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 The aim of this paper is to study the optimum stability by suitable placement of different 

discs on the shaft. Analyzed enhanced disk positioning can help reduce rotor failure and 

verify higher stability certification. In this work, two methods of system analysis, the 

Plackett-Burman statistical method, were combined to improve system properties and 

determine the factors most influencing frequency, where two levels with a total of four 

diameters, four stiffness factors and three disk positions were used, which resulted in 

twenty runs tour according to this plan for answers. We found through these experiments 

that the stiffness modulus of the second bearing kyy2, the position of the disc P3 and the 

diameter d1 a significant effect in increasing the natural frequency of the system Compared 

to the position of the disc p2 ,and the diameter of d3 them effect on increasing the excitation 

frequency in the real part, and the finite element method for modeling multi-disc rotors 

because it provides clear modeling advantages, especially in the modeling of measurement 

systems where it provides physical damping in the column. The rotational dissipation 

forces are proportional to the rotational speed and act tangentially over the rotor's orbit, 

and are known to cause instability after a certain rotational speed. The stability of the shaft 

system is found in terms of the rotational velocity stability limit as well as the imbalance 

response when the shaft system is subjected to dynamic influence due to the disk 

imbalance. 
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1. INTRODUCTION 

 

The Plackett-Burman design (PBD), developed by Plackett 

and Burman in 1946. It was designed to improve the quality 

control process that could be used to study the effects of design 

parameters on the system state so that intelligent decisions can 

be made. Plackett and Burman (PB) devised orthogonal arrays 

are useful for screening, which yield unbiased estimates of all 

main effects in the smallest design possible. Various number 

or ‘n’ factors can be screened in an ‘n + 1’ run PB design. A 

characteristic feature is that the sample size is a multiple of 

four rather than a power of two (4k observations with k = 1, 

2…n). PB designs are used to investigate n–1 variables in n 

experiments proposing experimental designs for more than 

seven factors and especially for n  4 experiments, i.e., 8, 12, 

16, 20, etc., that are suitable for studying up to 7, 11, 15, 19, 

etc., factors respectively. Such designs are known as saturated 

designs. The main advantage of saturated designs is the 

minimum number of observations needed to calculate an effect 

for a certain factor. 

A selection of two-level Plackett-Burman designs is equal 

to the saturated fractional factorial designs. This means that 

seven factors are analyzed with fractional factorial (27-4) and 

with a PBD both requiring eight observations. To study 11 

factors a PBD is used with 12 runs, whereas the fractional 

factorial designs require 16 observations. Thereby PBD 

require fewer experiments than the highly fractionated 

factorial designs that include the same number of factors. The 

projective property of the PB design is that it allows the 

experimenter to follow up an initial design with runs which 

allow an efficient separation of main effects and interaction 

effects [1-5]. The disadvantage of PB design is that the aliasing 

pattern is much more complex, each main effect is aliased with 

every two-way interaction not involving that effect. Lack of fit 

is difficult to assess, and first-order effects may be confounded 

with interaction effects. PB designs are Resolution III designs 

with the attribute of requiring the lowest number of runs, but 

do not allow the estimation of interactions between factors; it 

can identify the significant main factors that make up the 

possible significant interactions. Further analysis of the 

important main factors would allow the analyst to identify and 

estimate the significant interaction terms. Therefore, the use of 

a Plackett-Burman design is appropriate for screening [6]. 

The most common sources of vibration in machinery are 

related to the inertia of their moving parts of which one of the 

most important parts is rotor. The rotor is a flexible shaft with 

a number of disks and has some bearing supports.  

The vibration of the rotor bearings increases due to bad 

installation, high rotating speed, poor lubrication, unbalances, 

etc. Knowing the roots of these vibrations helps engineers 

return the rotor operating conditions to safe mode. Because the 

rotor is usually the most expensive part of large machines. 
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Since some types of rotor faults are diagnosable using 

common vibration based condition monitoring methods and 

some others are not, then engineers need to use the simple 

models of rotors so that they can predict the behaviour of rotor 

under a group of its faults. Many relevant studies have been 

accomplished on rotor dynamics in recent years, where 

reference is covering a complete review in this regard [7]. 

Rotating machines represent some of the most common 

designs in mechanical engineering. Rotating shafts supported 

by bearings are usually loaded with mechanical components 

such as gears, pulleys, turbine rotors, etc. In almost all 

industrial applications rotating machinery may be found. In 

order to obtain the high specific power output, the aim is to 

operate the rotor at very high speed. The material damping in 

the rotor shaft introduces rotary dissipative forces which is 

tangential to the rotor orbit, well known to cause instability 

after certain spin speed [8].  

Hence, the high speed rotor operation suffers from two basic 

problems which are. High transverse response due to resonant 

frequency and instability of the shaft system to the rotational 

speed. These two occur due to the properties inherent in the 

material and the limitations of the running speed of the rotor, 

and by using the light weight and strong rotor, the running 

speed of the rotor can be improved. These two parameters have 

some practical limitations. In other words, a gyroscopic effect 

has some effect on stability.  

The gyroscopic effect on the disc depends on the disc 

dimension and disc position on the rotor. Thus, the proper 

positioning of the discs and optimized dimensions may ensure 

high speeds and maximum stability. A number of researchers 

have developed numerical methods for optimizing the 

structural design of a rotor system subject to dynamic 

performance constraints, in order to obtain high stability with 

system running at high speeds. Early work by Bhavikatti and 

Ramakrishnan [9] tackled the problem of minimizing the 

weight of a rotor subjected to constraints on stresses and 

eigenvalues of the system, respectively. The design variables 

considered in these studies included the inner radius of hollow 

rotor sections, the positions of bearings and rigid disk elements, 

and the bearing stiffness. Chen and Wang [10] followed 

similar design optimization problems but used an iterative 

method to manipulate the eigenvalues of rotor vibration modes. 

In their study the outer diameter of rotor sections was varied, 

together with bearing stiffness and damping coefficients. A 

study by Choi and Yang [11] considered using immune genetic 

algorithms to minimize rotor weight and transmitted bearing 

forces. Further work by Shiau and Chang [12] involved a two-

stage optimization with a genetic algorithm to find initial 

values of design variables for further optimization. In their 

study, various parameter constraints were incorporated in an 

objective function using a Lagrange multiplier method.  
Shabaneh investigated the dynamic analysis of a rotating 

disc-shaft system with linear elastic bearings at the ends 

mounted on viscoelastic suspensions [13].  

Stability and steady state response of symmetric rotors 

using the finite element method have been investigated by 

Oncescu et al. [14]. Athanasios [15] analysed a rotor-bearing 

system consisting a continuous Rayleigh’s shaft and finite 

fluid film bearings. A novel wavelet-based finite element 

method was used for the analysis of rotor-bearing systems by 

Xiang et al. [16]. They have considered the effects of 

translational and rotary inertia, the gyroscopic moments, the 

transverse shear deformations, and the internal viscous and 

hysteretic damping using the Rayleigh-Timoshenko element. 

Khanlo et al. [17] modelled the rotor-bearing system as a 

continuous shaft with a rigid disc in its midsection with 

Coriolis and centrifugal effects included. They extracted the 

governing partial differential equations of motion based on the 

Euler–Bernoulli beam theory. 

The assumed modes method was used to discrete partial 

differential equations and the resulting equations were solved 

numerically [17]. 

One can conclude that the most of the previous works have 

been done based on complicated theories, simulated lateral 

vibrations of rotor using the finite element method. The finite 

element method in this area does not have the required 

flexibility for changing the position of each member and 

boundary conditions, because in each of these cases a new 

problem must be produced. In addition, finding the position 

shapes is very difficult because of spatial condition on rotor-

bearing system. 

In recent studies, the Blackett Berman statistical method 

helped in studying the stability of rotating systems and had an 

effective role in determining the influencing factors, perhaps 

among these studies. 

A study was performed using the Plackett-Burman 

statistical method on the experimental designs in order to 

define the influence of the stiffness coefficients on the rotating 

machines dynamics in particular on the diameters which 

produce these high frequencies [18]. The factors interactions 

can affect by increasing or decreasing the principal effects as 

affirmed by the interaction and surface graphs. Their results 

show that the inclusion of the stiffness coefficients on the 

dynamic analysis of rotating machines supported on 

hydrodynamic bearings play a significant role on the 

estimation of the unbalance response of rotors.  

In their study, Naouri Abdallah et al. [19] considered that 

the dynamic behavior of fluid film bearings is one of the main 

factors, which affects the rotating machine performances. In 

this study, a rigid rotor supported by two identical 

hydrodynamic bearings is taken into consideration. The 

principal goal of this work is to predict the effect of the 

damping film of the hydrodynamic bearings on the rotating 

machines stability 

This paper relates to the study of optimal stability by 

appropriate placement of different discs on the shaft by the 

Plackett-Burman method, which is a statistical method that 

helps to determine the position of the optimized disc that was 

analyzed in reducing rotor failure and verifying a higher 

stability certificate represented by twenty experiments and 

eleven factors which are the diameters and three factors 

represented in the position of the discs and bearing stiffness , 

it was found through these experiments that the position of the 

disk p3 works to increase the frequency and destabilize the 

system compared to other factors in addition to the finite 

element method which had a very effective role in determining 

the stability limit of the system speed and the imbalance 

response when The shaft system is subjected to dynamic 

influence due to disc imbalance. 

 

 

2. ROTOR WITH MULTI-DISK, BEARING AND MASS 

UNBALANCE 

 

A complete model of rotor-bearing system with arbitrary 

conditions is shown in Figure 1. 

In this model, the number of discs and their axial locations, 

the number and position of the bearings, the number of 
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unbalance masses with different radius, magnitude, phase 

angle and their axial locations are completely arbitrary. In this 

model, the shaft is continuous and each bearing is modelled as 

two springs in horizontal and vertical directions. 

 

 
 

Figure 1. A general model of the rotor-bearing system with 

arbitrary conditions 

 

2.1 Energy terms 

 

Consider a model of a rotor with an arbitrary number of 

discs, unbalance masses and bearings with arbitrary locations 

mounted on the continuous flexible shaft as shown in Figure 

1. All energy terms of each of these parts are derived 

individually as follows: 

One then easily shows that the vector of rotation of the disc 

is given by: 
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Let u and w be the coordinates of O in R0, the following 

coordinate y is constant. The mass of the disc given by MD 

and its tensor of inertia in O with x, y, z principal directions of 

inertia: 
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The kinetic energy of the disc is, in this case, given by: 

 

( ) ( )
2 2 2 2 21 1

2 2
D D Dx Dx x Dy y Dz zT M u w I I I I  = + + + +  (3) 

 

where, ψ, θ and φ are the orientation angles of the coordinate 

system linked to the disc with respect to the fixed coordinate 

system (see Figure 3). The calculation of inertias and masses 

is detailed in the reference [20]. The expression of kinetic 

energy can be simplified. The angles and are small, the speed 

of rotation is constant (=) and the disk symmetrical (IDX = 

IDZ). In this case, the kinetic energy of the disc is given by the 

following relation: 
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The term IDY represents the gyroscopic effect (Coriolis). The 

term ½ IDY is constant and therefore has no influence in the 

equations. 
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2.2 Kinetic energy of the shaft 

 

The kinetic energy of the shaft can be written by extending 

the kinetic energy of a disk in longitudinal direction. Figure. 3 

shows the reference frame of a disc mounted on flexible shaft. 

Then, it is possible to have. 

 

( ) ( )
2 2 2 2 2

0 0 0
2

2 2

L L L

s

S I
T u w dy dy IL I dy

 
    = + + + +  +     (6) 

 

From the equations of the shaft, the disc and the bearings, 

the equation of motion of the rotor is written in the form: 

 

( ) 0M C K  +  + =  (7) 

 

Let us consider a rigid disc, represented in Figure 2, with 

the fixed and rotating reference marks respectively noted (X, 

Y, Z) and (x, y, z). The relationship between the two 

landmarks is established using Euler angles, in the form of 

three successive rotations as shown in Figure 2. 

 

 
 

Figure 2. The disc and the fixed and rotating marks 

 

 
Figure 3. Euler's angles 

 

 

3. METHODOLOGY  

 

The aim of this research is to study the optimum stability by 

proper placement of different discs on the shaft. Optimization 

technique is used for a specific purpose. Analyzed enhanced 

disk positioning can help reduce rotor failure and verify higher 
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stability certification. 

In this work, two methods of system analysis, the Plackett-

Burman statistical method, were combined to optimize the 

system properties, determine the most influencing factors and 

the finite element method to find out the gyroscopic effect on 

eigenvalues of rotor-bearing systems by Campbell. Graph, to 

fundamentally account for imbalance responses during the 

critical velocity passage. We designed a mathematical model 

under the name of rotor matrix in the software matlab that 

contains the geometry data of the rotor matrix element (tree 

data, disk data, and rotor matrix component geometry data. 

In addition to stiffness and damping matrices as a set of 

nodes and elements to calculate values of imaginary and true 

frequency under 0-10000 rpm. 

 

3.1 Rotor model "Rotor Lalanne" 

 

A rotor dynamic system can be decomposed into 

subsystems. This allows for various detailed models 

components. 

The used model is a rotor Lalanne with a length of 1.3m as 

shown in Figure 4. A mass of 115.66 kg is mounted on the 

shaft which is supported by two bearings respectively 0.2 (m) 

and 1.3 (m) apart from the left end. 5 stations are taken into 

consideration during harmonic analysis, in which the station 

numbers denote different nodes in the model: First bearing 

node (1), Disc (1), Disc (2), Disc (3), Second bearing (5). For 

the distributed rotor and the concentrated disc (1), the material 

density is 7800 kg / m3 and the modulus of elasticity is 2E11 

N / m2. with a mass of 0.81 kg, disk (1) with a mass of 14.58 

kg and disk (2) with a mass 45.95, disk (3) with a mass of 

55.13 kg, polar inertia (0.123 0.976 1.171) kg.m2 and 

diametral inertia (0.0646 0.498 0.603) kg.m2. 

 

 
 

Figure 4. Schematic model of the used model of rotor 

Lalanne 

 

3.2 Calculation of real and imaginary system frequency 

values 

 

Table 1. Rotor-bearing configuration data 

 
Element 

Node  

No 

Node 

Location 

(cm) 

Bearing 

and 

Disk 

Inner 

Diameter 

(cm) 

Outer 

Diameter 

(cm) 

1 0.2 Bearing 0 0.1 

2 0.3 Disc 0 0.1 

3 0.5 Disc 0 0.1 

4 1 Disc 0 0.1 

5 1.3 Bearing 0 0.1 

 
A mathematical model was designed under the name of 

Rotor Lalanne using Matlab which includes the data of each 

element of the rotor kit (shaft, disc, and bearing), and also the 

stiffness and damping matrices in the form of a set of nodes 

and elements were used to determine the values of the stiffness 

and the real and imaginary frequency at a speed interval 

ranging from 0 to 10,000 rpm (Table 1). 

 
 

4. RESULTS AND DISCUSSION 

 

4.1 Data of fluid film bearings 

 

The response chosen is the imaginary frequency and the real 

frequency of a system rotor- bearings, calculated by Matlab 

software. 

The factors examined in this study are: 

- The diameters of the Lalanne d1, d2, d3.d4. 

- Three disk positions p1, p2, p3. 

- The shaft is mounted on two fluid film bearings where the 

stiffness (Kyy, Kzz) was determined using Matlab software. 

- Kyz= Kyz = 0. 

- Bearing 1 :kyy1=7e7 (Ns / m), kzz1=6e7(Ns / m), 

- Bearing 2: kyy2=5e7(Ns / m), kzz2=4e7(Ns / m), 

- The components of damping are taken as:  

Bearing 1: Cyy1 = 7e7 (Ns / m), Czz1=5e7(Ns / m), 

Bearing 2: Cyy2 = 6e7 (Ns / m), Czz2=4e7(Ns / m). 

 

4.2 Plackett-Burman 

 

The experimental design methodology made it possible to 

generate a regression model. In this work we chose the 

Plackett-Burman plan. This choice is particularly driven by the 

required low cost: 20 trials must be counted. This number is 

low compared to a fully factor design, at two levels each A 

factor that requires 20 runs. 

With regard to the selection of factors, we relied on the 

results of a two-level examination plan for each factor The 

Eleven factors studied and their field of study were grouped 

together in Table 2. 
 

Table 2. The factors used in the study 

 

factors Symbol Units 
Levels 

-1  1+ 

The diameters d1=d2=d3=d4 
(m) 

 
0.05 0.15 

Positions of the disc 
1p 

2p 

p3 

(m) 

(m) 

(m) 

0.15 

0.25 

0.45 

0.25 

0.35 

0.55 

Stiffness 

Bearing 1 

Kyy1 

Kzz1 

(Ns/ m) 

(Ns/ m) 

0 

0 

7e7 

5e7 

Stiffness 

Bearing 2 

Kyy2 

Kzz2 

(Ns/ m) 

(Ns/ m) 

0 

0 

6e7 

4e7 

 
 

5. PLACKETT-BURMAN SCREENING PLAN 
 

5.1 Response factors  
 

The Plackett –Burman design is a very useful tool which 

enables to screen n variables using only n+ 1 experiment [21]. 

We use the Plackett-Burman (PBD) to improve rotor and 

determine the impact of discs position and the stiffness on 

rotary machine dynamics as well as knowing the diameters 

responsible for producing large effects on the frequency as 

well the reactions which increase or decrease the main effects. 

PBD is a design experiment that works based on the first 

order polynomial model: 
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 y = β0 + ΣβiXi (8) 

 

where, y is the response, β0 is the model intercept, βi is the 

linear coefficient, and Xi is the level of the independent 

variable.  

Therefore, this model only used to screen and evaluate the 

important variables that significantly influence the response 

and does not portray interaction among variables. 

5.2 Analyze factorial design 

 

The Plackett-Burman Plan allowed us to examine 11 

factors (d1, d2, d3, d4, p1, p2, p3, kyy1, kyy2, kzz1, kzz2) in more 

detail to identify optimal conditions to determine the factors 

most influencing frequency. The results of this plan will be 

subject to the necessary statistical treatment. Table 3. It 

represents the fixing of factors at different levels. 

 

Table 3. Plackett-Burman plan based on the experimental matrix 

 
  d1 d2 d3 d4 p1 p2 p3 kyy1 kyy2 kzz1 kzz2 FRQ img FRQreal 

1 0.05 0.15 0.15 0.05 0.15 0.25 0.45 7E+07 0 5E+07 0 114.35 692.14 

2 0.15 0.15 0.15 0.15 0.15 0.25 0.55 7E+07 0 5E+07 4E+07 18.91 14.37 

3 0.05 0.15 0.05 0.15 0.25 0.35 0.55 0 0 5E+07 4E+07 145.08 96.81 

4 0.05 0.05 0.05 0.05 0.25 0.25 0.55 0 6E+07 5E+07 4E+07 32.11 15.85 

5 0.05 0.05 0.05 0.15 0.15 0.35 0.45 7E+07 6E+07 5E+07 4E+07 35.38 0.75 

6 0.15 0.15 0.05 0.05 0.25 0.35 0.45 7E+07 6E+07 0 0 31.56 45.1 

7 0.15 0.05 0.05 0.05 0.15 0.35 0.45 7E+07 0 5E+07 4E+07 30.07 105.85 

8 0.15 0.15 0.15 0.05 0.15 0.35 0.55 0 6E+07 5E+07 0 74.78 15.02 

9 0.05 0.15 0.05 0.15 0.15 0.35 0.55 7E+07 6E+07 0 0 40.36 29.95 

10 0.15 0.05 0.15 0.05 0.25 0.35 0.55 7E+07 0 0 4E+07 30.6 695.12 

11 0.15 0.05 0.15 0.15 0.15 0.25 0.45 0 6E+07 0 4E+07 20.42 35.07 

12 0.05 0.15 0.15 0.05 0.25 0.35 0.45 0 0 0 4E+07 0 36.38 

13 0.05 0.05 0.05 0.05 0.15 0.25 0.45 0 0 0 0 0 70.57 

14 0.05 0.15 0.15 0.15 0.25 0.25 0.45 7E+07 6E+07 0 4E+07 28.31 15.93 

15 0.15 0.15 0.05 0.15 0.25 0.25 0.45 0 0 5E+07 0 16.16 20.88 

16 0.15 0.05 0.15 0.15 0.25 0.35 0.45 0 6E+07 5E+07 0 13.2 31.34 

17 0.05 0.05 0.15 0.05 0.25 0.25 0.55 7E+07 6E+07 5E+07 0 122.75 7.02 

18 0.15 0.05 0.05 0.15 0.25 0.25 0.55 7E+07 0 0 0 8.41 17.3 

19 0.05 0.05 0.15 0.15 0.15 0.35 0.55 0 0 0 0 0 126.3 

20 0.15 0.15 0.05 0.05 0.15 0.25 0.55 0 6E+07 0 4E+07 66.72 16.77 

 

 

6. STATISTICAL RESULTS AND INTERPRETATION 

 

6.1 Graphic representation of effects at Pareto chart 

 

This diagram (Figure 5) makes it possible to extract the 

most important parameters. Among all the factors studied and 

at the chosen confidence level (α = 0.05), the strong factors 

(kzz1) and the position (p3) and diameter d2, appear to be very 

influential factors in the imaginary part frequency. 

 

 
(a). Pareto chart 

 

 
(b). Pareto plot of normalized 

 

Figure 5. Pareto plot of normalized effects 

 

Main effects diagram: 

The main effects diagram tells us about the simultaneous 

influence of all factors on the frequency. We can from this 

diagram (Figure 6) conclude that the stiffness kzz1 and p3 and 

diameter d2, are the most influential factors positively on the 

imaginary part frequency.  
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Figure 6. Diagram of the main effects on frequency 

imaginary 

 

6.2 Determination of significant effects and coefficients of 

the model 

 

The effects values and the coefficients of regression of the 

model are given as bellow in Table 4. 

 

Model Summary: 

 

    S         R-sq     R-sq (adj)     R-sq (pred) 

44.3783    53.23%     0.00%         0.00% 

• Determination of the mathematical model 

 

The polynomial regression equation for the primary model 

(before excluding the non-significant terms), is written as 

follows: 

 

FRQ img = -96 - 208 d1 + 243 d + 17 d2 - 177 d3 + 27 p1 - 

27 p2 + 250 p3 + 0.000000 kyy1+ 0.000000 kyy2 + 

0.000001 kzz1 - 0.000000 kzz2. 

 

The goal is therefore to find the optimal polynomial 

equation. Based on statistical analysis previous, by eliminating 

the quadratic terms and the two interactions d1, d2, d3, d4, p1, 

p2, p3, kyy1, kyy2, kzz1, kzz2 gets a new model with a good 

quality fit. These results are summarized in Table 5. 

 

Table 4. Analysis of variance for imaginary frequency FRQ 

img  

 

Term DF Adj SS Adj MS F-Value P-Value 

D1  1 2153 2153.2 1.09 0.326 

D2 1 2959.5 2959.2 1.50 0.255 

D3 1 15.3 15.26 0.01 0.932 

D4 1 1561.3 1561.32 0.79 0.399 

P1 1 37 36.96 0.02 0.894 

P2 1 36.7 36.75 0.02 0.895 

P3 1 3131.8 3131.75 1.59 0.243 

 Kyy1 1 425.3 425.32 0.22 0.655 

 Kyy2 1 520.3 520.30 0.26 0.621 

 Kzz1 1 7084.2 7084.22 3.60 0.094 

 Kzz2 1 9.8 9.76 0.00 0.946 

 

 

Table 5. The used Runs in DOE 

 
  d1 d2 d3 d4 p1 p2 p3 kyy1 kyy2 kzz1 kzz2 FRQ img FRQreal 

1 0.05 0.05 0.05 0.15 0.15 0.35 0.55 7E+07 6E+07 0 4E+07 35.38 0.75 

2 0.15 0.15 0.05 0.15 0.25 0.25 0.45 7E+07 0 5E+07 0 16.16 20.88 

3 0.05 0.15 0.15 0.05 0.25 0.35 0.45 0 0 0 0 0 36.38 

4 0.05 0.05 0.05 0.05 0.15 0.25 0.45 0 0 0 4E+07 0 70.57 

5 0.05 0.15 0.15 0.15 0.25 0.25 0.45 7E+07 6E+07 5E+07 0 28.31 15.93 

6 0.05 0.05 0.15 0.05 0.15 0.25 0.45 0 6E+07 5E+07 4E+07 18.91 14.37 

7 0.05 0.15 0.15 0.15 0.15 0.35 0.55 7E+07 0 0 4E+07 0 126.3 

8 0.15 0.15 0.05 0.05 0.15 0.25 0.55 0 0 5E+07 0 66.72 16.77 

9 0.05 0.15 0.15 0.15 0.15 0.35 0.55 7E+07 6E+07 0 4E+07 40.36 29.95 

10 0.15 0.15 0.05 0.05 0.25 0.25 0.55 7E+07 0 0 0 114.35 692.14 

11 0.05 0.05 0.15 0.15 0.15 0.25 0.45 0 0 0 0 18.91 14.37 

12 0.15 0.05 0.05 0.05 0.15 0.25 0.55 0 6E+07 5E+07 0 145.08 96.81 

13 0.05 0.05 0.05 0.05 0.15 0.25 0.55 0 6E+07 5E+07 4E+07 32.11 15.85 

14 0.15 0.05 0.15 0.15 0.25 0.35 0.55 7E+07 0 5E+07 4E+07 30.6 695.12 

15 0.15 0.15 0.15 0.15 0.25 0.35 0.45 0 6E+07 0 4E+07 20.42 35.07 

16 0.15 0.05 0.15 0.15 0.25 0.35 0.45 0 6E+07 5E+07 4E+07 13.2 31.34 

17 0.15 0.05 0.05 0.15 0.25 0.25 0.55 7E+07 0 0 0 114.35 692.14 

18 0.05 0.15 0.05 0.05 0.25 0.35 0.55 7E+07 6E+07 0 0 31.56 45.1 

19 0.15 0.05 0.05 0.05 0.15 0.35 0.45 7E+07 0 5E+07 4E+07 30.07 105.85 

20 0.15 0.15 0.15 0.05 0.25 0.35 0.45 0 6E+07 5E+07 0 74.78 15.02 

 

• Model Summary 

 

S       R-sq       R-sq (adj)   R-sq (pred) 

13.7321    95.26%      88.74%     67.84% 

 

We notice from Table 6, that all the parameters estimated 

for this model are significant. The optimal polynomial 

regression equation for the new model is written as following: 

 

FRQ img = -10.8 + 709.8 d1 - 243.9 d4 + 316 d2 - 323.4 d3 - 

231.6 p1- 290.6 p2+ 285.0 p3+ 0.000000 kyy1 + 0.000001 

kyy2 - 0.000001 kzz1 - 0.000001 kzz2 
 

The employed model incorporates both principal effects and 

two-way interaction. We employed the values of (P) to 

estimate the coefficients and effects. To find the main effects 

using α = 0.05, the principal effects of diameter values of d1 

to kzz2 and their interactions which are statistically important; 

where their (P) values are lesser than 0.05. 
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Table 6. Regression coefficients estimated for imaginary 

frequency FRQ img after excluding non-significant terms 

(coded unit) 
 

Term DF Adj SS Adj MS F-Value P-Value 

D1  1 10508 10508.1 55.72 0.000 

D2 1 1710 1710.2 9.07 0.017 

D3 1 1729 1728.9 9.17 0.016 

D4 1 2309 2309.5 12.25 0.008 

P1 1 1145 1145.3 6.07 0.039 

P2 1 1909 1909.5 10.13 0.013 

P3 1 2471 2470.5 13.10 0.007 

 Kyy1 1 1669 1669.2 8.85 0.018 

 Kyy2 1 4960 4959.8 26.30 0.001 

 Kzz1 1 2824 2824.2 14.98 0.005 

 Kzz2 1 3484 3483.7 18.47 0.003 

 

Analysis of variance after excluding non-significant terms 

(Table 6), shows that all the terms are highly significant. We 

therefore conclude that the model improved is statistically 

better. 

Diameter d1, stiffness kyy2, and position p3 are all 

important and have an effect on increasing the frequency of 

the imaginary part and this is shown in Figure 7. 

The plot also states that: 

The Diameter d1 has more effect on the frequency 

compared to stiffness kyy2 and position p3. 

• Other diameters and other stiffness do not greatly affect 

the excitation frequency. 
 

 

 
 

Figure 7. Representation of the standardized effects as an 

imaginary part 
 

Then, the principal effect plots are sketched in MINITAB 

17 as illustrated in Figures 8 and 9. The diameters effects, the 

stiffness, and the position of the discs on the excitation 

frequency show 

 
 

Figure 8. Main effects plot for frequency- imaginary part 
 

 
 

Figure 9. Main effects plot for frequency- real part 
 

• Diagram of the effects of factor interactions on 

FRQ img and FRQ real  
 

 

 
 

Figure 10. Interaction plot for imaginary frequency FRQ img 

and FRQ real 
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Interaction plots are typically used to visualize interactions 

during an ANOVA, in which the effect of one factor depends 

on the level of another factor. The diagram Figure 10 Shows 

that the parallel lines indicate the absence of interactions. The 

greater the difference in slope between the lines, the greater 

the degree of interaction. 

 

• Interaction plot for imaginary frequency FRQ 

img 

 

The plot shows that interaction of p1 and kzz1 has greater 

difference in slope between lines. So, we can conclude that as 

p1 values vary from 0.15 to 0.25 the frequency decreases, 

while as kzz1 values increases from 0 to 5e7 the frequency 

increases. 

Similarly, interactions (p1 and kyy2), (kyy1 and kyy2), 

(kyy1 and kzz1). 

 

• Interaction plot for real frequency FRQ real 

 

The plot shows that interaction of kzz1 and kzz2 has greater 

difference in slope between lines. So, we can conclude that as 

kzz1 values vary from 0 to 5e7 the frequency increases, while 

as kzz2 values increases from 0 to 4e7 the frequency decreases. 

Similarly, interactions (p2 and kzz1), (p2 and kzz2) and 

versa for (d2 decreases, d4 increases). 

 

• Contour plots for frequency FRQ img and FRQ 

real  

 

The final step is to find the values of the factors that give 

the optimal answer. From the validated mathematical model 

and using the software, the 2D contours are produced 

graphically. These graphs make it possible to search for more 

desirable optimal solutions with the best possible precision. 

This allows us 

To examine the results more clearly. The contour curves are 

generated using the MINITAB 17 software by the combination 

of the two induced factors. We have chosen each time one of 

the factors fixed at the 2 levels, high and low. The other two 

factors studied are represented on the X and Y axes. The value 

of the response is represented by a shaded region in the 2D 

contour curve. Figure 11 represents the 2D graphs which 

illustrate the evolution of the response according to the levels 

of the two factors. 

 

• Contour plots for frequency FRQ img 

 

 

 
 

Figure 11. Contour plots for imaginary frequency FRQ img 

and real frequency FRQ real 

 

Through the Figure 11 when the position p1 values decrease, 

the frequency increases and are greater than 70, and when the 

stiffness kzz1 values change from 0 to 5e7 the frequency 

decreases, are less than 20. 

Through the Figure 11 when the position p2 values increase, 

the frequency decreases and are less than 20, and when the 

stiffness kzz2 values change from 0 to 4e7 the frequency 

increases, are greater than 300. 

 

• Response Optimization: real frequency FRQ real; 

imaginary frequency FRQ img  

 

❖ The value of the factor before optimizing 

 

Parameters: 

 
Response Goal Lower Target Weight 

Upper 

Importance 

FRQ real Max 0.75 695.12 1 1 

 FRQ img Max 0.00 145.08 1 1 

 

Solution1: 

 
d1 d2 d3 d4 P1 P2 

0.05 0.15 0.15 0.05 0.15 0.35 

 
P3 Kyy1 Kyy2 Kzz1 Kzz2 FRQ Real FiT 

0.55 7e7 0 5e7 0 387.978 

 
             FRQ img        Composite 

Solution          Fit          Desirability 

    1         102.536          0.627801 

 

 
 

Figure 12. Optimization plot "Solution 1" 
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❖ The value of factors after optimizing 
 

Parameters: 
 

Response Goal Lower Target 
Weight 

Upper 
Importance 

FRQreal Max 0.75 695.12 1 1 

FRQ img Max 0.00 145.08 1 1 

 

Solution2: 

  
d1 d2 d3 d4 P1 P2 

0.15 0.05 0.15 0.05 0.25 0.25 

 
P3 Kyy1 Kyy2 Kzz1 Kzz2 FRQReal FiT 

0.55 7e7 0 0 0 1202.13 

 

             FRQ img        Composite 

Solution          Fit          Desirability 

    2         170.328             1 
 

 
 

Figure 13. Optimization plot " Solution 2" 
 

To find out how well the input variables met the objectives 

set for the answers. Individual desirability (d) shows how to 

optimize the settings for a single response. Composite 

desirability (D) evaluates how the settings optimize a set of 

responses overall. Desirability has a range from zero to one. 

One represents the ideal state. Zero indicates that one or more 

responses are outside its acceptable limits. 

Figure 12, the composite Desirability (0.627801) is 

somewhat far from 1, which indicates that the settings did not 

achieve positive results for all responses as a whole compared 

to the results of the post-improvement, Figure 15 where the 

compound Desirability reached the value 1, which indicates 

that the factors whose values have changed achieved positive 

results and were more effective. 

Obtain this desirability we would place the levels of factor 

at the values shown under the solution in red on the diagram 

Figure 13 (Table Solutions 2). 

The rotor would be more stable if the disks were placed p3 

and p2. Towards the ends of the rotor and the disc p1 towards 

the center of the rotor, and would be less stable if the discs p3 

and p2 were placed towards the center of the rotor.  

After determining the diameter d1 and stiffness coefficients 

Bearing kyy2 and p3 affecting the imaginary part of the 

excitation frequency, and the position p2 and diameter d3 are 

affecting the frequency of the real part, optimization plots are 

drawn based on the frequency values obtained from the matlab 

software (Figure14). The model of the rotor Lalanne is shown 

with different sections, discs and bearings. 

In this part we use the finite element method for multi-disk 

rotor modeling because it provides clear modeling advantages, 

especially in measuring systems modeling as it provides 

physical damping in the column. 

 
 

Figure 14. Rotor Lalanne with various sections 
 

The rotational dissipation forces are proportional to the 

rotational speed and act tangentially over the rotor's orbit, and 

are known to cause instability after a certain rotational speed. 

A group of analyzes were found to determine the stability of 

the shaft system in terms of the stability limit of the rotational 

speed in addition to the response of the imbalance, which was 

summarized as follows: 

1. Calculation of the undamped critical speeds  

2. Evaluation of stability 

3. Damped rotor mode shapes 

4. Prediction of the rotor unbalance response 
 

6.3 Calculation of the undamped critical speeds  

 

 
 

Figure 15. Campbell diagram given by the calculation code 

 
Figure 15 illustrates Campbell's diagram for the gyroscope 

system when internal damping is taken into account. The 

graph is drawn using the rotation frequencies (obtained from 

the imaginary part of the eigenvalues), and there are two 

positions: the first reverse rotation position "BW", where the 

rotor rotates in the opposite direction. The second position is 

"FW" rotation, where the rotor rotates in the direction of 

rotation. The critical speed corresponding to the first position 

and the critical speed corresponding to the second position are 

shown as follows: 

The values of the first critical speeds: 

 
Mode (Hz) (rpm) 

1 5.9356e+001 3.5613e+003 

2 6.2683e+001 3.7610e+003 

3 1.6090e+002 9.6539e+003 
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6.4 Evaluation of stability 

 

The stability diagram (Figure 16) shows the evolution of the 

damping constants as a function of the speed of rotation. Since 

the real part is negative, the capacitance decomposes over time, 

so the rotor has a stable behavior, because the movement of 

the gyroscope tends to reduce the capacitance. 
 

 
 

Figure 16. Stability diagram 
 

6.5 Damped rotor mode shapes 
 

The mode shapes of a rotating shaft indicate the location of 

any point on the shaft during a whirling motion. 

The first backward and forward movements of the simply 

supported rotor are traced using eigenvectors. Modes 2, 4 

show the first form of three-dimensional mode for an un-

damped rotor and modes 2, 4 show the same graph for a 

damped rotor (the internal damping indicating the starting 

point of the vortex). 

In the reverse position, the back vortex rotates counter 

clockwise. The front vortex lines rotate clockwise. Figure 17 

gives the relative deviation as a function of column length and 

confirms the results obtained in Table 7. 
 

Table 7. shapes of the modes 
 

Modes Precession Spin speed rpm 

1 invers  FB =3563.1935 tr/min 

2 direct  FW=3775.9718 tr/min 

3 invers  FB=9773.8646 tr/min 

4 direct  FW=10911.6638 tr/min 

 

 

 

 

 
 

Figure 17. Forms of modes and precession of forms of 

modes  

 

Table 7 gives the result of the shapes of the modes, the 

initiative of the models and the speed of rotation of the patterns. 

Note that modes 1 and 3 are direct precession (the rotor rotates 

in the direction of rotation), and modes 2, 4 are invers 

precession (the rotor rotates in the opposite direction). 

 

6.6 Prediction of the rotor unbalance response 

 

• Elliptical orbits 

 

For the rotational speed 3333.3333 tr/ min, the orbits have 

a practically elliptical shape. The direction of precession of the 

orbits obtained is represented graphically in Figure 18 with the 

beginning of the orbit represented by a circle and the end 

represented by a star. 

The figure shows that the orbits 4, 2 are described in the 

same direction as the speed of rotation of the rotor Ω. In this 
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case, under the gyroscopic effects, the associated resonant 

frequency increases "direct precession". 

The orbits 1, 3 are described in the opposite direction to the 

direction of the rotational speed of the rotor, which generates 

a softening effect and therefore a drop in the critical speed 

"inverse precession". 
 

 
Figure 18. Orbits at 3333.3333 rpm 

 

• Root locus diagram 

 

The root locus diagram (Figure 19) shows the evolution of 

the damping constant as a function of the natural frequency. 

We notice, for example, that the direction of the modes, 1, 

3, is from left to right (odd), the mode is therefore with inverse 

precession. On the other hand, the direction of modes 2, 4 is 

from right to left (even). The mode is with direct precession. 
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Figure 19. Root locus diagram 

 

 

7. CONCLUSIONS 

 

In this work we used as a preliminary step the Plackett-

Burman screening design, carried out in order to select the 

factors most influencing the response. Among the various 

factors studied, diameters, position of the discs, the rigidity of 

the first bearings and the rigidity of the second bearings. 

These factors are then examined by the response surfaces 

methodology using the Plackett-Burman design. To study the 

effect of the independent variables: the diameters, the 

positions of the discs, the rigidity of the system, we have 

modeled the response in the form of a polynomial according 

to these parameters. From the statistical study we can conclude 

that: 

• The stiffness coefficients Bearing kyy2, and the 

diameter d1 and Position of the discs p3 both increase 

the excitation frequency in the imaginary part.  

• The Position of the discs p2 and the diameter d3 both 

increase the excitation frequency in the real part.  

As a second step, the finite element method was used 

which aided in studying stability and identifying critical 

velocities, typical damping levels, and elliptical orbits. The 

results were obtained for different groups of disc positions to 

study the dynamic properties. Through the previous two 

methods, it was found that the rotor would be more stable if 

the disks were placed p3 and p2. Towards the ends of the rotor 

and the disc p1 towards the center of the rotor, and would be 

less stable if the discs p3 and p2 were placed toward the center 

of rotation. Thus, proper placement of disc can help reduce 

rotor failure and verify higher stability certification. 
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NOMENCLATURE 
 

TD   Kinetic energy of the disc 

IDY  .   the gyroscopic effect (Coriolis) 

½ IDY  2 constant 

TS  Kinetic energy of the shaft 

Kyy1, Kzz1  stiffness coefficients Bearing 1 

Kyy2, Kyy2 stiffness coefficients Bearing 2 

Cyy1, Czz1 damping coefficients a gyroscopic 

effect Bearing 1 

Cyy2, Czz2 damping coefficients a gyroscopic 

effect Bearing 1 

DF Degrees of freedom from each 

source 

SS Sum of squares 

MS Mean squares 

F Calculate by dividing the factor MS 

by error 

P Use to determine whether a factor is 

signif. 

Secoff Standard error of the coefficient 

S Estimated standard deviation of the 

error 

Seq SS Sequential sum of squares 

Adj SS Adjusted sum of squares 

F The degrees of freedom for the test 
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