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Blood glucose automatic regulation achievement depends on the robustness of the used 

control algorithm. However, some constraints were encountered due to the human glucose-

insulin regulatory system’s complexity. It is proposed to tackle such a goal through the 

development of a robust synergetic control algorithm. An adaptive approach is integrated 

into this synergetic control scheme to handle disturbances and parameters variations. 

Multiple meal disturbances often occur daily as well as some other stochastic noises 

making efficient glucose regulation a tough challenge addressed in this paper via a new 

synergetic scheme. Simulation results show a robust function during multiple meal 

disturbances with good noise rejection.
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1. INTRODUCTION

Diabetes mellitus can be described as a chronic illness 

occurring upon insulin production deficiency by the pancreas, 

or by the feebleness of the insulin produced. Such a serious 

condition covers a group of metabolic sicknesses during an 

extended period of high blood sugar levels, which in turn harm 

many of the body's systems, especially, blood vessels, and 

nerves.  

A well-known way to treat patients consists in an injection 

of insulin very often self-administrated. There are various 

devices used to inject insulin, syringes, pumps, patches, etc... 

A main concern with this therapeutic approach is that the 

insulin injection is to be controlled by the patient himself. An 

ideal solution to this issue would be to create a treatment type 

such that this burden is alleviated on the patient and that the 

insulation injections take place automatically whenever 

needed. Thus, this can be realized in a self-regulated pump 

functioning as an artificial pancreas [1]. Besides, due to 

glucose–insulin regulatory system time variation and 

nonlinear control, the patient’s parameters’ detection is costly, 

invasive and undergoes a number of uncertainties.  

For instance, insulin resistance levels can vary with regular 

exercising [1], i.e., muscle mass intakes glucose with no 

insulin intervention. The blood glucose’s scope of operation of 

a diabetic is large, and can differ between 45 and 500 mg/dl.  

With these constraints, applying linear control to regulate 

blood glucose using automated insulin injection has become 

difficult. Some of these algorithms such as classical methods 

PID [2], proportional-derivative (PD) [3], and latter optimal 

control algorithms [4], the H∞ controller [5] and MPC 

algorithms [6] have been used through linearized model. 

In this research, synergetic control [7] is used in the control 

algorithm design for the regulatory system of glucose-insulin. 

Moreover, synergetic control is an effective nonlinear robust 

technique. Hence, similar to sliding mode methodology [8], a 

closed loop system dynamic is provided, i.e., constancy to 

uncertainties as well as correctness and strength, which are 

also the properties of synergetic control [9]. Therefore, these 

properties are consistent with the human control algorithm 

specifications, where accuracy is of a paramount importance. 

Notably, the glucose metabolism’s sophisticated nonlinear 

system is due to several factors, often immeasurable, such as 

food intake quantity; thus, parameter measurements vary from 

patient to patient, besides other activity conditions which make 

an appropriate adaptive control technique. However, the 

suggested control regulations have to be adapted to overcome 

the fact that the controlled system parameters can vary over 

time or doubtful. Furthermore, the adopted control involves 

improving dynamic system properties, whereas the controlled 

environment or plant specifications are unstable [10]. In order 

to assure system constancy and assign a tracking point even in 

presence of unknown boundary disturbances, a new adaptive 

estimation method is integrated into the synergistic scheme 

used. 

A new adaptive law utilizing the concept of terminal 

attractor is put to use in the procedure of finite time control of 

nonlinear systems; this ensures a faster parameters adaptation 

procedure which results in an improvement of closed loop 

overall robustness. 

Next, a review on glucose-insulin system modeling in type 

I diabetic mellitus is introduced, and then a brief presentation 

covering synergetic control design in section III is presented. 

After that, the adaptive synergetic control is investigated in 

section IV. Finally, section V presents simulation results 

followed by a conclusion as a conclusive section. 

2. BERGMAN MINIMAL MODE

Several glucose-insulin process examples were suggested; 

for instance, Bergman minimal model developed in 1980 by 
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Richard Bergman. Besides, the interaction between main 

system components such as glucose and insulin concentrations 

is appropriately presented without plunging into human 

biological complexity. The principal advantage of the 

Bergman minimal model lies in the minimum number of 

parameters involved. The Bergman minimal model [11, 12] is 

given in (1): 

 

 1( ) ( ) ( ) ( ) ( )bG t p G t G X t G t D t= − − − +
 

 

 2 3( ) ( ) ( ) bX t p X t p I t I= − + −
 

  

   ( ) ( ) ( ) ( )bI t n I t I G t h t u t
+

= − − + − +
 

  

(1) 

   

where, G(t), X(t) and I(t) are plasma glucose concentration 

(mg/dl). Thus, the insulin reduction effect on glucose 

concentration and insulin concentration level in plasma is 

measured by (μU/ml). Besides, Ib is the basal blood insulin, 

and Gb represents the basal glucose concentrations. Moreover, 

γ is for the pancreatic β- cells’ rate that release insulin after 

glucose insertion and formulated as [(µU/ml min-2 (mg/dl)-1]. 

Yet, h is the above glucose sill value in which the pancreatic 

β- cells release insulin (mg/dl), and n measure of insulin 

consumed in plasma (1/min). Additionally, u(t) is the insulin 

dose rate (μU/ml) is the controller and replaces the normal 

insulin regulatory system of the body, which does not exist in 

diabetic patients. The [G(t)-h]+t equation represents the 

pancreatic insulin release after food intake at t=0, which is not 

the case for patients with diabetes [12]. 

D(t) represents a disturbance indicator; it can be 

exemplified by a decaying exponential function as such: 

 
( )( ) , 0BtD t Ae B−=    (2) 

 

in which, D (t) is represented by (mg/dl/min).  

•The exponential form phrase γ exp (−0.05t) represents 

moderate meals state [13]. 

•The exponential form phrase ε exp (−0.025t) represents 

significant unsystematic effects because of factors such as 

exercising [13]. The first equation of (1), describes the 

dynamics of glucose metabolism. The second equation of (1) 

represents the dynamics of insulin transport from the blood to 

the interstitial fluid. The last equation of (1) describes the 

change in insulin concentration in the blood over time. 

 

 

3. SYNERGETIC CONTROL DESIGN  

 

Synergetic control is an effective nonlinear control 

technique similar to sliding mode control; however, not 

including chattering. Stabilizing the glucose concentration in 

the diabetic patient’s blood at the basal level Gb is an output-

tracking problem thus, the tracking error is defined: 

 

be G G= −   (3) 

 

The system presented in Eq. (1) is non-linear can be 

reformulated in state-space realm as such;  

 

 1 1 1 1 2 ( )bx p x G x x D t= − − − +
 

 

 2 2 2 3 3 bx p x p x I= − + −
 

 

   3 3 1 ( )bx n x I x h t u t
+

= − − + − +   

(4) 

where, x1, x2 and x3 are G(t), X(t) and I(t), respectively. Then, 

the observed error is reformulated as: 

 

1b be G G G x= − = −   (5) 

 

Firstly, the system relative degree must be determined, 

assuming y=x1and using Eq. (5), by the successive 

differentiations’ number until control function appears [14]. 

The latter appears the third differentiation, i.e.: 

 
(3)

1 3 1( , ) ( )x x t p x u t= − .  (6) 

 

where, 
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Letting the macro-variable be chosen as: 

 

1 0e c e c e = + +
   

  (7) 

 

To develop the control, the system must be forced to work 

on the manifold:  

 

0 =  (8) 

 

The designer may select properties of this macro variable 

according to the suggested control specifications. Hence, a 

macro variable simple selection would be in an inconsistent 

linear combination state. The required dynamic evolution of 

the macro variables can be selected as: 

 

0T + =
 

 (9) 

 

where, T is a device parameter determining the conflux speeds 

to the manifold (9).  

Then, instantly substituting (7) and (9) into (3) and 

readjusting, the obtained control law is given by 

 

1 0

3 1

1
( )u c e c e

p x T


= − + − +

  
  (10) 

 

Since p3≠0, x1≠ 0, and p3x1 [1.2×10−4,3×10−2], and c1 and 

c0 are invariants real-valued.  

The elaborated control assures an asymptotic convergence 

until the final state. Asymptotic constancy is derived by 

selecting the candidate Lyapounov function: 

 

21
( )

2
V e=   (11) 

 

After differentiation, it leads to: 

356



 

( ) ( )1 0 1 1 0

( ) ( )

( ) ( )

V e e

V e e c e c e e x c e c e

 

 

=

= + + = − + +
  (12) 

  

( )3 1 1 0( )V e p x u c e c e = − + + +   (13) 

 

Then, replacing (10) by (13): 

 

21 1
( ) ( ) ( )V e e e

T T
  

 
= − = − 

 
  (14) 

 

Thus, the controller can reach Lyapunov constancy. 

 

 

4. DESIGN OF ADAPTIVE SYNERGETIC CONTROL 

 

An adaptive estimation to disturbance is implemented to 

free the control system from the boundary values’ disturbance, 

and then the synergetic controller would be adjusted.  

Let estimate error to be determined as: 

 
ˆ

Fe F F= −   (15) 

 

in which, �̂� is the estimated value of F. Here, a law adaptation 

is suggested using the concept of a fast terminal technique, that 

is the research aim, so as the estimated error is zero indefinitely. 

Theorem 1 

If the estimated disturbance is adjusted by: 

 

ˆ ( )

q
p

F FF e e = +   (16) 

 

where: 

𝛼 > 0, 𝛽 > 0, with 𝑝 > 𝑞 > 0 odd integers. 

Then we can conclude that: 

The estimated disturbance will remain bounded. The 

estimated error eF will definitely reach zero. 

Proof. Suggesting the candidate Lyapunov function to be:  

 

21

2
F FV e=   (17) 

 

Therefore, 

 

( ) ( )
2

ˆ( ) ( )

)

q
p

F F F F F F F

p q p q
p p

F FF F

V e e e F e e e

e e V V

 

   
+ +

= = − = − +

= − − = − −

  

  (18) 

 

Thus, we have �̇�𝐹 ≤ 0  for all 𝑉𝐹 ≥ 0  and will be 

asymptotically convergent, because 0 1
2

p q

p

+
  , therefore, 

the estimated parameter disturbance will remain bounded. 

Lemma 1: If a Lyapunov function is expressed as: 

 

0)(,,0)()(')( 00 ++ tVtttVbtVatV 
  

(19) 

 

where, 𝑎, 𝑏 > 0, 0 < 𝜂 < 1. 

Finite time is given by the following expression: 

 

11 (0)
ln( )

(1 )

V
t

 

  

− +
=

 −
  (20) 

 

From lemma 1 in [15], (18) can be written as: 
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+

p
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FFF VVV 
  

(21) 

 

Thus, the estimation error converges to zero in finite time 

given by: 

 

1
2

1(0)1
ln( )

(1 )
2

q p

pV
t
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+
−

+
=

+
−

  (22) 

 

Therefore, the estimated error eF equals zero definitely. 

The control law (10) is thus rewritten as: 

 

)ˆ(
1

01

13

Fecec
Txp

u ++−+−= 


  

(23) 

 

Theorem 2 

Considering the nonlinear system (3), and choosing control 

law (24): 

 

)ˆ(
1

01

13

Fecec
Txp

u ++−+−= 


  

(24) 

 

And the following adaptation law: 

 

ˆ ( )

q
p

F FF e e = +   (25) 

 

These 𝛼 > 0, 𝛽 > 0 , with 𝑝 > 𝑞 > 0  are positive odd 

figures; thus, the closed loop system stability will be assured. 

Besides, the closed loop system indicators will be bounded and 

the tracked error will approach zero asymptotically. 

Proof. The candidate Lyapunov function is suggested as: 

 

21
( )

2
V e=   (26) 

 

( )Fececuxp ++++−= 
0113

  
(27) 

 

Therefore, 

 

( ) 







++−=++=

=
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eeV





01101 )()(

)()(





  

(28) 

 

( )FececuxpeV ++++−= 
0113)( 

  
(29) 

 

Substituting (24) and (25) into (29) leads to: 

 









+−= Fee

T
eV )(

1
)( 

  

(30) 
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Remark. According to Theorem 1, in a finite time the 

disturbance F will convergence to the optimal estimated 

disturbance �̂�, thus equation (30) can be rewritten as: 

 









+−= Fe

T
eV  )(

1
)(

  

(31) 

 

 F
T

V +−
21

  
(32) 

 

The value 𝜀𝐹𝜓 is insignificant due to the nominal estimated 

error. 

 

21
0V

T
 − 

 
  (33) 

 

Thus �̇� ≤ −
1

𝑇
|𝜓|2 ≤ 0. 

Error 𝜀𝐹 in (31) is the best rate can be achieved. Thus, it can 

be concluded that all system indicators are enclosed. 

Additionally, since e (0) is enclosed then e (t) is also enclosed. 

Besides, if indicator Gref is bounded, system condition x(t) is 

also bounded. Hence, to demonstrate tracked error approach to 

zero asymptotically, the following equation needs to be 

confirmed: 

Eq. (31) leads to: 

 

22

222

2

22

1

2
)(

2

1

2

1

1

F

F

F

T

T
V

T
T

TT
V

T
V







+

+−−−

+−







  

(34) 

 

Integrating on both sides of (32), leads to: 

 

2 22

0 0

( ) 2 (0) ( ) ( )

t t

Fd T V V t T d       +  +     (35) 

 

where, 
2

02 (0) sup ( ) ,ta T V V t b T=  +  =  . 

Therefore Eq. (33) can be further simplified as: 

 

2 2

0 0

( ) ( )

t t

Fd a b d      +    (36) 

 

If 𝜀𝐹 ∈ 𝐿2, we do have 𝜓 ∈ 𝐿2 from (34), then it is known 

that the macro-variable is bounded as well as all values in (27); 

hence, 𝜓, �̇� ∈ 𝐿∞, utilizing Barbalat lemma [16] (if𝜓 ∈ 𝐿2 ∩

𝐿∞ , and �̇� ∈ 𝐿∞ , implies that: 𝑙𝑖𝑚
𝑡→∞

|𝜓(𝑡)| = 0, this therefore 

demonstrates the system stability and the error approaches 

zero asymptotically. 

 

 

5. SIMULATION RESULTS DISCUSSION  

 

Silico simulation is conducted through a nonlinear control 

of Bergman nominal model, to assess the adaptive synergetic 

control performance under different scenarios. Hence, the 

efficiency and strength of the controller is evaluated 

considering parameter uncertainties, as well as under meal 

disturbances, in addition to analyzing the controller 

performance with actuator noise. Moreover, the suggested 

controller is applied in simulation to diabetics’ blood glucose 

control whose model parameters are presented in Table 1 [14]. 

 

5.1 Robustness performance analysis: Parameter 

uncertainties 

 

This silico experiment has been performed to validate the 

proposed algorithm introduced in Eq. (24). 

Simulations are a postprandial state of a diabetic, begging 

by a blood glucose level of 350mg/dl. Besides, to check the 

glucose concentration an adaptive synergic control is applied. 

The control scheme was tested for three different patients. 

Simulation is conducted through representing a postprandial 

state of a diabetic, beginning by a hypoglycemic level of 350 

mg/dl; at which adaptive synergetic control is activated to 

control the glucose concentration. Accordingly, the controller 

performance, i.e., parameter uncertainties is measured for of 

three different patients with diabetes. See (Table 1). 

 

Table 1. Parameters of Bergman nominal model 

 
Variable Patient 1 Patient 2 Patient 3 Units 

P1 0 0 0 1/min 

P2 0.0142 0.0172 0.02 1/min 

P3 2.4x10-6 2.16x10-6 3x10-6 ml/uUmin2 

n 0.2814 0.2465 0.3 1/min 

 

 
 

Figure 1. Glucose concentration using adaptive synergetic 

control 
 

 
 

Figure 2. Insulin concentration measurement using adaptive 

synergic control 
 

In addition, glucose concentration figures for the three 

patients with diabetes are shown in Figure 1. Additionally, 

insulin concentration required for each patient, is shown in 

Figure 2. 

Accordingly, simulation results indicate that the glucose 

concentration rates of these patients are constant thanks to 

normoglycemia and in all the cases the glucose is completely 

stabilized at the basal level in a reasonable time interval. 
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Furthermore, no hypoglycemia is detected; as a result, 

constancy is assured by controller despite parameter 

uncertainties’ results of these three patients with diabetes. 

 

5.2 Performance robustness system analysis under 

multiple disturbances 

 

In the present silico experiment, robustness performance of 

the suggested controller was examined in view of multiple 

disturbances; such as meal ingestion events and exercise. Thus, 

all patients were introduced to three meals oral intake for 15 

minutes at 8 am, 2 pm, and 8 pm (of 60 g of carbohydrate 

(CHO)). Additionally, a physical exercise disturbance at 5 pm 

for 20 minutes was also required (0.005 arbitrary units). These 

disturbances are measured by pulses’ frequencies as shown in 

Figure 3. 

 

 
 

Figure 3. Meal and Exercise disturbances 

 

 
 

Figure 4. Blood glucose response of closed-loop system 

 

 
 

Figure 5. Insulin infusion response of the closed-loop system 

 

Thus, from the glucose-insulin profile in Figures 4, 5, it is 

revealed that when a patient is subjected to meal (CHO) every 

six waking hours, the BG level remains within tight regulation 

of 81±20 mg/dl by controlled infusion rate of insulin within 

limits of ±10mU/min over the basal dose. When the patient is 

subjected to specific exercise disturbance, the glucose level 

falls to 78 mg/dl, which is also within acceptable limit. The 

insulin dose is also well controlled between 0-36 mU/min so 

that the condition of hypo glycaemia never appears at the same 

time device delivery restriction is maintained, i.e. no clipping 

for negative infusion command is required. 

It was concluded that “if a patient is subjected to meal, his 

blood glucose level does not exceed normalcy limit using ASC 

infusion rate of insulin.” Moreover, the findings suggest that 

“if a patient practices sport (exercises disturbance), glucose 

concentration is maintained at a normal level.” Furthermore, 

the results indicate no existence of hypoglycemia and 

hyperglycemia problems in blood glucose level; in addition to 

that, the insulin infusion and settling time rate are within an 

acceptable limit, which indicate that ASC performs adequately 

well under multiple disturbances. 

 

5.3 Analyzing the performance of the controller with 

actuator noise 

 

In this experiment, the concept of new adaptive disturbance 

estimation technique has been used for the design of a 

synergetic controller can overcome the influence which 

unknown limit disturbance. 

Figure 6 and Figure 7 show the glucose concentration level 

and the insulin concentration dose, and so the suggested 

controller tracked set point during meal and noise disturbances. 

Besides, the controller performance was assessed in terms of 

reducing the effect of the disturbance. 

In Figure 8 the actuator noise is considered to be white color 

and assuming 0.05 a standard variation in the insulin pump as 

for the existing actual device [6]. 

Figure 9 shows the estimation disturbance noise, in a finite 

time, the new adaptation is utilized to guarantee that the 

disturbance estimation will converge to the optimal 

approximate of disturbing noise. To check this, we compared 

the disturbance noise and the estimation disturbance noise, as 

shown in Figure 10 which is guaranteed the disturbance 

estimate converges to the optimal approximation. 

It is also shown in Figure 11 that tracking estimation error 

according to the proposed method convergences faster than  

according to the conventional adaptive control methods. 

In this experiment, the patient model is subjected to 

controlled dietary meal of 60gm (equivalent carbohydrate 

taken orally (CHO)) for 15min each (duration of meal 

ingestion). 

 

 
 

Figure 6. Glucose concentration with actuator noise 
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Figure 7. Insulin concentration with actuator noise 

 

 
 

Figure 8. The actuator noise 

 

 
 

Figure 9. Estimation the actuator noise 

 

 
 

Figure 10. Box plot used to compare by the actuator noise 

and estimation the actuar noise 

 
 

Figure 11. Estimation error eF 

 

 

6. CONCLUSIONS 

 

In The diabetes management as one of the challenging 

control problems in human regulatory systems has been 

discussed. The treatment of the disease via robust feedback 

control design has been considered.  

In this study, a developed adaptive synergetic control for 

nonlinear control systems is designed using a new adaptive 

law. Besides, the synergetic control technique is applied for 

stabilizing a nonlinear model for type-I diabetic patient in 

presence of deterministic meal and activity disturbances and 

actuator noise for a robust closed-loop stability of the insulin 

delivery system. The asymptotic stability of the closed-loop 

system and convergence of the approximation are proven 

using Lyapunov stability method. The performance objective 

was to regulate the glucose level in face to disturbances 

represented by known meals and excise. The glucose-insulin 

response has shown very close regulation of blood glucose 

level with minimum overshoots and undershoots and 

acceptable limits of insulin infusion rate. 

This stabilization was achieved in light of internal and 

external factors such as exercise and meal intake with 

stochastic noise. This suggests that the entire system is valid 

and vigor. Simulation results revealed the effectiveness and 

robustness of this technique despite accidental disturbances. 

The results suggest that this type of control strategies can be 

implemented practically using an embedded system with the 

precise implantable pump and sensor for a robust blood 

glucose control in patient. 
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NOMENCLATURE 
 

G(t) Plasma glucose concentration. 

X(t) The insulin reduction effect on glucose concentration. 

I(t) Insulin concentration level in plasma. 

Ib Basal blood insulin. 

Gb The basal glucose concentrations. 

γ The pancreatic β- cells’ rate that release insulin after 

glucose insertion. 

h  The above glucose sill value in which the pancreatic β- 

cells release insulin. 

n Measure of insulin consumed in plasma. 

u(t) The insulin dose rate. 

D(t) Represents a disturbance indicator. 

e The system error. 

𝜓  The macro-variable. 

�̂�  Estimation of disturbance. 
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