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ABSTRACT. The objective of this work is the study the problem of laminar natural convection, 

for a power-law fluid, in a differentially heated square cavity, to which a clockwise or 

counterclockwise inclinations are attributed compared to the classical case (ϕ=0°). A finite 

volume code was used to make the simulations. The study was divided into several parts in 

order to distinguish the effects of the different widely-varied’ parameters included (Rayleigh 

number Ran [10+3→10+6], rheological index n [0.6→1.8], inclination angle ϕ [-90°→90°] 

and Prandtl number Prn [10→10+4]) independently and combined. The obtained results 

showed the increase of dynamic and thermal fields disturbances for increasing Ran and/or 

decreasing n especially for a counterclockwise inclination (over a range of variation), with 

improvement of the heat exchange coefficient, particularly at high Prn. The opposite will 

occur when Ran decreases and/or n increases and becomes clearer for a clockwise 

inclination. In addition, an optimal angle for a counterclockwise inclination is recorded 

(highest mean heat transfer coefficient). This angle is influenced by Ran increase and n 

decrease. Recommended ranges of inclination angles leading to highest heat transfer rate are 

finally given depending on problem parameters. The industrial exploitation of the 

recommended ranges, undoubtedly allows benefits of efficiency and/or economy. 

RÉESUMÉ. Cet article a pour but d’étuder le problème de la convection naturelle laminaire, 

pour un fluide de loi de puissance, dans une cavité carrée chauffée de manière différentielle, 

à laquelle sont attribuées des inclinaisons dans le sens horaire ou antihoraire par rapport au 

cas classique (ϕ = 0 °). Un code de volume fini a été utilisé pour effectuer les simulations. 

L'étude a été divisée en plusieurs parties afin de distinguer les effets des différents paramètres 

très variés inclus (nombre de Rayleigh Ran [10 + 3 → 10 + 6], indice rhéologique n [0,6 → 

1,8], angle d'inclinaison ϕ [- 90 ° → 90 °] et le nombre de Prandtl Prn [10 → 10 + 4]) 

indépendamment et combinés. Les résultats obtenus ont montré l'augmentation des 

perturbations des champs dynamiques et thermiques pour augmenter Ran et / ou diminuer n, 

en particulier pour une inclinaison dans le sens antihoraire (sur une plage de variation), avec 
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amélioration du coefficient d'échange thermique, en particulier à forte Prn. L'inverse se 

produira lorsque Ran diminue et / ou n augmente et devient plus clair pour une inclinaison 

dans le sens des aiguilles d'une montre. De plus, un angle optimal pour une inclinaison dans 

le sens antihoraire est enregistré (coefficient de transfert thermique moyen le plus élevé). Cet 

angle est influencé par l'augmentation de Ran et la diminution de n. Les plages d'angles 

d'inclinaison recommandées conduisant au taux de transfert de chaleur le plus élevé sont 

finalement indiquées en fonction des paramètres du problème. L'exploitation industrielle des 

gammes recommandées permet sans aucun doute des avantages d'efficacité et / ou 

d'économie. 

KEYWORDS: natural convection, square cavity, inclination angle, power-law fluid, prandtl 

number. 
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1. Introduction 

Natural convection inside square cavity is one of the most studied problems in 

heat transfer literature. The first published works date back to about sixty (60) years. 

The extensive review made by Ostrah (1972) and Yener et al. (2013) neatly captures 

in a chained manner the available works from 1953 till 2013. This kind of problems 

is widely found in practice for Newtonian and Non-Newtonian fluids. Oil-drilling, 

pulp paper, slurry transport, food processing, polymer engineering (Khezzar et al., 

2012), geophysical systems, electronic cooling systems, and nuclear reactors are 

examples for both types of fluids (Raisi, 2016).  

In the following; only relevant works of our study will be presented. For a non-

Newtonian fluid, Ozoe and Churchill (1972) were the first to study natural 

convection of power-law fluids (Ostwald-de Waele and Ellis models), in a 

bidimensional square cavity heated from bellow. A stabilization algorithm was 

proposed to predict the critical Rayleigh number (transition limit). Finite difference 

technique was employed. Time and space steps were carefully discussed. Lot of 

relevant works have been published afterwards, dealing with other aspects to 

improve or amplify the known results (Ohta et al., 2002; Kaddiri et al., 2012). For a 

laminar regime, many works are published as-well. Turan et al. (2011b) have 

studied the problem in a square cavity with two vertical walls at different imposed 

temperatures and adiabatic horizontal ones. Wide variations ranges of the various 

intervening parameters (Ra, n, and Pr) are supposed. A scaling analysis, made by 

authors, allows reformulating Ra, Gr and Pr expressions, where n is brought out. 

Many interesting results were provided. They have showed that the Pr effect on heat 

transfer rate is negligible for n>1.0 even at high Ra, while it is no longer negligible 

at small n (=0.6) for Pr<10+2 if Ra exceeds 10+4 (for further details, see Koca et al., 

2007). Finally, they have proposed two expressions for mean Nusselt number, the 

first for n ranging between 0.6 and 1.8, while the other is for n≤1.0. Using the same 

methodology, the authors have assumed the case of vertical walls at imposed heat 

flux instead of imposed temperatures (Turan et al., 2012). They have showed that 

heat transfer rate for the new thermal condition, is lower than that for imposed 
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temperatures. The difference is more pronounced when n is smaller. As done before, 

they have proposed an expression for mean Nusselt number as function of n. 

For square inclined cavity and Newtonian fluid; Huelsz and Rechtman (2013), 

have used the Lattcie-Boltzman technique to solve the problem for air as heating 

fluid. Inclination angle was ranged from 0° to 180°, and from -180° to 0°. This is the 

reason why they have obtained symmetrical curves for mean Nusselt number and 

velocity v1 (vertical velocity at x=0.9 and y=0.5), compared to the case with 0°, 

corresponding to hot top wall (TH) and cold bottom wall (TC). The remaining walls 

are kept adiabatic. Several results were presented. Authors have showed that mean 

heat transfer coefficient, takes his highest value between 55° and 84° for Ra ranging 

from 10+3 to 2×10+6. Is it worth to notice that from Ra=O(10+5) and higher, the 

highest values are all close to 84°, which corresponds to 6° of deviation to the left, 

from the situation, where the hot wall is vertical. These recorded results are verified 

in our present work, with extension to non-Newtonian case. For a local Nusselt, 

iinterested reader may refer to the work of Hamady et al. (1989), where its results 

for different inclination angles for Ra=1.1×10+5 are given, and the work of Rasoul 

and Prinos (1997), for more extended and interested results. For an inclined 

rectangular cavity, Vingradov et al. (2011), have studied this case for two aspect 

ratios (AR=L/H) equal to 1 and 4 respectively, for Ra=10+5 and Pr=10+2. Three 

values of the rheological index (n=0.6, 1.0 and 1.4) are considered for a 

counterclockwise inclination ranging from 0° to 90° (Top wall at TC, Bottom to TH 

and the two remaining, adiabatic). The study is extended later for the cases Ra=10+4 

at Pr=10+3 and 10+4 (cf Khezzar et al., 2012). Two other values of n are examined 

(n=0.8 and 1.2) with a new added AR (AR=8). Both studies, showed improvement 

of heat exchange with increasing Ra and/or decreasing n, in addition to the existence 

of an optimal angle offering the maximum heat exchange rate. Furthermore, authors 

have presented results showing the existence of a singularity angle for the mean 

Nusselt number, when AR becomes different of 1.0. The angle magnitude and the 

singularity sharpness depend on n and Ra. The extension of variations’ ranges of the 

different involved parameters seems necessary to well understand the phenomena 

recorded. More details can be found in the author’s work (Khezzar et al., 2011). 

Turan et al. (2011a), have studied extensively the point, for non-inclined rectangular 

cavity for air and water for the same boundary conditions supposed in Turan et al. 

(2012). In a subsequent work, Turan et al. (2013) have supposed a power-law fluid 

instead of Newtonian one. Pr number was taken equal to 10+3. We can summarize 

that; mean Nusselt number increases for imposed temperatures at vertical walls, 

until a maximum values and then decreases, while it increases monotonically for 

imposed heat flux condition. ARmax (AR for optimal mean Nusselt number) depends 

on Ra, Pr and n. For both last works AR was ranged from 0.125 to 8.0. For an 

inclined square cavity but with a Bingham (Bn) non-Newtonian fluid, Ygit et al. 

(2013) have showed that heat transfer rate increases until a certain angle then 

decreases. We note that, they have supposed an inclination angle ranging from 0° to 

180°, where the initial position was with a horizontal hot bottom wall (TH) and 

cooled top one (TC) for vertical adiabatic ones. Authors have also showed that heat 

exchange declines with an increasing Bn, and it becomes purely conductive from a 
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certain value. This latter is influenced by inclination and Ra. Works dealing with 

nanofluid, in Newtonian or non-Newtonian behaviors are intentionally avoided. 

From the above mentioned literature survey, one can see the lack of works 

treating inclined square (and rectangular) cavities, for power-law fluids in laminar 

regime. The only works we were able to find, are those of Vingradov et al. (2011) 

and Khezzar et al. (2012), which are limited to n≤1.4, in addition to an inclination 

angle ranging from 0° to 90° (corresponding to: from -90° to 0° in our study) and 

Ramax=10+5. Consequently, in the current study we have supposed a square inclined 

cavity, filled with a power-law non-Newtonian fluid, and differentially heated with 

constant temperatures at two opposite walls, while the others are kept adiabatic. For 

better analysis of the included parameters’ effects, wide ranges of variations are 

assumed. Rayleigh number (Ran) is varied from 10+3 to10+6; rheological index (n), 

from 0.6 to 1.8; inclination angle (ϕ) from -90° to +90°, with small step of variation 

and finally, Prn number from 10 to 10000. We note that the chosen ranges, allow us 

to not only well analyze the parameters’ effects, but to also cover almost all possibly 

existing cases in practice. Ran range of variation, starts from a nearly pure-

conductive heating mode, to that close to the turbulence transition’ limit. n index 

variation’ range covers, pseudoplastic fluids (<1.0), Newtonian fluid (=1.0) and 

dilatant fluids (>1.0). We note that few works have supposed such a wide range 

(Turan et al., 2011b; 2012; Yigit et al., 2016). We recall that pseudoplastic fluid 

with n<0.6 is considered extremely shear-thinning (Viscosity decreases under shear 

application), and is similar in some ways to yields stress fluid (Yigit et al., 2016). In 

addition, this feature generates numerical instabilities, by the presence of very low 

viscosity magnitudes, especially at high Ra. Therefore, the possibility of not being in 

laminar flow may occur. By contrast, heat transfer becomes very weak when viscous 

friction caused by viscosity increase grows for n≥1.8, even at high Ran. No interest 

in taking values larger than 1.8 occurs. Inclination angle range, covers all possible 

situations. It starts from the classical case with ϕ=0° where vertical walls are heated. 

It is done in clockwise direction until ϕ=-90° and also in anticlockwise direction at 

ϕ=+90°. The small angle step taken (5°), allows us to well analyze the resulting 

phenomena and the mean Nusselt number calculation. Finally, the Prn range of 

variation, allows firstly to illustrate its effect, and secondly it covers a wide range of 

fluids in practice, hence the importance of the results provided. Moreover and as 

detailed above, there is an optimal inclination angle, corresponding to a maximum 

heat transfer rate. This was not well studied before. In this work we will try to show 

the dependence of this angle on the different parameters of the problem in a clear 

manner, for the purpose of its practical exploitation.  

2. Problem description 

It is a natural convective heat transfer problem inside a square inclined enclosure, 

filled with non-Newtonian power-law fluid. The cavity inclination angle varies from 

-90° to+90° compared to the vertical position (ϕ=0°). Left and right sides are at 

fixed temperatures (with respect to the initial position), where the left one is hot (TH) 

and the right one is cold (TC). The remaining sides are insulated (Figure 1).  
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Figure 1. Problem geometry 

Flow is assumed laminar, steady and two dimensional. Boussinesq 

approximation is adopted. Viscous dissipations are supposed negligible. Other fluid 

physical parameters are assumed to be constant except viscosity, supposed to be 

shear-dependent. Following the previous considerations, continuity, x-momentum, 

y-momentum and energy equation of the problem are written as follows: 
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u1 and u2 are velocity components flowing x and y directions. p, T, ϕ, g and k are 

pressure, temperature, thermal expansion coefficient, gravity acceleration and 

thermal conductivity respectively. The index ref indicates reference values.  

Since the fluid is supposed non-Newtonian, viscosity is no longer constant inside 

the enclosure. Different mathematical (rheological) models can be found in literature. 

In the present study, we have supposed that the fluid obeys the Ostwald-De-Waele 

model, named also power-law model and given by: 

( )
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= =                                         (5) 
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Where ( )ij i j j iD u x u x=   +   , the rate of strain tensor, K is the fluid consistency, 

n is the power-law index and μa is the apparent viscosity given by: 

( )
( 1)/2

2
n

a kl klK D D
−

=                                              (6) 

For n<1, apparent viscosity decreases with increasing shear-rate and thus fluid is 

referred to as shear-thinning. For n>1, apparent viscosity increases with shear-rate 

and fluid becomes shear-thickening. Newtonian case is for n=1.  

The fluid’ rheological nature, directly affects the flow shape, and thus, 

temperature field and heat transfer rate. So, a reformulation of the dimensionless 

numbers encountered in such problem is needed, to well understand the effect of the 

n index. Many concepts can be found in literature (cf Khezzar et al., 2012; Turan et 

al., 2011b). In this study, we have supposed a modified Rayleigh and Prandtl 

numbers refereed to the n index. Where: 
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Rayleigh number, represents the ratio of buoyancy-force thermal transport 

strength to thermal diffusion strength while Prandtl number, depicts the ratio of 

momentum diffusion to thermal diffusion (Turan et al., 2011b). 

μn is a nominal viscosity, developed from a scaling analysis, that can be defined 

based on a characteristic shear-rate ch , which can be scaled as: ch chu L , where uch 

is a characteristic velocity scaled as: uch~α/L (Ng and Hartnett, 1986; Lamsaadi et al., 

2006a; 2006b). Hence we obtain:  
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 is the thermal diffusivity ( . pk c ). 

Using equation (8) into equations (7), we obtain Rayleigh and Prandtl numbers’ 

expressions used in the current study: 
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2.1 Boundary conditions 

According to initial cavity position ϕ=0°, vertical walls are at fixed and different 

temperatures while the horizontal ones are insulated. For the flow, no-slip condition 

is supposed at all walls. Then, problem boundary conditions are: 
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2.2 Heat transfer coefficient 

For non-Newtonian power-law fluid natural convection, in cavity, dimensional 

analysis can show that heat transfer coefficient (Nu), is function of n, Ran and Prn. It 

is given by: 

( )


=
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L T
Nu

xT T
                                            (11) 

In the present study, reference temperature is taken TC. 

Since temperature is not uniformly distributed in the fluid close to walls, and 

hence thermal flux, mean Nusselt number calculation is very interesting. This later is 

calculated by: 
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3. Resolution procedure 

Conservation mass, momentum and energy equations, are solved numerically 

using a finite volume code. A second-order central differencing scheme is used for 

the diffusive terms, while a second-order up-wind scheme is used for the convective 

terms. SIMPLE Algorithm (Patankar, 1982) is employed to treat the coupled’ 

pressure-velocity set of equations. Convergence residual values, are chosen 10-7 for 

mass and momentum parameters, and 10-9 for energy one. The choices are motivated 

by the flow perturbations caused by n decrease, Ran increase and ϕ change. One can 

choose less or more strict residual values for other cases. 

3.1 Mesh independency study 

To choose the optimal mesh that ensures accuracy/short-calculation-time, we 

have tested several meshes at first. In Table 1, only some of the tested cases have 

been presented, to avoid overloading the article. We note that for all the tested 

meshes, an amplification factor equal to 1.02 starting from walls is taken. So, the 

mesh is fine close to the four walls, without being coarse in the middle. The idea of 

this choice is the fact that the strong gradients of velocity and temperature are close 
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to the walls, particularly for strong Ran, small n in addition to cavity inclination. But, 

flow continuity inside the cavity, leads to considerable disturbances far from walls, 

where a good mesh sizing is required too.  

The presented cases, are done with Ran=10+6 and three angles ϕ (0°, +30° and -

30°). Two n values are taken; n=0.6 for Prn=1000 and n=1.8 for Prn=100. The two n 

values, are the smallest and biggest limits of its range of variation, whereas the value 

of Ran is the largest one assumed in this study, which ensures to remain in the 

laminar regime (see Turan et al., 2011b, 1052-1054). Prn values are just for variety. 

For the first case, we have presented the values of Nu  and Vmaxc (maximum 

dimensionless velocity in the whole cavity), for four meshes, M1(Nx×Ny=101×101), 

M2(121×121), M3(141×141) and finally M4(161×161), for the three considered ϕ 

values. From the table, one can clearly see the closeness between M3 and M4 results, 

while clear differences are registered compared to M2 and M1. We note that M3 has 

nearly 24% fewer nodes compared to M4, therefore, a good time saving. For the 

second case, one can see that all meshes lead to a close results (U2, is the 

dimensionless vertical velocity). This is not surprising, since this big n value leads to 

high motion resistance by viscosity increase, which goes against the effect of Ran. 

This could be clearly understood along this work. We note that our results for M3, 

are compared to those in the work of Turan et al. (2011b), for a very fine regular 

mesh (200×200 elements), where very good agreement is recorded. 

Table 1. Mesh independency study’ tested cases. Ran=10+6. 
a: (Turan et al., 2011b,1052 (Mesh: 200×200)) 

 M1 

(101×101) 

M2 

(121×121) 

M3 

(141×141) 

M4 

(161×161) 

n
=

0
.6

 ;
 P

r n
=

1
0
0
0

 

=0° 
Nu  34.9709 36.7751 37.9431 38.1282 

Vmax-c 2550.6878 2602.1846 2647.2583 2660.3632 

=+30° 
Nu  36.3935 37.5512 38.2151 38.2821 

Vmax-c 3392.9090 3397.0928 3400.5262 3429.3485 

=-30° 
Nu  21.5179 22.2436 22.7725 23.2801 

Vmax-c 1702.8200 1526.9972 1447.9440 1447.8209 

n
=

1
.8

 ;
 P

r n
=

1
0
0
 

=0° 

Nu  
25.1744 2.5247 2.5137 

2.5480a 

2.4994 

U2max-y=L/2 24.4347 27.5201 27.5141 

27.0944a 

27.5063 

=+30° 
Nu  2.6507 2.6516 2.6355 2.6170 

U2max-y=L/2 32.5913 32.6455 32.6472 32.6667 

=-30° 
Nu  2.0297 2.0447 2.0422 2.0358 

U2max-y=L/2 18.5335 18.5587 18.4863 18.4973 
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3.2 Validations 

After choosing the optimal mesh, many validations were made, to be confident 

with the new results provided here. As it is well known, different parameters are 

involved in this study. This is the cause of the large number of publications in this 

type of problems (natural convection in square cavities for a power-law fluid). 

Therefore, two validations of large significations have been presented here (Fig.2), 

to avoid producing several ones, in order to save work size. The first validation with 

that produced by Turan et al. (2011b,1059], is for the mean Nusselt number ( Nu ) 

calculated for seven (07) values of index n, starting from 0.6 until 1.8 with a 0.2 step, 

and ten (10) well distributed values of Ran, from 10+3 to 10+6. Prandtl number (Prn) 

considered equals 10+3 and ϕ=0°. The two results comparison, exhibits a very good 

closeness between the obtained results and those refereed to. We note that the figure 

vertical velocity (U2=u2L/) at y=L/2 for the same n values taken for the first 

production is done with eighty (80) mean Nusselt number’ calculations, which 

points-out our code’ rightness. The second validation, is made for the dimensionless 

validation, for Ran=10+6, Prn=100 and ϕ=0° with the work of Turan et al. 

(2011b,1056). Here as well, almost identical results were obtained. For more 

validations, the interested reader can make use of the work of Horimek et al. (2016). 

 

Figure 2. Comparison of our results (left) and those of Turan et al. (2011b). Top: 

Nu ; Bottom: U2 at y=L/2 
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4. Results and discussion 

For a better exploitation of the obtained results, and in order to illustrate the 

effects of the many intervening parameters, this part of the work is divided into five 

(05) parts, where independents parameter effects’ results, are presented with their 

physical interpretations. We note that we have chosen to present results for flow 

(streamlines) and thermal (isotherms) fields and keep that of mean Nusselt number 

( Nu ) at last, to put them together in the same figure, which makes their 

understanding clearer, and shows their influence magnitudes' levels. 

4.1 Effect of the Rayleigh number Ran 

In figure (3), we have presented, the dynamic (dimensionless streamlines) and 

thermal (isotherms) fields for Ran=10+3, 10+4, 10+5 and 10+6, in the case of 

Newtonian fluid (n=1.0) and no-inclination (ϕ=0°) for Prn=10+3. As said above, 

Rayleigh number represents the ratio of buoyancy-force thermal transport strength to 

thermal diffusion strength. Thus, low Ran value means a small magnitude of the 

buoyancy term compared to the diffusion term. This, leads to a tendency towards the 

pure-conductive heating mode as faster as Ran is small. For the present phenomenon, 

temperature gradient, in addition to density temperature-dependency, generate an 

ascendant motion close to the hot wall, and a decedent one close to the cold wall. 

Continuity inside the cavity transmits the motion to the whole zones. So, the 

intensity of the generated motion increases, leading to a clearer perturbation with 

increasing Ran. For this, one can see circular uniform streamlines for low Ran and 

perturbed ones when it is big. The two circulating zones seen for Ran=10+5 and 10+6, 

are the direct effect of high intensities of the two flows (ascending and descending), 

when circulation shorts the path to be followed by the fluid particles in either flows. 

Consequently, the two circulating zones move towards the hot and cold walls with 

the enlargement of the core zone, under intensity increase (Ran increase). Problem 

coupled nature involves the thermal field perturbation, when the dynamic field is, 

and inversely. For this, one can see a low disturbed thermal field (isotherms) for 

Ran=10+3 and 10+4 and a clearly disturbed for Ran=10+5 and 10+6.  

Concerning heat transfer coefficient, it can easily be understood that it is even 

better as Ran is more important, by increasing agitation (intensified convection), and 

hence better mixing, which reduces fluid temperature close to hot wall, that allows 

more heat flux introduction. The opposite happens close the cold wall (compare the 

red and blue areas thicknesses on left and right sides). Mean Nusselt number ( Nu ) 

curves are left to the end to save space (see Fig.7, for n= 1.0 at ϕ=0°).  
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Figure 3. Rayleigh number (Ran) effect on dynamic field (Top) and thermal field 

(Bottom). n=1.0; =0°; Prn=10+3 

4.2 Effect of the rheological index n 

Index n variation effects on the dynamic (streamlines) and thermal (isotherms) 

fields are presented in figure (4), for Ran=10+5, ϕ=0° and Prn=10+3. From streamlines 

sub-figures (Fig.4-Top), one can see that, fluid shear-thinning (n decreases) leads to 

an increasing perturbation in the dynamic field. As described previously, flow 

intensity increase, leads to the formation of two circulating zones, becoming far 

each-other as Ran increases, while there is only one circulating zone for low 

intensities. Here again, but with a single Ran value, one can see two circulating 

zones for n (1.0, and only one for n>1.0. So, the n decrease has a similar effect to 

that of Ran increase. This can be explained from the rheological law of the fluid 

( 1. n
a K  −= ). When n decreases, fluid viscosity decreases and leads to frictions 

reduction close to walls and between fluid’ layers. Flow motion becomes easier and 

thereby its intensity increases. The opposite happens when n increases, since 

viscosity increases too. We note that n increase (decrease) effect is more important 

close to walls (see streamlines magnitudes in figure 4 and figure 7 in Horimek et al. 

(2016)), where velocity parietal gradient ( i ju =   ) is higher. From the above 

explanations, a faster tendency toward turbulent regime is registered when n 

decreases, and the opposite when it increases. So, precautions should be taken into 

account when dealing with such kind of fluids to stay in the laminar regime 

supposition. As said before; the problem is of a coupled nature. Hence, any 

disturbance in the dynamic field is reflected on the thermal field. This later becomes 

more disturbed when n is small and less disturbed in the other case (Fig.4-Bottom). 

Finally it becomes evident that heat transfer rate enhances with fluid shear-thinning 

(n↓). 
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Figure 4. Effect of the rheological index (n) on dynamic field (Top) and thermal 

field (Bottom). ϕ=0°; Ran=10+5; Prn=10+3 

4.3 Effect of the inclination angle ϕ 

In figure (5), we have presented the effect of inclination on the dynamic and 

thermal fields for Ran=10+5, n=1.0 and Prn=10+3. We note that, inclination angles 

are presented from 0° to 85° in the counter-clockwise direction counted as positive 

inclination (a), and the same in clockwise direction counted as negative inclination 

(b). Results are presented for each 15° stepp. We note also that, ϕ=+90° and ϕ=-90° 

cases, are not presented to keep sub-figures’ sizes acceptable and because they are 

very close to ϕ=+85° and ϕ=-85° cases respectively. For the first inclination case, 

hot wall becomes progressively down and the cold one upp. So, ascending hot flow 

deviation caused by upper horizontal adiabatic wall (when ϕ=0°) declines 

progressively. The same happens for descending cold flow.  As a result, the heating 

area length increases on left side and the same for cooling area on the right, they 

thicknesses decreases (see isotherms’ sub-figures). Thus, density decrease in the hot 

side (and decrease on the cold side) leads to flow intensification. This is the reason 

for higher recorded magnitudes when ϕ increases. It is worth to notice, that for this 

case, flow intensification doesn’t produce two circulating zones and the initial ones 

observed at ϕ=0° have gradually disappeared. This could be explained by the fact 

that hot ascending and cold descending currents are of smoother motions, which 

lead to soft flow perturbation (see green and light blue zones enlargements with 

increasing ϕ). We note that, these observations tend to stabilize after a certain angle, 

with the recording of a red zone enlargement on the left side (blue on the right side) 

close to ϕ=+90°, that leads to heat exchange decrease, by temperature difference 

decay between hot wall and the adjacent fluid (likewise for the cold side). 

Consequently, heat transfer will increase to a highest value (optimal heat transfer 

rate) and then decreases. 
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Figure 5. Effect of the inclination angle ϕ on dynamic field (Top) and thermal field 

(Bottom). n=1.0; Ran=10+5; Prn=10+3 

For clockwise inclination direction, the opposite happens. The hot and cold walls 

initially vertical (left and right), have tendency to be horizontal. As well known, 

natural convection acts vertically (opposite to gravity vector), and the hot fluid rises 

upp. So, when inclination angle increases, buoyancy- force decreases by a sin(ϕ) 

factor, without restitution due to path length reduction, since hot fluid starts 

descending as faster as ϕ is greater (it reaches the perpendicular adiabatic wall 

before increasing in strength compared to the initial situation at ϕ=0°). For 

important values of ϕ angle, buoyancy force becomes very week, as hot fluid almost 

becomes horizontal. On flow streamlines subfigures (Fig.5-b-), one can see an 

ongoing and significant decrease of flow intensity with respect of ϕ. The two 

circulating zones seen initially (ϕ=0°), tend to be independent one from the other. In 

other words, circulating zone caused by hot fluid motion is free from that caused by 
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cold fluid motion. This situation, in addition to high intensity decay, tend the heating 

mode toward the pure-conductive case. Obviously, from what we have just 

explained, heat transfer rate will monotonically decrease for this inclination kind. 

4.4 Combined effects of n and ϕ 

In figure (6), the combined effects of the index n and the inclination angle ϕ are 

presented for Ran=10+5 and Prn=10+3. As expected from the precedent parts, the 

flow perturbation and hence the thermal one increases with a counterclockwise 

inclination as n decreases. The opposite happens when inclination is done in 

clockwise direction and/or n increases. For the presented results, one can see the 

huge difference for flow intensities between the case n=0.6, ϕ=60° and the case 

n=0.6, ϕ=-60°. Where the maximum intensity (close to the maximum), in the first 

case is almost 25 times that for the second case. This value is nearly 14.4 for 

n=1.0and nearly 3.2 for n=1.8. This, indicates that inclination effect is more 

pronounced for a pseudoplastic (n<1.0) fluid compared to a Newtonian one. The 

dilatant fluid (n>1.0) exhibits the lowest effect. In addition, the high flow intensities 

for positive ϕ values (counterclockwise inclination) and pseudoplastic fluid 

accelerate the transition to turbulent flow. We note here that results are for Ran=10+5 

and the registered intensities will be greater if this later increase. In the other side, a 

faster tendency toward the pure conductive heating mode (0 flow), happens if the 

fluid is more dilatant especially when ϕ increases in the clockwise direction. For the 

above explanation, it becomes clear that thermal perturbation (better mixing) 

increases with the decreases of n and/or counterclockwise inclination, and decreases 

with n increase and/or clockwise inclination.  

In figure (7), we have presented the evolution curves of mean Nusselt number 

( Nu ) depending on inclination angle ϕ. A 5° step is taken from ϕ=-90° to ϕ=+90°. 

Four (04) values of Ran are considered, for the already seven (07) supposed n values. 

As expected, heat exchange improves when n decreases, due to flow agitation 

increase by viscosity decrease (part 4.2), in addition to better thermal mixture, which 

reduces fluid temperature close to hot wall, and hence more important heat flux is 

introduced (a more important is extracted from the cold wall for the same reason). 

Ran increase, leads to the same observations, since it favors the flow agitation and 

therefore better thermal mixing (part 4.1). It is obvious that the combination of the 

two effects, offers a greater heat exchange, compared to their effects separated. An 

important result can be drawn from Fig.7’ sub-figures, that can be summarized in 

the existence of an optimal angle, which gives the greatest value of Nu  between 0° 

and +90° (counter-clockwise inclination). This result confirms what we have 

discussed in the bibliographic research. 
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Figure 6. Combined effects of n and ϕ on dynamic field (Top) and thermal field 

(Bottom). Ran=10+5; Prn=10+3 

Before discussing this result in detail, we report other results deemed as 

important. One of them is that all Nusselt curves tend towards the value 1.0 for ϕ=-

90°, corresponding to hot top wall and cold bottom one, and this, whatever Ran and 

n values are. This indicates that this cavity position eliminates both Ran and n’ 
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effects. In other words, pure-conductive mode is produced. This result can be 

explained by the fact that natural convection acts vertically, and when hot wall is top, 

hot fluid cannot move upward in addition to wall impermeability. Same explanation 

at the bottom. From ϕ=0° to ϕ=-90°, Nusselt decreases for all the considered cases 

until the value 1.0. As explained in part (4.3) of this work, this is the direct cause of 

flow intensity reduction according to ϕ. 

The second noticed result is for ϕ=+90°, corresponding to cold top wall and hot 

bottom one, where one can see that Nu  values are nearly one (1.0), for Ran=10+3 for 

all the considered n values. The effect of n is extinguished for this case. The 

physical explanation of this result is that since natural convection acts vertically, and 

hot wall is bottom, the fluid that undergoes a decrease in density tends to rise 

upward, but its intensity remains very weak (low Ran), it cannot yet disturb the 

upper-fluid’ layers acting in opposite direction. So, a critical Rayleigh value must be 

reached to start motion. For higher Ran values, Nu  increase is observed. The rising 

hot fluid succeeds overcoming upper-fluid’ layers opposing effect on its path. It is 

obvious that the resulting intensities will be greater when n decreases. Critical Ran 

decreases as n decreases and vice versa. As an example for Ran=10+4, the cases with 

n=1.6 and n=1.8 are still in pure-conductive mode, whereas for the other values of n, 

the mode is convective, more clearly when n is smaller. 

 

Figure 7. Mean Nusselt number ( Nu  ) evolution according to inclination angle () 

for different n and Ran. Prn=10+3 

Let’s return to the observation mentioned above. As well known, Nusselt 

increase is caused by a stronger agitation with flow intensity increase, especially 
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near the walls (where Nu ). In addition, better thermal mixture reduces temperature 

near the hot wall (the opposite close to the cold wall), and hence more thermal flux 

is absorbed resulting of temperatures difference increase between the wall and the 

adjacent fluid layers. Keeping the same parameters (n, Ran and Prn) and tilting the 

cavity left (counter-clockwise), fluid will be more agitated as discussed in Part (4.3). 

Nusselt starts to increase until a certain angle, then decreases until its lowest values 

at ϕ=+90°. This can be explained by the fact that when cavity is inclined to the left, 

hot ascending fluid path length increases. Therefore, the solicited zone where fluid 

density is affected by hot temperature becomes longer, which leads to further flow 

intensification. In addition, adiabatic top horizontal wall, progressively turns toward 

vertical situation, hot ascending fluid’ path becomes smoother and circulating zone 

(initially two) becomes only a big one, but with increasing intensity (see 

magnitudes). Core zone becomes more heated (green and light-blue colors) 

compared to the initial situation (ϕ=0°). A better mixture results and as consequence, 

heat transfer rate increases progressively. After a certain tilting angle, stabilization is 

reached with an increase of fluid temperature close to hot wall, which reduces the 

heat transfer rate. The given explanation still valid in general, but Nusselt curves 

analysis from Fig.7 for all the treated cases, shows that optimal value is reached at 

higher inclination angles when Ran is small (ϕ≈+45° for Ran=10+3 and ≈+30° for 

Ran=10+4) compared to the other cases, where it becomes increasingly close to ϕ=0° 

(precisely ≈+15°) with Ran increase, especially when n is smaller. This is due to 

combined effects of ϕ angle, Ran number and n that increase flow agitation faster. 

4.5 Effect of Prandtl number (Prn) 

In this last part, we have presented the effect of Prandtl number (Prn) on mean 

Nusselt number ( Nu ), for different values of the inclination angle ϕ (7 values are 

taken), but only for Ran=10+5. We note that the choice of Ran value is motivated by 

the fact that natural convection is strong enough to alter the flow, hence a well 

analysis. Furthermore, all other parameters are amply discussed above. In addition, 

and following the work of Turan et al. (2011b,1059-1060), Prandtl number does not 

have a sensitive effect on Nusselt number for values >> 1 (very low effect on both 

dynamic and thermal fields). The explanation of this is that for Prn>>1, thermal 

boundary layer thickness is very small compared to the dynamic one. So, a Prn 

increase will not change much the balance between viscous and buoyancy forces 

inside the thermal boundary layer. On the other hand, for relatively low Prn values 

(<10+2), the two boundary layers (dynamic and thermal) are close in thicknesses; 

any Prn modification will be therefore reflected on the Nusselt number. In addition, 

for a very small Prn (O(1)), a risk of transition to turbulent regime is presented, 

especially for high Ran. It is noted that the the rheological index (n) decrease, 

reduces viscous forces and thus favors the disruptive effect. Osman et al. have 

reported numerical instabilities for the case Prn=10, n=0.6 at Ran=10+6 (cf Turan et 

al.,2011b,1059). From the above details, Prn was between 10 and 10+4, which is 

largely sufficient to illustrate its effect in presence of an inclination. 
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From figure (8), one can see an increase of Nu  when Prn increases, but only for 

pseudoplastic fluid (n<1.0). This effect is clearer when n is smaller. The physical 

explanation of this observation is the fact that when n decreases, thermal boundary 

layer thickness decreases too (cf Horimek et al. (2015)). Prn decrease has an 

opposite effect. So, the two opposite effects combination leads to a clearer Nusselt 

modification. For n values ≥1.0, no Prn is recorded. Simply because of the n 

negligible effect on the thermal boundary layer. A careful analysis of the figure, 

allows us to see that Prn effect when n is small is more important close the optimal 

angle compared to the other angles. This is the direct effect of parietal velocity 

gradient (  ) increase close the walls, when flow intensity increases in a thinner 

solicited zone (see our explanations in part 4.3). 

 

Figure 8. Prandtl number (Prn) effect on mean Nusselt number ( Nu ) for different n 

and  values. Ran=10+5 
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At this work end, we can say that to ensure a maximum heat transfer rate, we 

have to know at first, the fluid physical properties (n, K, ρ, …), assuming (TH-TC) 

known. Therefore, Ran and Prn values are determined. If Prn exceeds 10+2, we will 

act directly on cavity inclination in counter-clockwise direction. But, we have to 

check the Ran value. If it is ≤10+4, inclination must be between 15° and 55° for all n 

values. If it exceeds 10+5, it must be between 5° and 20°. Between 10+4 and 10+5, the 

range of 10° to 35° seems good. For a Prn<10+2, we must think to increase Ran, by 

increasing (TH-TC) for the same ranges of inclination angle above-mentioned, if 

n<1.0, especially as n is small. The fact of proposing ranges implies that one has 

bounded the optimal Nu , a slight loss in the rate of heat exchange does not really 

annoy. 

5. Conclusions 

Laminar natural convection problem, for an inclined differentially heated square 

cavity, filled with a power-law fluid, has been numerically studied. The study 

allowed concluding that: 

Flow and thermal fields are more disturbed when Ran increases, by buoyancy-

force effect; 

Fluid shear-thinning (n↓) leads to similar observations, by friction reduction 

close to walls and between fluid layers; 

Counter-clockwise inclination, increases flow and thermal fields’ perturbations 

by hot and cold fluid paths increase, in addition to motions smoothing compared to 

case ϕ=0°, followed by little decrease in perturbations close to ϕ=+90°.  A 

monotonically decrease in perturbations is recorded for the clockwise inclination; 

Mean heat transfer rate increases when Ran increases and/or n decreases for both 

inclinations. For counter-clockwise inclination, Nusselt increases until an optimal 

value and then decreases, while it decreases monotonically for the clockwise 

inclination until the pure-conductive mode value; 

Prn number has only a clear effect when it is small (<10+2), but only for a 

pseudoplastic fluid (n<1.0), by opposing effects between them (Prn and n). This is 

clearer close to the optimal inclination angle; 

Lastly proposed ranges of the inclination angle may help to ensure an optimal 

heat transfer rate, depending on the problem’ parameters’ value. 
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