processors defined as follows: 

(i) P (, , 1, y) is connected to P (y, , n, ) for 1  y, 

,  n. As a special case, for  = y, these links connect 

processors within the same block.   

(ii) P (, , x, 1) is connected to P (, x, , n) for 1  x, 

,  n. As a special case, for  = x, these links connect 

processors within the same block.  

3. EMULATION OF AN n2 x n2 MESH TO A MULTI-

MESH NETWORK 

Different numerical weather prediction algorithms are 

mapped onto a mesh network because some useful properties 

of the mesh. In a simple n2 x n2 mesh, a processor designated 

as P(x,y) can know the stored in four of its neighbors, P(x 1, 

y 1), 1≤x, y≤ n2, in constant time. Regarding this the 4-

neighbor property of a mesh one can think that this property 

is destroyed in multi-mesh network. But, in the MM network, 

the processors P(*,*, x, n) are directly connected to 

processors p(*, *, x 1, n) by two intra-block links in the 

vertical direction, for x ≠ 1 or n. They are also connected to 

the processors P(*, *, x, n-1) by an intra-block link in the 

horizontal direction. So, the processors P(*, β, x, n) for odd β 

can and the processors P(*,β+1, x, n), β<n, can exchange data 

in three steps, i.e. in O(1) time. Thus, for odd β, P(*, β, x, n) 

and P(*,β+1, x, n), 1≤β<n, are in a sense, neighbors of each 

other. Similarly, it is also true for even β. Thus the 4-

neighbor property of the mesh interconnection can be 

emulated [3] by the multi-mesh network in constant time. 

The initial distribution of data to preserve desired adjacency 

among different data elements on an MM network with n = 3 

is shown in Figure 2. 

 

 
 

Figure 2. Initial distribution of processors of a 9 × 9 matrix 

on the MM network for emulating 9 × 9 mesh 

4. NUMERICAL SOLUTION OF PARTIAL 

DIFFERENTIAL EQUATION 

One of the greatest needs in Numerical Weather Prediction 

is a general and reasonably short method of solving partial 

differential equations by numerical methods [4]. Certain 

types of boundary-value problems can be solved by replacing 

the partial differential equations, such as Laplace’s, Poisson’s 

and several others, by the corresponding difference equations 

and then solving the later by a process of iteration. 

A difference quotient is the quotient obtained by dividing 

the difference between two values of a function by the 

difference between the two corresponding values of the 

independent variable. Thus for function f(x) of a single 

variable, the difference quotient is 
f(x+h)−f(x)

h
, whose limiting 

value is the derivative of f(x) with respect to x, the 

approximation becoming closer as h becomes smaller. 

 Partial difference quotients of the second and higher 

orders are best constructed with reference to a network of the 

points in the xy plane for a function, say, u(x, y), of two 

variables as shown in the Figure 3. The points of intersection 

of the lines are called the lattice points. 

 

Figure 3. Lattice points around (x, y) in x-y plane 
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Now, we shall consider as an example the Laplace’s 

equation for two dimensions, 

 

∂ 2V

∂x2
+

∂ 2V

∂y2
= 0 

 

Replacing 
∂ 2V

∂x2 and  
∂ 2V

∂y2 by ux̅x  and  uy̅y  respectively (x 

and x̅ are two different points on x-axis, y and y̅ are similar 

points in y-axis), we get 

 
u(x+h,y)−2u(x,y)+u(x−h,y)

h2 +   
u(x,y+h)−2u(x,y)+u(x,y−h)

h2 = 0 

 

(Using forward and backward second difference quotient of 

u(x, y) with respect to x and y respectively.) 

From the above, we can get 

 

u(x, y) =  
1

4
 [u(x + h, y) + u(x, y + h) + u(x − h, y)

+ u(x, y − h)] 
 

To solve Laplace’s equation in two variables with the 

given boundary conditions, we start with the given boundary 

values (the ‘a’ values in Figure 3) and the initial value of the 

interior lattice points (the ‘u’ values in Figure 4). The rough 

values of u’s are computed as 

 

ú1 =  
1

4
 ( u2 + a2 + a32 + u8 )  

ú2 =  
1

4
 ( u3 + a3 +  ú1 +  u9 ) 

ú3 =  
1

4
 ( u4 + a4 + ú2 + u10 ) 

.   .   .  .  .  .   .  .  .   .  .  .  .  .  .  .  .  .  . 

.   .   .  .  .  .   .  .  .   .  .  .  .  .  .  .  .  .  . 

ú49 =  
1

4
 (ú48  +  a16 +  a18 +  ú42 ) 

 

 
Figure 4. The boundary values and the interior lattice values 

in the grid 

 

To get the initial values for the interior points of the 

network, first the value of u25 is calculated at the centre of the 

square by taking mean of four boundary values, i.e., a29, a13, 

a5, and a21. Then the values are calculated for the centre of 

four large squares, i.e., u9, u13, u37 and u41. These values are 

found by taking the means of the values at the ends of the 

diagonals of the large squares and the process will be 

repeated in this way if still some points are left. 

A. Implementation using Multi-Mesh Network 

Since the blocks in multi-Mesh are connected by their 

inter-block links, the computation of the initial values of the 

interior lattice points can be done quicker than in a mesh. For 

a n2 x n2 mesh the calculation of initial value of the center 

lattice points requires O(n2 ) communication time to bring the 

four boundary values together in center lattice points whereas 

in Multi-Mesh it can be done in O(n) communication time, 

since all the four blocks which contain the four boundary 

points are O(n) distance far from the center block. The same 

is applicable for all successive computations of other interior 

lattice points. 

For iterative computations of the rough values of the lattice 

points, the four neighborhood property of mesh can be 

achieved in Multi-Mesh as shown in the emulation of mesh 

in Multi-Mesh in section   

5. LAGRANGE’S INTERPOLATION 

One of the powerful mathematical tools for solving 

numerical equations is Lagrange’s Interpolation. This 

technique is widely used by meteorological stations for 

Numerical Weather Prediction. 

We can assume v1, v2, ……., vn be the given values of F(u) 

at u1, u2, ……., un respectively, so that we can find vi = F(ui). 

We can interpolate F(u) at the value �̅�  using the N-point 

Lagrange’s interpolation formula given by, 

 

𝐹(�̅�) =  П(�̅�) ∑[𝑣𝑖/{(�̅� − 𝑢𝑖)𝜋′(𝑢𝑖)}]

𝑖

 

 

where  

 

𝑣𝑖 = 𝐹(𝑢𝑖), 𝜋(�̅�) =  (�̅� −  𝑢1)(�̅� −  𝑢2)(�̅� − 𝑢3) … . (�̅�
−  𝑢𝑁), 

 

And  

 

 𝜋′(𝑢𝑖) =  (𝑢𝑖 −  𝑢1)(𝑢𝑖 −  𝑢2) … . . (𝑢𝑖 − 𝑢𝑖−1) 

(𝑢𝑖 −  𝑢𝑖+1) … … (𝑢𝑖 −  𝑢𝑁), 
 

A. Parallel Implementation Using the Multi-Mesh Network 

One can use an MM network of n4processors for N(= n2)-

point Lagrange's interpolation. The basic idea of this 

algorithm [5] is given below: 

At first the data elements u(β-1)n+α and u(α-1)n+β are fed to the 

processors P(α,β,n,1) and P(α,β,1,n) respectively, ∀∝,β,  1≤α, 

β≤n. Also, u̅ is fed to the processors P(1,1,1,1). v(α-1)n+β are 

fed to the processors P(α,1,β,1), ∀∝,β, 1≤α, β≤n. 

 The differences (u̅ − ui)s is then computed at the diagonal 

processors of the diagonal blocks, which are partially 

multiplied in each block. These are then brought to a single 

block by using the inter block links, the product term π(u̅) is 

computed there, and stored in processors P(1,1,1,1,1). 

Similarly, each of the differences(u̅ − ui), (ui − u1), etc., 

required for computing (u̅ − ui)π′(ui)  for each i, I = 1, 

2,…….,n, is computed in a separate processors. These 

differences are then partially multiplied in each block and 

then brought to a single block for final multiplication using 

the inter-block links for all i, viis then divided by this 

product(u̅ − ui)π′(ui). By using the inter-block links again, 
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these results are brought to a single block, summed up there, 

and then multiplied by П(u̅)  to give the final result. The 

detailed steps of the algorithm are given the Ph.D. thesis of 

De M. [5]. 

6. CONCLUSIONS 

New numerical models continue to be developed as 

supercomputers become more powerful. It is not simply a 

matter of doing more and more computations, however. 

Some approximations in such models depend on other parts 

of the solution being sufficiently simple to make the resulting 

approximation satisfactory.  

As numerical models improve, meteorologists are 

reconsidering the concept of predictability. How far ahead 

can time- or area-averaged quantities be usefully predicted? 

Is it possible to identify occasions when the atmosphere is 

more predictable than at other times? Meteorologists 

recognize that in the prediction step of forecasting, current 

statistical models should in time be replaced with expert 

systems — that is, artificial intelligence systems. This idea, 

however, is only in the beginning stages of development. The 

greatest potential for improvement in forecasting appears to 

lie in the short and medium ranges, while experimental work 

will characterize the extended range. Improvements in daily 

forecasting are likely to increase at a relatively minor pace.  

In this paper, attempted have been made to give a technical 

idea for solving numerical equations regarding Numerical 

Weather Prediction efficiently in Multi-Mesh network. 
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