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ABSTRACT. A combination of Gaussian Mixture Model and Hidden Markov Model has been used 

successfully in building acoustic models for speech recognition. These models have dominated 

this area for nearly three decades. Re-entry of neural networks in many clustering, 

classification and pattern recognition problems have triggered current researchers to focus in 

making use of its power in the area of speech recognition. This article compares the 

performance of Bernoulli-Bernoulli Deep Belief Networks (BBDBN) and Gaussian-Bernoulli 

Deep Belief Networks (GBDBN) on phoneme recognition of spoken speech in Tamil. In addition 

to that the impact of feature representation in the performance of acoustic model is also studied 

by using three different datasets built using different feature representation for the phoneme 

samples extracted from the continuous Tamil speech. 

RÉSUMÉ. Une combinaison du modèle de mélange gaussien et du modèle de Markov caché a 

été utilisée avec succès dans la construction de modèles acoustiques pour la reconnaissance 

automatique de la parole. Ces modèles jouent des roles dominents depuis près de trois 

décennies. La réinsertion de réseaux de neurones dans de nombreux problèmes de 

regroupement, de classification et de reconnaissance de formes a amené les chercheurs actuels 

à se concentrer sur l'utilisation de son pouvoir dans le domaine de la reconnaissance 

automatique de la parole. Cet article compare les performances des réseaux de croyances 

profondes Bernoulli-Bernoulli (BBDBN en anglais) et des réseaux de croyances profondes 

Gaussian-Bernoulli (GBDBN en anglais) sur la reconnaissance phonémique de la parole 

tamoule. En outre, l'impact de la représentation de caractéristique sur les performances du 

modèle acoustique est également étudié à l'aide de trois bases de données différents construits 

en utilisant la représentation de caractéristique différentes pour les extraits de phonèmes dans 

la parole tamoule continue. 

KEYWORDS: deep belief networks, phoneme recognition, speech recognition, artificial neural 

networks, deep learning, tamil speech, acoustic model, continuous speech, bernoulli-bernoulli, 

gaussian-bernoulli. 
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1. Introduction 

Automatic Speech Recognition is one of the alternative ways in human machine 

interaction. Milestones in this area have shown huge improvements in recognition 

accuracy using various methods to build acoustic models like Hidden Markov Model 

(HMM), Support Vector Machine (SVM), Gaussian Mixture Models and Artificial 

Neural Networks (ANN). Recent researches have shown the success of ANNs in 

modelling complex problems including speech recognition.  

Vijayaditya Peddinti et al., (2015) have proposed time delay neural network 

architecture.  The long term temporal dependencies between acoustic events are 

modelled effectively using Recurrent Neural Networks (RNN). But the sequential 

nature of RNN learning algorithm takes higher time for training feed forward 

networks. The model uses sub-sampling method which considerably reduces 

computation time during training. Experimental results are carried out on various 

LVCSR tasks and the effectiveness of that proposed architecture is proved by varying 

data ranging from 3 to 1800 hours.  

Mohamed et al., (2012) have proposed a deep neural networks model that 

performs better phone recognition than Gaussian mixture model when it is applied to 

TIMIT dataset. The deep neural networks include many layers of features with large 

number of parameters. The model consists of two phases. In the first phase, the 

networks are pre-trained as multiple layers with window of spectral features without 

the use of any discriminative information. The second phase involves the use of back-

propagation technique that performs discriminative fine tuning.  

A novel Context-Dependent (CD) model for Large Vocabulary Speech 

Recognition (LVSR) has been proposed by Dahl et al. (2012) that implements deep 

belief networks and context dependent hidden markov model for phone recognition. 

A pre-trained Deep Neural Network Hidden Markov Model (DNN-HMM) models the 

distribution over tied triphone states called senones. The pre-training algorithm is 

mainly used to initialize deep neural network that helps in optimization and reduction 

of errors. Business search dataset is used to study the performance of algorithm and 

shows that it significantly outperform the conventional context-dependent Gaussian 

mixture model (GMM)-HMMs with increase in sentence accuracy. 

Adeli and Jiang (2006) have proposed a novel dynamic time-delay fuzzy wavelet 

neural network model for nonparametric discovery of structures using the nonlinear 

autoregressive moving average with exogenous inputs. This model is based on the 

combination of four different concepts namely dynamic time delay neural network, 

wavelet, fuzzy logic, and the reconstructed state space concept from the chaos theory. 

The discrete wavelet packet method is used to remove noise in the signals. The 

reconstructed state space from the chaos theory is employed in this model to preserve 
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the dynamics of time series and to construct the input vector. In order to capture the 

characteristics of the time series sensor data accurately and efficiently, techniques 

such as neural networks and fuzzy logic are employed in this model. Experimental 

results are carried out on a five-story steel frame to validate the performance of the 

proposed model.  

Abiyev and Kaynak (2008) have proposed a model that combines fuzzy set theory 

and wavelet neural networks to solve the problem of uncertainty. The algorithm 

constructs fuzzy WNN based on a set of fuzzy rules where each rule consists of a 

wavelet function. The rules of the system are updated using Gradient Descent 

technique.  

Hinton et al. (2012) deals on the poor performance of held-out test data for a large 

feed forward neural network. The author handles the problem of overfitting by 

randomly omitting half of the feature detectors on each training case. This prevents 

complex co-adaptations in which a feature detector is only helpful in the context of 

several other specific feature detectors. This approach helps each neuron learns to 

detect a feature that acts as a key feature in the process of classification given the 

combinatorially large variety of internal contexts in which it must operate. Random 

“dropout” have big improvements on many benchmark tasks and sets new records for 

speech and object recognition. 

Lee et al., (2008) being motivated in part by the hierarchical organization of the 

cortex, have proposed algorithms that try to learn hierarchical or deep structure from 

unlabeled data. While several authors have formally or informally compared their 

algorithms to computations performed in visual area V1 (and the cochlea), little 

attempt for mimicking computations at deeper levels in the cortical hierarchy has been 

made to evaluate these algorithms in terms of their fidelity. This paper presents an 

unsupervised learning model that faithfully imitates certain properties of visual area 

V2. Specifically, a sparse variant of the deep belief networks has been developed. 

Nodes in two layers of the network are learnt and identifies that the first layer results 

in localized, oriented, edge filters, similar to the Gabor functions known to model V1 

cell receptive fields. Further, the second layer in the model encodes correlations of the 

first layer responses in the data. Specifically, it picks up colinear (“contour”) features 

as well as corners and junctions. A quantitative comparison resulted witha an 

interesting fact that the encoding of these more complex “corner” features matched 

well with the results from the Ito & Komatsu’s study of biological V2 responses. This 

suggests that the sparse variant of deep belief networks holds promise for modeling 

more higher-order features.  

Graves et al., (2013) show Recurrent neural networks (RNNs) are a powerful 

model for sequential data. End-to-end training methods such as Connectionist 

Temporal Classification make it possible to train RNNs for sequence labelling 

problems where the input-output alignment is unknown. The combination of these 

methods with the Long Short-term Memory RNN architecture has proved its strength 

in cursive handwriting recognition delivering state-of-the-art results. The paper 

investigates deep recurrent neural networks, which combine the multiple levels of 

representation that have proved so effective in deep networks with the flexible use of 



140     TS. Volume 34 – n° 3-4/2017 

 

long range context that empowers RNNs. It has been found that deep Long Short-term 

Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition 

benchmark when it was trained end-to-end with suitable regularisation. 

Application of Deep Neural Networks in various complex problems successfully 

has motivated its application in Speech Recognition. The objective of this work is to 

analyse the performance of DBNs in phoneme recognition of continuous Tamil speech 

and its comparability with other existing methods based on HMM, GMM, etc. In this 

article, we have applied two types of DBN, namely Bernoulli - Bernoulli DBN 

(BBDBN) and Gaussian - Bernoulli DBN (GBDBN) on Tamil continuous speech data 

to identify the spoken phonemes. Here we have compared the performance of BBDBN 

and GBDBN on the Tamil speech data using the performance measures Root Mean 

Square Error (RMSE) and Phoneme Error Rate (PER). The performance of both 

variants of DBNs are also analysed for its accuracy by increasing the network depth. 

This article is organized as follows. Architecture of Deep Belief Networks, its 

learning procedure and pre-training are discussed in the following section 2. Section 

3 discusses about the experimental setup used in the analysis followed by 

Experimental results in section 4, Discussion in Section 5 and finally conclusion in 

section 6. 

2. Deep belief networks 

A DBN is an artificial neural network which comprises of many hidden layers. 

One of the challenges faced while modelling DBNs is formulating an appropriate 

training strategy for train the network. Greedy method and random method are 

methods generally used to initialize the parameters of the network. Solution trapped 

to local optima is one of the challenges faced while training a DBN. In this study we 

use a general discriminative training method which considers each pair of layers that 

is bipartite in nature as a Restricted Boltzmann Machine (RBM). This method 

initializes the DBN parameters randomly and further trains using back propagation 

technique. 

A DBN is a Multi-layer Perceptron, which is considered as a stack of RBMs. An 

RBM is a bipartite network having two layers, the visible layer and the hidden layer. 

In RBMs, the connections are restricted to visible-hidden connections. The visible 

layer of the first RBM is fed with the feature vectors, which is passed on to the output 

layer of that RBM modelling the posterior probabilities of the hidden units of DBN. 

The output of one RBM acts as input to the succeeding RBM in the stack. Based on 

the distribution of vectors in observations the RBMs can be modelled either Bernoulli-

Bernoulli or Gaussian-Bernoulli. In simple binary RBM/Bernoulli-Bernoulli RBM, 

both the visible and hidden units are binary and stochastic in nature. Gaussian-

Bernoulli RBMs are usually used to model real-valued data. Thus, the DBN acts as a 

non-linear classifier with each of the hidden layer expressed as posterior probabilities. 

Each neuron in the hidden layer uses the logistic function to convert its input received 

from its lower layer to a scalar value which is passed on to the next layer. Learning in 

BBDBN and GBDBN is as follows. 
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2.1. Learning in bernoulli-bernoulli RBM (BBRBM) 

In BBRBM, the connection weights and the biases of the neural units define the 

probability distribution over the joint states of the visible and hidden units through 

energy function: 

 𝐸(𝑣, ℎ|𝜃) =  − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗 − ∑ 𝑏𝑖𝑣𝑖 − ∑ 𝑎𝑗ℎ𝑗
𝐻
𝑗=1

𝑉
𝑖=1

𝐻
𝑗=1

𝑉
𝑖=1  (1) 

where θ=(w,b,a) are model parameters and w_ij is the connection weight between the 

ith visible unit and the jth hidden node. V and H are the number of visible and hidden 

units respectively. The probability of the visible vector v for the given model 

parameters θ is given by: 

 𝑝(𝑣|𝜃) =
1

𝑍
∑ 𝑒−𝐸(𝑣,ℎ)

ℎ  (2) 

The conditional probability distribution of hidden units, given the model 

parameters and visible units is represented as: 

 𝑝(ℎ𝑗 = 1|𝑣, 𝜃) = 𝜎(𝑎𝑗 + ∑ 𝑤𝑖𝑗𝑣𝑖)𝑉
𝑖=1   (3) 

where the σ is the sigmoidal function, given by 𝝈(𝒙) = (𝟏 + 𝒆−𝒙)−𝟏. 

The conditional probability distribution of visible units, given the model 

parameters and hidden units is represented as: 

 𝑝(𝑣𝑖 = 1|ℎ, 𝜃) = 𝜎(𝑏𝑗 + ∑ 𝑤𝑖𝑗ℎ𝑗)𝐻
𝑗=1   (4) 

2.2. Learning in gaussian-bernoulli RBM (GBRBM) 

Similar to BBRBM, the connection weights and the biases of the neural units 

define the probability distribution over the joint states of the visible and hidden units 

through energy function which is stated as follows: 

  𝐸(𝑣, ℎ|𝜃) =  − ∑ ∑ 𝑤𝑖𝑗𝑣𝑖ℎ𝑗 − ∑
(𝑣𝑖−𝑏𝑖)2

2
− ∑ 𝑎𝑗ℎ𝑗

𝐻
𝑗=1

𝑉
𝑖=1

𝐻
𝑗=1

𝑉
𝑖=1  (5) 

The conditional probability distribution of visible units, given the model and 

hidden units are represented as a Gaussian function (𝒩): 

  𝑝(𝑣𝑖|ℎ, 𝜃) = 𝒩(𝑏𝑖 + ∑ 𝑤𝑖𝑗ℎ𝑗 , 1)𝐻
𝑗=1   (6) 

2.3. Pre-training the DBN 

In this analysis, pertaining DBNs are done using Contractive divergence technique. 

Contrastive divergence is an efficient training procedure performing an approximate 

training for RBMs. The procedure repeatedly tries to reconstruct the visible vector 

from the hidden vector generated from the visible vector thus updating the weight 
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parameters of the RBM. The weight parameters wij are updated as follows, 

 ∆𝑤𝑖𝑗 = 〈𝑣𝑖ℎ𝑗〉𝑑  −  〈𝑣𝑖ℎ𝑗〉𝑟   (7) 

In the above equation (7), the change in weight parameter ∆𝑤𝑖𝑗  is calculated, 

where the first term 〈𝑣𝑖ℎ𝑗〉𝑑  denotes the measured frequency for visible units with 

current training data and hidden units the posterior probabilities determined usin Eq(3) 

and the second term 〈𝑣𝑖ℎ𝑗〉𝑟 denotes the measured frequency for visible units being 

the reconstructed data constructed using Eq(4) when the hidden units were constructed 

using Eq(3), the one referred in the previous term. Figure 1 show how contrastive 

divergence is used in training RBM. 

 

Figure 1. Training RBM using contrastive divergence 

The outline involved in building the BBDBN/GBDBN is listed below in the 

algorithm: 

Algorithm 1. Steps to build BBDBN/GBDBN based acoustic model 

1. Segment the continuous Tamil speech data into phonetic segments 

using Graphcut based segmentation algorithm. 

2. Build the monophone training dataset and test dataset. 

3. Decide the DBN architectural parameters number of layers in DBN and 

number of neurons in each layer and design the BBDBN/GBDBN. 

4. Initialize the weight and bias parameters of BBDBN/GBDBN with 

random values in the range (0,1). 

5. Pre-train the DBN using contrastive divergence. 

6. Train DBN with back propagation technique with monophone train 

dataset. 

7. Test the acoustic model build with monophone test dataset. 
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Figure 1. Steps in building the Dataset 
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Figure 3. Features selected for datasets (a) DWTFS, (b) DWTES and (c) DWTNES 

3. Experimental setup 

3.1. Speech corpus 

The corpus Kazhangiyam in (Laxmi Sree and Suguna, 2016) has been extended 

with additional speech data and used in this work. The corpus consists of 9 hours of 

speech data spoken by 40 speakers including both male and female in the age group 

of 18 to 45. The speech was recorded in a controlled environment. The sampling 

frequency was set to 16 kHz. Phonemes were extracted from the wav file using the 

Graphcut based segmentation algorithm discussed in (Laxmi Sree and Vijaya, 2016) 

to build the datasets. This Graphcut based segmentation algorithm represents the 

features of each speech frame as a node in the graph and the similarity between these 

nodes as edge weights. It then performs repeated bipartition of graphs to produce the 

required segmentation. The corpus includes three datasets namely Discrete Wavelet 

Transform Feature Set (DWTFS), Discrete Wavelet Transform Energy Set (DWTES), 

Discrete Wavelet Transform Normalized Energy Set (DWTNES). The datasets are 

built with varied representation of DWT features extracted for the speech signal. 

DWTFS dataset is formed with six low dimensional DWT features of phonemes 

segmented from continuous Tamil speech with a total of 90 features. DWTES dataset 
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is formed by splitting the DWT features of the phoneme into three parts onset, coda 

and offset parts whose total energy, normalized energy, maximum energy and 

minimum energy in each band is considered with a total of 84 features to represent 

each phoneme. DWTNES dataset is formed with average DWT features, normalized 

DWT features, maximum and minimum energies of each band as the features of the 

phoneme (28 features). As a whole 6 hours of speech data has been used in this work. 

It comprises around 1,87,452 samples out of which 70% forms the training dataset 

and 30% forms the testing dataset. The dataset was split to ensure both the training 

and testing datasets to cover all the phoneme classes considered. 

4. Experimental results 

Both DBNs used here are pre-trained using Contrastive Divergence technique. The 

pre-training trains one RBM at a time in the stack and proceeds to the next one in the 

stack. Each RBM was pre-trained with 1000 epochs. Once the pre-training is complete, 

the whole DBN is trained using back propagation learning technique. The training is 

conducted for 1000 epochs with a batch size of 100 data points, step size 0.1, initial 

momentum 0.5, final momentum 0.9 and weight cost 0.0002. 

Table 1. RMSE values of 4 layer BBDBN and GBDBN while training and testing 

Datasets DWTFS DWTES DWTNES 

BBDBN-Training 0.015124 0.048565 0.015577 

GBDBN-Training 0.05973 0.059793 0.063981 

BBDBN-Testing 0.014913 0.048145 0.015571 

GBDBN-Testing 0.059303 0.059718 0.063829 

Experiments have been conducted on BBDBN and GBDBN with all the three 

datasets. The results of the experiment are as follows. A comparison on the RMSE 

values while training BBDBN and GBDBN with three datasets DWTFS, DWTES and 

DWTNES is shown in the Table 1. The table shows the results of four layer DBNs. 

The RMSE values while training/testing BBDBN seems to be much lower than 

training/testing GBDBN for all the three data representations. The RMSE values 

while training BBDBN for various datasets DWTFS, DWTES and DWTNES are 

0.015124, 0.048565 and 0.015577 respectively. The RMSE values while training 

GBDBN for various datasets DWTFS, DWTES and DWTNES are 0.05973, 0.059793 

and 0.063981 respectively. It is clear that DWTFS dataset provides lower RMSE 

value when compared to the other two datasets DWTES and DWTNES. Figure 4 show 

the Phone Error Rate (PER) of the 4-layer BBDBN and GBDBN during both training 

and testing with different datasets under consideration. It is clear from the figure that 

the performance of BBDBN is better for all the three datasets when compared to 

GBDBN in terms of PER. In addition, it is observed that the data representation in 

DWTFS performs better than DWTES and DWTNES with respect to PER. 
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Figure 4. Phoneme error rate of BBDBN and GBDBN on train and test data 

Table 2. Performance comparison through RMSE values of BBDBN and GBDBN 

networks by increasing the number of layers (for DWTFS dataset) 

Model/No. of Layers 4 5 6 

BBDBN-Training 0.015124 0.015266 0.015232 

GBDBN-Training 0.05973 0.061828 0.063849 

BBDBN-Testing 0.014913 0.01529 0.015281 

GBDBN-Testing 0.059303 0.062027 0.064215 

Table 3. Phone error rate (PER) during training and testing 4-layer, 5-layer and 6-

layer BBDBNs and GBDBNs (for DWTFS dataset) 

Model/No. of Layers 4 5 6 

BBDBN-Training 18.42 18.78 14.62 

GBDBN-Training 27.56 22.34 22.34 

BBDBN-Testing 17.28 19.94 14.97 

GBDBN-Testing 29.24 20.53 20.53 

 

Analysis has been proceeded by increasing the number of layers in the DBN and 

the respective change in the RMSE values of both BBDBN and GBDBN networks 

have been recorded (refer Table 2). It is observed that still the RMSE values of 4, 5 

and 6-layers BBDBN seem to be much smaller than that of their GBDBN counterparts 

for DWTFS dataset. DWTFS dataset has been used for this analysis. Figure 5 plots 

the PER for the train and test dataset of DWTFS on BBDBN and GBDBN. It is seen 

that the Phone Error Rate is better in BBDBN with various depth of the network when 
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compare to their equivalents in GBDBN. The observation also shows that increasing 

the number of layers in the network reduces the error rate by increasing the 

performance the network classification except very few situations. 

 

Figure 5. Phone error rate (PER) during training and testing 4-layer, 5-layer and 6-

layer BBDBNs and GBDBNs (for DWTFS dataset) 

Table 4 lists down the RMSE values of training and testing BBDBN and GBDBN 

with DWTES dataset by varying the number of layers in DBNs. The performance in 

terms of PER of the networks BBDBNs and GBDBNs are compared in Table 5 and 

Figure 6. It can be noticed that the PER of BBDBN on DWTES train and test dataset 

also shows that it models better when compared to GBDBN. But the PER of the 

networks show a decline in the performance by increasing the number of layers of 

network with DWTES dataset. 

 

Figure 6. Comparison of phone error rate (PER) during training and testing 4-

layer, 5-layer and 6-layer BBDBNs and GBDBNs (for DWTES dataset) 
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Table 4. Comparison of RMSE values while training and testing 4-layer, 5-layer and 

6-layer BBDBNs and GBDBNs (Dataset: DWTES) 

Model/No. of Layers 4 5 6 

BBDBN-Training 0.048565 0.055574 0.059939 

GBDBN-Training 0.059793 0.059684 0.065982 

BBDBN-Testing 0.048145 0.05577 0.060274 

GBDBN-Testing 0.059718 0.060007 0.066194 

5. Discussion 

The results presented in the previous section shows that the representation of 

features to build the dataset plays an important role in the performance of the acoustic 

model that is built using BBDBN or GBDBN. This study shows that the dataset built 

using direct DWT features (DWTFS) when compared to band-wise energy features 

dataset (DWTES) and dataset built with normalized energy of onset, coda and trailing 

portions of phonemes (DWTNES). For a 4-layer BBDBN using DWTFS dataset have 

achieved a better performance with 17.28% PER whereas the other two datasets have 

achieved 20.53% PER for BBDBN with test data. But in case of 4-layer GBDBN the 

best performance is achieved by using DWTES with 20.53% PER whereas using the 

other two dataset have yield PER around 29% (Table 3). 

Table 5. Phone error rate (PER) during training and testing 4-layer, 5-layer and 6-

layer BBDBNs and GBDBNs (for DWTES dataset) 

Model/No. of Layers 4 5 6 

BBDBN-Training 22.34 27.88 27.88 

GBDBN-Training 22.34 27.88 22.34 

BBDBN-Testing 20.53 29.12 29.12 

GBDBN-Testing 20.53 29.12 20.53 

 

Analysis on the performance of the networks by varying the number of layers in 

the DBNs show that there is an increase in the performance of both types of DBNs 

with the increase in the number of layers with the best PER of 14.62% for DWTFS 

train dataset on BBDBN and 14.97% for DWTFS test dataset on BBDBN. The results 

of training and testing DBNs with DWTES have turned up better for 6-layer GBDBN 

and 4-layer BBDBN with 20.53% PER. 

The best result of the current analysis is compared with the results of other existing 
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models in Table 6 to prove the stgreangth of DBN. The other models compared here 

uses TIMIT core test set, which uses MFCC for feature representation. In our work, 

KAZHANGIYAM corpus (Laxmi Sree and Suguna, 2016) which uses DWT features 

for input representations is used. Using BBDBN for Phoneme recognition of Tamil 

speech provides around 5% improvement over the previously reported PER. 

Table 6. Performance of BBDBN and GBDBN compared with results of previously 

reported models 

Method PER 

Conditional Random Field (Morris and Fosler-Lussier, 2006) 34.80% 

Large-Margin GMM (Sha and Saul, 2006) 33% 

CD-HMM (Hifny and Renals, 2009) 27.30% 

Heterogenous Classifiers (Halberstadt, 1999) 24.40% 

Monophone Deep Belief Networks (Li and Yu, 2007) 20.70% 

BBDBN (this work) 14.97% 

GBDBN (this work) 20.53% 

6. Conclusion 

The analysis reported in this paper studies the performance of Phoneme 

recognition for Tamil continuous speech by building BBDBN and GBDBN acoustic 

models. The study has been done using the self developed speech corpus 

Kazhangiyam (Laxmi Sree and Suguna, 2016). The acoustic models have shown 

varied performance with different input representation of features that has been 

presented through the datasets DWTFS, DWTES and DWTNES. The input 

representations in DWTFS reports better results, where as the ones of DWTES lacks 

performance sometime and DWTNES performs poor when compared to the other two 

datasets.  

The analysis of BBDBN and GDDBN was also done by varying the depth of the 

DBN (number of layers), which gives a common inference of achieving better 

performance by increasing the number of layers. It is observed that pre-training the 

DBNs consumes a lot of CPU time. Increasing the number of layers of a DBN also 

increases the training time. Working on the time constraint of the training part of the 

DBN can provide an additional advantage while building the acoustic model. The 

comparison of BBDBN used in this analysis with other existing works show an 

improvement of 5% in the performance of model. 
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