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ABSTRACT. There is an in-depth discussion in this edition about the improvement of a system 

regarding tool wear monitoring in hard turning operation. Grinding is a reasonable alternative 

to hard turning in manufacturing industry, but the reliability of hard turning processes is often 

unpredictable because of the dominant parameters that occur during tool wear. Here the 

dominant parameters are being compared to give the highest dominant feature among them. 

The ongoing study is focusing on Inconel 718 with varying HRC (51, 53, and 55) and the tool 

employed here is coated carbide. By using L9 orthogonal array extracted from taguchi method 

taking input parameters such as speed, feed, depth of cut and hardness. Taking acoustic 

emission (AE) signal data as an input to ANOVA and Grey relation analysis (GRA) which 

identifies the optimal and most dominant feature in the tool wear operation and also surface 

operation. 

RÉSUMÉ. Nous discutons en détail de l’amélioration d’un système de surveillance de l’usure des 

outils dans les opérations de chariotage dans cet article. La rectification est une alternative 

raisonnable au chariotage dans l'industrie manufacturière, mais la fiabilité des processus de 

chariotage est souvent imprévisible en raison des paramètres dominants qui se produisent lors 

de l'usure des outils. Dans cet article, les paramètres dominants sont comparés pour donner la 

caractéristique dominante la plus élevée parmi eux. L’étude en cours porte sur l’Inconel 718 

avec différents HRC (51, 53 et 55) et l’outil utilisé est le carbure enduit. La matrice orthogonale 

L9 extrait de la méthode taguchi s’applique en prenant des paramètres d'entrée tels que la 

vitesse, l'alimentation, la profondeur de coupe et la dureté. Prennant des données du signal 

d'émission acoustique (AE en anglais) comme données d’entrée pour l'analyse de la variance 

(ANOVA en anglais) et l ’analyse de la relation de gris (GRA en anglais) qui identifie la 

caractéristique optimale et la plus dominante dans les opérations d'usure des outils et celles de 

surface. 
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1. Introduction 

Hardness ranging from 45 to 65 Rockwell C (HRC) (Konig et al., 1984) is 

involved in hard turning operations during cutting of materials. Hence, the hardness 

of tool materials is usually high. Ceramics, high-speed steels (HSS), cubic boron 

nitride (CBN) and coated CBN, polycrystalline diamond (PCD), or tungsten carbide 

(WC) coated with titanium nitride (TiN) are some of the main tool materials included 

(Konig et al., 1984; Bartarya and Choudhury, 2012). It is possible to cut materials 3in 

their hardened state as improvements took place in the last few decades in tools and 

machines. Reduced machining costs, lead time, number of essential machine tools, 

improved surface integrity, reduced finishing operations and removable of part 

distortion caused by excessive heat treatment are the benefits of producing 

components in hardened state (Koshy et al., 2002).  

 

Figure 1. Tasks performed by TCM 

In metal-cutting processes tool wear is a complex phenomenon occurring in 

various ways. Normally, the surface finish is mainly affected by a worn tool and 

therefore there is a need to develop TCM systems that alert the operator to the tool 

wear state, thereby avoiding undesirable effects (Chen and Li, 2007). TCM systems 

that were improved in the past are comprehensively reviewed in a number of articles.  

Micheletti (1976) discussed different types of sensors for “in-process” 

measurement of tool wear. Ravindra et al. (1993) conducted experiments for sharp 

tools and various stages of flank wear. To discuss the wear time and wear force 

relationship in turning, and in estimating tool wear a mathematical model based on 
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multiple regression analysis was developed.  

TCM not only reduces the manufacturing expenses by lowering downtime and 

unnecessary cutting tool changes, but also improves the product quality by eliminating 

chatter, excessive tool deflection and poor art surface finish. Hence, more study has 

been done in the past 30 years (Li and Mathew, 1990). 

Many methods for TCM had been put forward in the past but not many were 

universally successful because of the complex nature in machining. The classification 

of sensors as direct (radioactive, optical, electric resistance, etc.) and indirect (AE, 

spindle motor current, vibration, cutting force, etc.) sensing methods are successful 

methods. Recent studies have concentrated on the improvement of indirect monitoring 

methods for cutting processes. AE being the most efficient indirect sensing method.  

The benefit of using AE to detect tool wear lies in two aspects: its frequency range 

is very high than the vibrations of machines and environmental noises (Li, 2002; Sata 

et al., 1973). AE based on TCM systems has been available for approximately 20 

years. Most of them use analogue root mean square of the signal to observe tool wear 

or find out breakages. Damodarasamy and Raman (1993) discussed the combined 

effect of radial force, feed force and AE (RMS value) in modeling the tool flank wear 

for turning operation. AE is considered as a phenomenon whereby transient elastic 

waves are produced by the rapid release of energy from a localized source or source 

within the material, or the transient elastic wave so produced (ASTM, 1998). AE 

signals produced during turning can be continuous or transient/burst type. Teti et al. 

(2010) reviewed various AE methods (Teti et al., 2010; Kannatey et al., 1982; 

Jemielniak and Bombinski, 2006) applied for TCM and put forward that due to a wide 

sensor dynamic range, AE can find out most of the phenomena in machining, although 

significant data acquisition and signal processing is required. Dilma (2000) also spoke 

about some AE techniques used for flank wear detection (Moriwaki and Tobito, 1990; 

Blum and Inasaki, 1990). The author discussed that AE can be deemed only suitable 

as an additional sensing method for growth in reliability of TCMS due to complexity 

involved in selection of the location for sensor mounting and signal analysis 

techniques. Rangwala and Dornfeld (1990) performed sensor integration using AE 

along with other signals for TCM. The RMS of AE was observed to be sensitive to 

the degree of flank wear. Heiple et al. (1994) observed AE during turning of the 

cutting tool as phenomena of heat treatment and observed that the primary source of 

AE was sliding friction between the tool flank and the work piece. It was finalized 

that since changes in AE with tool wear were strongly material dependent, the single 

characteristic change in AE with tool wear is valid for all material was unlikely to 

exist. Komvopoulos and Cho (1997) found the relationship between AE RMS and 

changes in tool–work piece contact area due to wear, changes in the interfacial friction 

coefficient, and the cutting tool material properties resulting from various coating 

materials. The tool life calculated using AE RMS was in good correlation with that 

found with maximum wear land width. Chungchoo and Saini (2002) improved a 

model to relate AErms in the turning operation with the flank and crater wear. The 

improved model accurately predicted the flank wear during turning. In a brief review, 

Li (2002) spoke that AE-based TCM for turning containing AE generation in turning, 

different methods used for AE signal measurement and processing, and 
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methodologies for calculating tool wear. Scheffer et al. (2003) used AE rms signals 

along with other signals in order to improve a tool wear monitoring system for hard 

turning. Sun et al. (2005) developed a tool condition observing system using efficient 

feature set taken from AE signals along with support vector machine (SVM). The 

method that is put forward could identify flank wear effectively, and manufacturing 

losses in industries due to under- or over-prediction of flank wear was lowered. 

Sharma et al. (2008) and Gajate et al. (2010) observed AE, vibration, and force signals 

in turning process. It was seen that ring down count parameter of AE signals showed 

a significant growth with the tool wear. Al- Habaibeh et al. (2010) and Deiab et al. 

(2009) observed AE signals along with force signals, and the improved systems 

successfully performed the tool wear monitoring. Xi et al. (2010) observed the 

confusing characteristics of AE signal produced in turning process. It was seen that 

the strange attractor in phase space and the Poincare shows both have contraction 

tendency with the tool wear. Bhuiyan et al. (2011) improved a dummy tool holder 

apparatus in order to foresee tool wear from AE measurement. In their recent 

publication, Jemielniak et al. (2012) performed sensor fusion using AE, vibration, and 

force sensors in order to analyze suitability of different signal features for TCM. This 

paper has used the AE signals from an embedded sensor for computation of features 

and forecast of tool wear. 

A reduced feature subset, which is an optimal in calculation and clustering least 

squares errors, is then selected using a new dominant-feature observing algorithm to 

decrease the signal processing and number of sensors required. Tool wear is then 

predicted using Artificial Neural network based on the reduced features. 

2. Dominant feature 

In various industrial applications, different features are computed. However, it has 

been identified that, beyond a certain threshold, including additional features leads to 

a worse performance. However, the selection of features affects various aspects of the 

recognition process, such as accuracy, learning time, and essential sample size. Vitally, 

computing more features take to an increase in time and computational space 

complexity of the recognition process.  

Various methods for tool wear monitoring were proposed in the past, but during 

the feature deriving stage, the most dominant features which correlate well with tool 

wear and not affected by process conditions are developed from the prepared signals 

is not specifically mentioned. Hence this project made an attempt to find out the 

dominant feature for both AE and Vibration Signatures. In this paper, (GRA) is used 

as statistical decision tool for identifying the dominant features which are most 

appropriate in predicting the time series of tool wear in industrial turning machines 

using an online, real-time, and indirect approach, with data from installed AE and 

vibration sensors. 
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3. Methodology 

The proposed methods were tested using a single point cutting tool in an industrial 

high-speed turning machine. AE measurements were taken during a period using an 

AE and vibration sensor. During the measuring period, the tool was periodically 

extracted from the chuck, and tool wear was measured using ‘Tool Makers 

microscope’. This yielded a baseline time plot of actual tool wear versus time. Eleven 

features, commonly used for machinery monitoring in industries, were calculated 

from the measured AE data. ANOVA was applied to observe the most contributing 

feature among the eleven features. The GRA method was then used to observe the 

optimal feature values with the help of Artificial Neural network (ANN). 

4. Grey relational analysis 

The Grey Relational Analysis (GRA) which is involved with the Taguchi method 

represents a new way to optimization. GRA is a normalization evaluation technique 

is extended to affect the complex multi-performance characteristics. 

The data obtained from neural networks is to be processed. For this purpose the 

experimental results are normalized in the range between zero and one. The 

normalization can be done form three different aspects. 

If the target value of original sequence is infinite, then it has a phenomena of “the 

larger-the – better”. The original sequence can be normalized as follows. 

𝑋𝑖
∗(𝑘) =

𝑋𝑖
0(𝐾)−min 𝑋𝑖

0(𝐾)

max 𝑋𝑖
0(𝐾)−min 𝑋𝑖

0(𝐾)
                                     (1) 

If the expectancy is the smaller-the better, then the original sequence should be 

normalized as follows. 

𝑋𝑖
∗(𝑘) =

max 𝑋𝑖
0(𝐾)−𝑋𝑖

0(𝐾)

max 𝑋𝑖
0(𝐾)−𝑋𝑖

0(min 𝐾)
                                     (2) 

However, if there is a definite target value to be achieved, the original sequence 

will be normalized in the form. 

𝑋𝑖
∗(𝑘) = 1 −

|𝑋𝑖
0(𝐾)−𝑋0|

max 𝑋𝑖
0(𝐾)−𝑋𝑖

0                                            (3) 

Or the original sequence can be simply normalized by the most basic methodology 

i.e., let the values of original sequence be divided by the first value of sequence 

𝑋𝑖
∗(𝑘) =

𝑋𝑖
0(𝐾)

𝑋𝑖
0(1)

                                                         (4) 

Where 
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xi*(k) is the value after the grey relational generation (data pre-processing), max 

xi
0(k) is the largest value of x 0(k), min xi

0(k)is the smallest value of xi
0(k) and xn is 

the desired value. 

4.1. Grey relational coefficient and grey relational grade 

Accordingto data pre-processing, a grey relational coefficient is estimated to 

express the relationship between the ideal and actual normalized experimental results. 

They grey relational coefficient can be expressed as follows: 

𝜁𝑖(𝐾) =
𝛥𝑚𝑖𝑛+𝜁.𝛥𝑚𝑎𝑥

𝛥𝑜𝑖(𝐾)+𝜁.𝛥𝑚𝑎𝑥
                                              (5) 

Where Δoi(k) is the deviation sequence of the reference sequence xo*(k) and the 

comparability sequencexi*(k) namely 

𝛥𝑜𝑖(𝐾) = ‖ 𝑋0
∗(𝐾) − 𝑋𝑖

∗(𝐾)‖ 

𝛥𝑚𝑎𝑥 = ∀𝑗 𝜀𝑖
𝑚𝑎𝑥

∀ 𝐾
𝑚𝑎𝑥 ‖ 𝑋0

∗(𝐾) − 𝑋𝑖
∗(𝐾)‖ 

𝛥𝑚𝑖𝑛 = ∀𝑗 𝜀𝑖
𝑚𝑖𝑛

∀ 𝐾
𝑚𝑖𝑛 ‖ 𝑋0

∗(𝐾) − 𝑋𝑖
∗(𝐾)‖ 

ζ is distinguishing or identification coefficient ζ ε to [0, 1]. ζ=0.5 is generally used. 

After obtaining the grey relational coefficient, we normally consider the average 

of the grey relational coefficient as the grey relational grade. The grey relational grade 

is defined as follows. 

𝛾𝑖 =
1

𝑛
∑ ζi (k)

𝑛

𝑘=1
                                               (6) 

However, since in real application the effect of each factor on the system is not 

exactly same. Eq.(6) can be modified as 

𝛾𝑖 =
1

𝑛
∑ Wk. ζi (k)

𝑛

𝑘=1
∑ Wk

𝑛
𝑘=1 = 1                                (7) 

Where wk represents the normalized weighting value of factor ‘k’. Given same 

weights. Equations (6) and (7) are equal. 

In the grey relational analysis, the grey relational grade identifies the relationship 

among the sequences. The grey relational grade also indicates the degree of influence. 

By using grey relation grade the optimal parameters are identified by taking means of 

the levels. 

5. Analysis of variance (anova analysis) 

ANOVA is a combination of statistical models, and their associated procedures, 

in which the identified variance in a particular variable is partitioned into components 
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accountable to different sources of variation. ANOVA is used to determine whether 

the parameters have significant influence on output parameters. The null hypothesis 

has to be rejected by comparing the F value with tabulated values so that the larger F 

value indicates the most significance of the parameter for certain confidence level. 

6. Experimental setup 

Based on the literature, a methodology was put forward to study the influence of 

cutting parameters on tool wear rate in turning round bar of Inconel 718 with coated 

cemented carbide insert with ISO code (TNMG 160408 MS PR1305).  

Four cutting parameters (speed, feed rate, depth of cut and hardness) were taken 

with three levels for each cutting parameter were summarized in Table 1. 

Table 1. Experimental factors and their levels 

Levels of the 

experimental 

factors 

Factors 

Speed, N 

(rpm) 

Feed rate, f 

(mm/rev) 

Depth of 

cut, d 

(mm) 

Hardness 

(HRC) 

1 50 0.05 0.15 51 

2 65 0.075 0.2 53 

3 80 0.1 0.25 55 

The number of experiments and the combinations of parameters for each run was 

obtained by using Taguchi’s L9 orthogonal array. The Computer Numerically 

Controlled (CNC) lathe machine is utilized for the experimental work. A special tool 

setup is designed and fabricated to make it possible to differentiate the transient signal 

generated from chip formation only. One dummy tool setup that has been replicating 

the conventional tool setup is designed and integrated into the conventional tool setup.  

The dummy tool holder and tool-insert arrangement were designed and fabricated 

to support the AE signal to follow about the same path of energy transmission from 

sources to the sensor. The dummy tool-insert and tool holder arrangement are placed 

over the main tool-insert and tool holder arrangement. The dummy arrangement is set 

in such a way with respect to the main tool setup that it cannot come in contact with 

the work piece while the main tool cuts the material. 

 However, the chips that are released during metal cutting would touch the dummy 

tool insert as it leaves the work piece. Rubber insulation is placed between the tool 

holders to avoid mutual vibrations. The placement of rubber insulation has helped to 

dampen the low-frequency signal components arising from plastic deformation and 

tool wear. Besides the AE sensor and the data acquisition system permits the signal 

above 50 kHz to pass to storage. It is expected that the whole effect of rubber 

insulation and data acquisition system could success- fully make the dummy setup 
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signal independent. A piezoelectric AE sensor is placed on the dummy tool holder to 

store the acoustic emission generated during cutting.  

This is placed on the dummy tool holder very close possible to the spot of collision 

between chip and dummy tool-insert. The detail of whole setup is shown in Fig.2. The 

signal obtained from the new setup shows the chip formation occurrence only 

respective to the different cutting conditions. As the sensor is placed in the dummy 

tool holder, it never comes in contact with the main tool- holder assembly and the 

sensor transient AE signal does not include the tool fracture signal. Fig. 3 shows The 

AE signal measuring chain in metal cutting.  

 

Figure 2. Experimental set-up scheme 

7. Results and discussion 

In order to minimize any effect of non-homogeneity on the experimental results, 

turning operation was first performed on the work piece with CNC lathe. The nine 

experimental runs were performed based on the combinations from Table 2 with each 

experimental run carried for a length of 120 mm. All the operations on CNC were 

performed using numerical control part programming. Tool Wear (TW) 

measurements have been carried out using high resolution Tool maker’s microscope. 

The tool wear criteria were used as per ISO 3685 i.e. the tools were shed after reaching 

average flank wear (VB avg) of 0.3 mm and /or after reaching depth of cut notch wear 

(VN) of 0.6mm. The tool wear obtained from tool maker’s microscope were given in 

the table 2. 

The AE signals of Fig.3 have been captured for all the combinations cited in Table 

2 cutting speed, feed, depth of cut and hardness of the material. 
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Table 2. Manual tool wear from tool maker’s microscope 

EXPT.NO 
SPEED 

(rpm) 

FEED 

(mm/min) 

DOC 

(mm) 

HARDNESS 

(HRC) 

TW 

(µm) 

1 50 0.05 0.15 51 0.19 

2 65 0.05 0.2 55 0.175 

3 80 0.05 0.25 53 0.16 

4 50 0.075 0.2 53 0.19 

5 65 0.075 0.15 51 0.145 

6 80 0.075 0.15 55 0.14 

7 50 0.1 0.25 55 0.19 

8 65 0.1 0.15 53 0.17 

9 80 0.1 0.2 51 0.14 

 

 

Figure 3. RMS AE signal captured in turning 

Various Features were calculated by using Lab View software and MATLAB for 

each and every signal collected by AE sensors are shown in table 3. 

These features and corresponding outputs (tool wear, surface roughness and 

temperature) trained with Neural Network by considering the parameters shown in 

Fig. 4 and got high accuracy of 98%. 
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Table 3. All features from AE signals 

EXP.

NO 
1 2 3 4 5 6 7 8 9 

RMS 
68.878

7 
2.2444 1.4047 2.3803 

69.810

1 

2.377

9 
2.3422 

1.848

7 
2.0611 

CF 0.771 0.1516 0.1235 0.1475 0.7618 
0.151

9 
0.163 

0.144

4 
0.1522 

SKW 0.024 
-

0.1653 

-

0.1747 

-

0.1744 
0.0505 

-

0.169

3 

-

0.1177 

-

0.148 

-

0.1959 

KURT 1.2398 7.5238 8.7514 7.5017 1.2494 
7.450

9 
7.4375 

7.811

8 
7.4447 

AD 0.0566 0.5571 2.7992 2.3797 0.2062 
0.963

6 
5.263 

1.826

6 
1.4765 

MEA

N 

69.000

6 
6.2035 14.676 

11.949

5 

69.877

7 

9.158

2 

12.163

6 

14.81

53 

12.106

7 

SD 0.0693 0.8359 4.2843 4.5117 0.3045 
1.662

8 

13.990

1 

3.387

6 
2.6249 

VAR 0.0048 0.6988 18.355 
20.355

4 
0.0927 2.765 

195.72

21 

11.47

58 
6.8901 

PEAK 
69.141

1 
7.1157 

23.989

8 

29.528

3 

70.408

4 

10.59

43 

95.812

9 

20.03

35 

14.445

5 

FRE 
0.0222

22 

0.0526

32 

0.3809

5 

0.1071

4 

0.0370

37 

0.272

73 
0.5 0.2 0.15 

TIME 
45.000

45 

18.999

85 

2.6250

16 

9.3335

82 

27.000

03 

3.666

63 
2 5 

6.6666

67 

 

 

Figure 4. Training parameters for AE signals 
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Figure 5. Neural network for AE signals 

The network diagram and the Regression graphs were shown in 5 and 6, from this 

it is observed that the error is almost all minimised. Based upon the training the 

performance curves were plotted which were shown in Fig. 7 and Fig. 8. 

 

Figure 6. Regression graph for AE signals 
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Figure 7. Performance graph for AE signals 

 

Figure 8. Training state graph for AE 

After obtaining satisfactory relation between features and outputs in neural 

network training, we simulated the results for different variations in the features and 

obtained the outputs which was presented in table 4. 
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Table 4. Simulated neural network results of coated carbide insert for AE 

EX

P 

NO 

R

M

S 

CF 
SK

W 

K

U

RT 

A

D 

M

EA

N 

SD 

V

A

R 

PE

AK 

FR

E 

TI

ME 

T

W 

(m

m) 

SR 

(µ

m) 

TE

M

P 

(°

C) 

1 

1.4

04

7 

0.1

23

5 

-

0.1

959 

1.2

39

8 

0.0

56

6 

6.2

03

5 

0.0

69

3 

0.0

04

8 

7.1

157 

0.0

222

2 

2 
0.1

4 

0.8

89

8 

18

8.6

8 

2 

1.4

04

7 

0.1

23

5 

-

0.1

959 

1.2

39

8 

2.6

59

8 

38.

04

0 

7.0

29

7 

97.

86

3 

51.

464

3 

0.2

611

1 

25.

500

3 

0.1

40

0 

1.8

64

8 

18

0.0

0 

3 

1.4

04

7 

0.1

23

5 

-

0.1

959 

1.2

39

8 

5.2

63 

69.

87

7 

13.

99

0 

19

5.7

2 

95.

812

9 

0.5 

45.

000

4 

0.1

89

9 

1.8

64

4 

18

0.0

0 

4 

1.4

04

7 

0.4

47

2 

-

0.0

727 

4.9

95

6 

0.0

56

6 

6.2

03

5 

0.0

69

3 

97.

86

3 

51.

464

3 

0.2

611

1 

45.

000

4 

0.1

71

4 

0.7

60

0 

18

9.3

1 

5 

1.4

04

7 

0.4

47

2 

-

0.0

727 

4.9

95

6 

2.6

59

8 

38.

04

0 

7.0

29

7 

19

5.7

2 

95.

812

9 

0.5 2 
0.1

9 

0.7

60

0 

18

0.0

5 

6 

1.4

04

7 

0.4

47

2 

-

0.0

727 

4.9

95

6 

5.2

63 

69.

87

7 

13.

99

0 

0.0

04

8 

7.1

157 

0.0

222

2 

25.

500

4 

0.1

89

0 

1.8

64

9 

18

0.0

0 

7 

1.4

04

7 

0.7

71 

0.0

505 

8.7

51

4 

0.0

56

6 

6.2

03

5 

0.0

69

3 

19

5.7

2 

95.

812

9 

0.5 

25.

500

4 

0.1

89

7 

0.7

60

0 

24

6.9

2 

8 

1.4

04

7 

0.7

71 

0.0

505 

8.7

51

4 

2.6

59

8 

38.

04

0 

7.0

29

7 

0.0

04

8 

7.1

157 

0.0

222

2 

45.

000

4 

0.1

88

6 

0.7

60

1 

18

0.1

5 

9 

1.4

04

7 

0.7

71 

0.0

505 

8.7

51

4 

5.2

63 

69.

87

7 

13.

99

0 

97.

86

3 

51.

464

3 

0.2

611

1 

2 

0.1

89

6 

0.7

64

9 

18

3.4

1 

10 

35.

60

7 
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7.1. Grey relation analysis for AE 

The simulated data present in Table 4 were normalised (X*) using the equations 

(1) and (2). The ‘lower is better’ criteria were used for surface roughness and hardness 

because this project aims at lowering the toll wear. The normalised values were given 

in Table 5. From the normalised values of the response variables, the reference value 

(R) was found using the equation (3) regardless of the response variables.  

If the grey relational grade value is higher, the corresponding factors combination 

is said to be near to the optimal.  

The average grey relational grade of each factor at each level, shown in Table 5, 

was obtained by taking the average of the grey relational grades for the required factor 

at the required level. The optimal level for each factor was obtained based on ‘higher 

is better’ characteristic.  

From Table 6, the optimal level in each factor was highlighted. The dominant 

feature was obtained by taking the maximum value of all factors. Thus the dominating 
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sequence was Kurtosis, Frequency, Skewness, Time, Mean, RMS, Peak, Standard 

Deviation, Absolute Deviation, Variance, Crest Factor. 

Table 5. The normalized values, deviation values and grey relational grades for AE 

signal 

 

NORMALISED 

VALUES 

ABSOLUTE 

DIFFERENCE 
GREY COEFFICIENTS 

    

EXP 

NO 

NT

W 
NSR 

NT

M 

DT

W 
DSR 

DT

M 

GRC

-TW 

GRC

-SR 

GRC-

TEMP 

TOTA

L GRC 

GRA

DE 

1 1 
0.88

2502 

0.94

6329 
0 

0.11

7498 

0.05

3671 
1 

0.80

9719 

0.9030

64 

2.7127

83 

0.90

4261 

2 
0.9

998 

9.05

E-05 

0.99

9994 

0.0
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0.99

9909 
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0.99
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0.33

3353 

0.9999

89 

2.3329

42 
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0.0
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0.9
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0.99

9547 

8.03

E-06 

0.33

3422 

0.33

3434 
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4 

0.55
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0.3
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0.94
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0.6
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9.05

E-06 

0.05
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0.99
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2.3397
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0.99

9946 
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0342 
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0.9993
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0.0
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0 1 
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1 0 

0.33

7747 

0.33

3333 
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1.6710
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Table 6. Average grey relational grade of AE for each factor at each level for coated 

carbide insert 

LE

VE

L 

Factors 

RM

S 

CF SK

W 

KU

RT 

AD ME

AN 

SD VA

R 

PEA

K 

FRE TIM

E 

1 0.72

446

9 

0.69

053

9 

0.65

139 

0.76

854

6 

0.69

774

9 

0.72

121

2 

0.71

616 

0.67

951

5 

0.72

664

9 

0.70

526

3 

0.74

377

4 

2 0.65

377

5 

0.72

117 

0.68

501 

0.66

327

5 

0.71

940

9 

0.71

959 

0.70

371

9 

0.68

670

7 

0.70

277

9 

0.74

829

4 

0.70

468

7 

3 0.71

085

9 

0.67

739

4 

0.75

270

3 

0.65

728

3 

0.67

194

5 

0.64

830

1 

0.66

922

4 

0.72

288

1 

0.65

967

5 

0.63

554

6 

0.64

064

2 

Table 7. Results of ANOVA for AE signal 

FACTOR

S 

SUM OF 

SQUARE

S 

D

F 

MEAN 

SQUAR

E 

F-

VALUE 

P-

VALU

E 

% 

CONTRIBUTIO

N 

RAN

K 

RMS 0.025325 2 0.012662 0.605128 0.5894 5.943764 6 

CF 0.009082 2 0.004541 0.217016 0.8138 2.1316 11 

SKW 0.047932 2 0.023966 1.145305 0.4043 11.24957 3 

KURT 0.070493 2 0.035247 1.684402 0.26947 16.54476 1 

AD 0.010164 2 0.005082 0.242854 0.7952 2.38539 9 

MEAN 0.031203 2 0.015601 0.745573 0.5306 7.323269 5 

SD 0.010643 2 0.005321 0.254309 0.7871 2.497911 8 

VAR 0.009723 2 0.004861 0.232322 0.8027 2.281945 10 

PEAK 0.02074 2 0.01037 0.495567 0.6423 4.867624 7 

FRE 0.058273 2 0.029136 1.392405 0.3476 13.67666 2 

TIME 0.048798 2 0.024399 1.166001 0.3991 11.45284 4 

ERROR 0.083701 4 0.020925   19.64466  

TOTAL 0.426075 26    100  

ANOVA tests the null hypothesis that the means of each level of parameters are 

equal and the alternative hypothesis is that at least one of the means is not equal. It is 

obtained by measuring the sum of squared deviations from the total mean of the grey 
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relational grade. In addition, the F-test was used to identify the turning parameters 

significance on the output responses. Usually, the change of turning parameter has a 

significant effect on the output response when the F value is large than the tabulated 

value. The ANOVA for the overall grey relational grade was shown in Table 7.  

8. Conclusions  

The following conclusions are drawn from the present investigation 

• Using both Taguchi method and GRA to observe the dominant feature to find 

the tool wear in TCM has been reported  

• Various Features were estimated from the LABVIEW and MAT LAB 

software and observed that Mean, Variance, Absolute Deviation and Peak 

were observed as constant for all the experiments which shows these features 

are not affecting the tool wear. 

• A Neural Network tool in MATLAB was used to train the remaining Features 

to get the relation between tool wear and the features and observed that 

around 98 % accuracy.  

• Tool wear was calculated by Simulating Neural Network, Features consider 

as input data from L27 Taguchi orthogonal array.  

• The Simulated data was analyzed by Grey relational method and obtained 

grey grade, which is used to find out the dominant feature for the TCM.  

• The dominant features ranking sequence for AE signal were obtained as 

Kurtosis, Frequency, Skewness, Time, Mean, RMS, Peak, Standard 

Deviation, Absolute Deviation, Variance, Crest Factor.  

• ANOVA analysis has been carried out for the simulated data and grey codes, 

identified that the same features ranking Sequence was obtained for AE 

signal. 
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