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 An investigation of two dimensional double-diffusive mixed convective flow of a viscous, 

incompressible, electrically conducting and optically thick nanofluid over a convectively 

heated stretching sheet is carried out taking into account the effects of non-linear thermal 

radiation and partial hydrodynamic slip. A similarity solution to the governing non-linear 

partial differential equations subject to the boundary conditions is obtained using the efficient 

Spectral Local Linearization Method (SLLM). In order to study the behavioral changes in flow 

profiles by various non-dimensional flow parameters, the numerical solution for fluid velocity, 

fluid temperature, and species concentration are illustrated through figures, and the numerical 

values of skin friction, Nusselt number and Sherwood number are presented in tables. 

Nanofluid models of this kind are useful in several engineering processes requiring efficient 

heat and mass exchange mechanisms like catalytic and nuclear reactors, metal extraction, 

cooling systems and many more. 
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1. INTRODUCTION 

Theoretical/experimental investigation of double-diffusive 

mixed convective flow past solid bodies of various shapes 

have received overwhelming attention during the past decades 

due to its diverse applications in engineering and technology 

such as geothermal reservoirs, thermal insulators, chemical 

catalytic reactors, grain storage, food processing, heat 

exchanger devices, nuclear waste repositories, chemical 

catalytic reactors and processes, enhanced recovery of 

petroleum products (SADG, CBM etc.), underground energy 

transport etc. Investigation of two-dimensional boundary layer 

flow past a stretching sheet was initiated by Crane [1], and it 

is considered as one of the breakthrough investigations of the 

modern world owing to its remarkable uses in wide-ranging 

industrial practices. After that, several researchers have 

embarked in-depth research on the various aspects of viscous 

incompressible flow past a stretching sheet. Moreover, the 

study of heat and mass transfer boundary layer flow over a 

stretching surface is highly significant from the practical point 

of view because it finds applications in a cooling bath for 

condensation of hot metallic plates, plastic sheet extrusion 

using aerodynamic processes, extrusion of a polymer sheet 

from a dye and many more. Several researchers [2-7] have 

made significant contributions in analyzing the different 

features of the flow past a stretching sheet.  

Nanofluid describes a liquid suspension containing ultra-

fine particles Das [8]. These ultrafine particles called 

nanoparticles are made from various conductive materials 

such as metals (Al, Cu, Au, Ag), their metallic oxides (Al2O3, 

CuO) or nitride ceramics (AlN, SiN) and semiconductors (SiC, 

TiO2). The base fluids used are typically H2O, C2H6O2 

(ethylene glycol), C7H8 (toluene) and oil. Choosing an 

effective base fluid-particle amalgamation depends on where 

the nanofluid is going to be applied. Experimental studies [9-

11] show that even with the addition of minute volumetric 

fraction of nanoparticles, the thermal conductivity of the base 

liquid can be considerably improved. The energy transport in 

a nanofluid is supported by the random motion of suspended 

nanoparticles which is known as the Brownian motion. The 

enhanced thermal conductivity of a nanofluid combined with 

the thermal dispersion of particles contribute to an amazing 

enhancement in the convective heat transfer coefficient which 

in fact makes the nanofluid a superior heat transfer medium 

for cooling applications such as electronics cooling, vehicle 

cooling, cooling of nuclear rods and cylindrical heat pipes. A 

comprehensive study of thermal conductivity of nanofluids 

can be found in Boungiorno et al. [12]. Thereafter, several 

researchers [13-19] have studied nanofluid flow past a 

stretching surface considering the effects of various physical 

agents on the boundary layer flow. 

In case of fluid flows in microfluidic and nanofluidic 

mechanical systems, the no slip condition at the solid-fluid 

interface becomes invalid and must be replaced by slip 

condition. Keeping in view the importance of such study, Aziz 

[22] investigated boundary layer flow over a flat plat with slip 

flow and constant heat flux. Noghrehabadi et al. [21-22] 

investigated nanofluid flow over stretching sheet taking into 

account partial slip under different thermal buondary 

conditions. Turkyilmazoglu [23] considered magnetic field 

and slip effects on the flow and heat transfer of stagnation 

point Jeffrey fluid over deformable surfaces. In order to 

decipher the effect of both natural and forced convection (or 

mixed convection) on nanofluid flow, recently, 
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Turkyilmazoglu [24] and Ramzan et al. [25-26] have 

investigated mixed convective nanofluid flow considering 

various aspects of the problem.  

One must note that, isothermal or isoflux thermal boundary 

conditions may not replicate most physical phenomena as in 

conjugate heat transfer problems when there is an interaction 

between the convective fluid and conduction through the 

bounding surface. It may be noted that conjugate/convective 

thermal boundary conditions are known to appear in numerous 

instances of the problems in science and engineering viz. 

optimization of turbine blade cooling systems, design of 

efficient heat exchangers, combustion in gas turbines, etc. 

Some of the contributions in nanofluid flow with convective 

heat transfer are due to Makinde and Aziz [27], Makinde et al. 

[28], Bhasker Reddy et al. [23], Uddin et al. [30], Mahatha et 

al. [31] and, most recently, by Ramzan et al. [25-26] and Uddin 

and Hoque [34]. 

Recently, there has been a keen interest in studying the 

effects of non-linear thermal radiation on nanofluid flow under 

different physical environments. Ramzan et al. [32] have 

presented a comprehensive study of the effects of non-linear 

thermal radiation while studying heat and mass transfer 

nanofluid flow with motile gyrotactic microorganisms. 

Subsequently, Ramzan et al. [33] have also investigated 

boundary layer flow of Eyring Powell nanofluid past a 

constantly moving surface under the influence of nonlinear 

thermal radiation. Comparison of the heat transfer efficiency 

of nanofluids is presented by Bubbico et al. [35]. 

However, as per the best of our knowledge there is no study 

in literature to address two dimensional double-diffusive 

mixed convective flow of a viscous, incompressible and 

optically thick nanofluid fluid over a convectively heated 

stretching sheet taking into account all the combined effects of 

non-linear thermal radiation and hydrodynamic partial slip, 

Brownian motion and thermophoresis. Therefore, in a quest to 

gain further knowledge on this topic, we have formulated the 

problem and used highly effective spectral local linearization 

method to solve the nonlinear system of equations. The results 

obtained are analyzed through figures and tables. 

 

 

2. FORMULATION OF THE PROBLEM 
 

We consider the two dimensional steady viscous flow of an 

electrically conducting incompressible nanofluid in the region 

y>0 impelled by a stretching/shrinking permeable surface at 

y=0. In order to stretch the sheet along its length, two equal but 

opposite forces are delivered on the sheet with a velocity Uw 

(x) in such a way that the position of the origin O remains fixed 

(see Fig. 1). A convective heating is applied to the sheet using 

a hot fluid having temperature 𝑇𝑓 and heat transfer coefficient 

ℎ𝑓. The effect of non-linear thermal radiation is also taken into 

account. The symbol 𝐶𝑤  denotes the solutal concentration 

near the sheet and 𝐶∞  is the ambient solutal concentration. 

Further, it is considered that there is a partial velocity slip 

taking place at the fluid solid interface. Taking in 

consideration of the above assumptions, the equations 

governing the fluid flow are given below [27-28, 31]: 
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Figure 1. Geometry of the problem 

 

where u and v are velocity components along the x and y

axes, respectively,  is thermal diffusivity of the fluid,  is 

kinematic viscosity, 
BD is Brownian diffusion coefficient, 

TD is the thermophoretic diffusion coefficient and 
( )

( )

p

f

c

c





=  

is ratio between the effective heat capacity of the nanoparticle 

material and heat capacity of the fluid,  is fluid density, c  is 

the specific heat at constant pressure and p is the density of 

the particles 

The boundary conditions for the problem are 

 

𝑢 = 𝑈𝑊 + 𝑁1𝑣
𝑎𝑢

𝑎𝑦
= 𝑁1𝑣

𝑎𝑢

𝑎𝑦
, 𝑣 = 0, −𝑘

𝑎𝑇

𝑎𝑦
= ℎ𝑓(𝑇𝑓 −

𝑇), 𝐶 = 𝐶𝑤, 𝑎𝑡 𝑦 = 0, 𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞, 𝑎𝑠 𝑦 → ∞ 

                                                                                 (5) 

 

where 
1N is the velocity slip factor with dimension 

1( )velocity −
. We introduce the following dimensionless 

quantities 
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𝑦
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1 4⁄
 r is temperature ratio parameter, 

 
is the 

dimensionless stream function, xRa is the local Rayleigh 

number defined as 
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This transformation automatically safies the continuity 

equation (1). 

Roseland diffusion approximation [34] has been used to 

simplify the term due to radiative heat flux 
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where * is the Stefan-Boltzmann constant, * is the 

Rosseland mean absorption coefficient. 

The radiation term 
rq is simplified in the following way 

using equation (6), we may write  
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Therefore, eqn. (9), using (10) and (11) become 
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Using the aforementioned transformation (8) and the Eqs. 

(6), (7), (10) and (12), the Eqs. (2), (3) and (4) become 
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subject to the following boundary conditions: 

 

𝑓(𝜂) = 0, 𝑓′(𝜂) = 𝜆 + 𝐴𝑓′′(𝜂), 
𝜃′(𝜂) = −𝑁𝑐[1 − 𝜃(𝜂)], ∅(𝜂) = 1 𝑎𝑡 𝜂 = 0 

𝑓′(𝜂) → 0, 𝜃(𝜂) → 0, ∅(𝜂) → 0 𝑎𝑠 𝜂 → ∞.                      (16) 

 

The primes in the above equations denote differentiation 

with respect to  . The nine parameters are defined by 
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where Pr is the Prandtl number, Nr is the buoyancy–ratio 

parameter, Nb is the Brownian motion parameter, Nt is the 

thermophoresis number,  is the stretching/shrinking 

parameter, Le is the Lewis number, Nc is the convective 

parameter, 
RN is the thermal radiation parameter and A is the 

momentum slip parameter. As per the formulation, the 

parameter Nc depends on x, and therefore, a true similarity 

could not be achieved. However, this problem could be 

tactfully solved by choosing the convection heat transfer 

coefficient 
fh  to be proportional to 𝑥−1/4

 
so that Nc becomes 

independent of x and a true similarity is achieved. For Nc →

, the convective boundary condition gets reduced to a uniform 

surface temperature boundary condition used by Kuznetsov 

and Nield [35]. The convective parameter is related to the 

traditional Biot number and the Rayleigh number i.e. 𝑁𝑐 =
𝐵𝑖𝑥

𝑅𝑎𝑥
1 4⁄

  

 where 𝐵𝑖𝑥 =
ℎ𝑓𝑥

𝑘
 

Skin friction coefficient C ,f the local Nusselt number 
xNu

and the local Sherwood number 
xSh  are very significant 

physical entities in fluid flow and they are defined as 
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where 
w , 

wq and 
mq  are the wall shear stress, heat and mass 

fluxes, respectively, which are given by 
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with 


and k being the dynamic viscosity and thermal 

conductivity of the fluid, respectively.  

 

With the help of Eqns. (6), (11) and (12) Eqn. (18) becomes 

 

𝐶𝑓𝑥 = 𝑓′′(0), 𝑅𝑎𝑥
−1 4⁄

𝑁𝑢𝑥 = −[1 +
4

3𝑁𝑅

{1 + (𝜃𝑟 − 1)𝜃(0)}3]𝜃′(0) 

1/4 (0).x xRa Sh − = −
           (20)  

 

Local Nusselt and Sherwood numbers could be reduced in 

dimensionless form and can be written as 
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3. NUMERICAL METHOD AND ERROR ANALYSIS 

 

The highly nonlinear coupled ordinary differential Eqs. 

(13)-(15) subject to the boundary conditions (16) were solved 

numerically using the highly efficient SLLM technique 

(Motsa [36]). The method is based on linearizing the nonlinear 

system using a linear Taylor’s series approximation which will 

essentially fetch us a linearized system of ordinary differential 

equations. This linearized system is then solved using 

Chebyshev pseudo-spectral collocation method in which 

computational domain is discretized using Gauss-Lobatto 

points and derivatives of the unknown variables are 
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approximated with the help of a differentiation matrix known 

as Chebyshev differentiation matrix. The details of the 

Chebyshev pseudo-spectral collocation method can be found 

in the text of Trefethen [37].   

In order to ascertain the accuracy of the numerical results 

obtained through the spectral local-linearization technique, an 

error analysis is performed. The infinity norm of the error in 

function values of two consecutive iterations is examined and 

is set to meet the tolerance level  . 

 
 

Figure 2. Maximum error E in (a)  and , and (b)  for 

different iterations 

 
 

Figure 3. Maximum error E in 𝝋 for different iterations 

 

At the (r+1)th level of iteration, we define the maximum 

error E as 

 1, 1 1, 2, 1 2, , 1 , max , ,...,r r r r m r m rE z z z z z z+ + +  
= − − − , 

where zi , i = 1, 2, 3,…, m are the unknown functions in the 

system of nonlinear equations. The values of the maximum 

error E for different iteration levels are presented in Figures 2 

and 3. It is evident from these figure that the maximum error 

E, for the present problem, becomes less than or equal to 10-12 

in about 150 iterations of the spectral local linearization 

method which is pretty good for a physical problem of this 

type. 

 

 

4. RESULTS AND DISCUSSION 
 

In order to study the effects of non-linear thermal radiation, 

thermal diffusion, buoyancy force, Brownian motion, 

thermophoresis, temperature ratio, stretching parameter, 

momentum slip parameter and convective heating on fluid 

velocity f’(η) fluid temperature θ(η) and species concentration 

ϕ(η), the numerical solution for f’(η), θ(η) and ϕ(η) are 

illustrated in Figs. (4) to (12) for various values of NR, Pr, Nb, 

Nt, θ, λ, A and Nc taking Le=5. 

 
 

Figure 4. Velocity, Temperature and Concentration profiles 

when 5, 6.785, 0.5, 0.5,Le Pr Nr Nb= = = =  

0.5, 2, 0.1, 0.5 and 0.5rNt A Nc = = = = =  

 

 
(a) 

'f  
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(b) 

 
(c) 

 

Figure 5. Velocity, Temperature and Concentration profiles 

when 5, 5, 0.5, 0.5, 0.5,RLe N Nr Nb Nt= = = = =
 

2, 0.1, 0.5 and 0.5r A Nc = = = =
 

 

It is perceived from Figs. 4(a) to 4(c) that f’(η)and ϕ(η) 

increases as NR increases whereas 𝜃(𝜂)  decreases as NR 
 

increases. Therefore, thermal radiation tends to enhance fluid 

velocity and nanoparticle volume concentration across the 

boundary layer region, whereas it has a reverse effect on fluid 

temperature. The reverse trend is due to the fact that the effect 

of radiation in equation (11) is inversely proportional to the 

thermal radiation parameter NR which signifies that for small 

values of NR, there is large radiation and for large value of NR 

there is no radiation at all. It is evident from Figs. 5(a) to 5(c) 

that f’(η) increases, whereas, θ(η) and ϕ(η) decreases on 

increasing Pr. We know, Pr  is the ratio of viscosity to thermal 

diffusivity. This entails that, thermal diffusion tends to 

enhance fluid temperature and species concentration whereas 

it has a retarding effect on fluid velocity. It is noted from Figs. 

6(a) to 6(c) that θ(η) and ϕ(η) increases on increasing Nr. The 

nanofluid velocity f’(η) first decreases and then increases on 

increasing Nr. Thus, we may conclude that, nanoparticle 

buoyancy force augments fluid temperature and nanoparticle 

volume fraction accross the boundary layer region whereas it 

inhibits fluid velocity near the sheet and aids in fluid velocity 

away from the sheet. 

It is found from Figs. 7(a) to 7(c) that the increase in Nb 

causes an enhancement in θ(η) and f’(η) and a reduction in 

ϕ(η) accross the boundary layer region. Brownian motion 

generates thermal energy owing to the clash amongst tiny 

nanoparticles in the flow field, which enriches fluid 

temperature and thereby fluid velocity. Brownian diffusion 

urges nanoparticles to retreat from the surface of the sheet 

resulting in a decrease in nanoparticle volume fraction accross 

the boundary layer region. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. Velocity, Temperature and Concentration profiles 

when 5, 5, 6.785, 0.5, 0.5,RLe N Pr Nb Nt= = = = =
 

2, 0.1, 0.5 and 0.5r A Nc = = = =
 

 

 
(a) 
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(b) 

 
(c) 

 

Figure 7. Velocity, Temperature and Concentration profiles 

when 5, 5, 6.785, 0.5, 0.5,RLe N Pr Nr Nt= = = = =
 

2, 0.1, 0.5 and 0.5r A Nc = = = =
 

 

It is displayed in Figs. 8(a) to 8(c) that ( )f  , ( )  and 

( )   increases as Nt  increases. When a nanoparticle in 

contact with streatching sheet gets heated by the temperature 

of the sheet, it has a tendency to repel other nanopartcles 

surrounding it by the virtue of thermophoretic force. Now, an 

increase of Nt  enhances the thermophoretic force which 

propells the nanoparticles from a region of high temperature 

to a region of low temperature within the boundary layer 

which leads to the increase of nanofluid temperature and 

nanoparticle volume fraction. This in turn, results in the 

enhancement of fluid velocity in most of the boundary layer 

region. Figs. 9(a) to 9(c) presents the effect of temperature 

ratio parameter 
f

r

T

T




=
 
 
 

 on the fluid velocity, fluid 

temperature and species concentration. A value of 1r   

implies a greater sheet temperature in comparison to the 

surrounding fluid. So, when the temperature of the sheet rises, 

fluid temperature increases and a convection of heat transfer 

towards the surrounding fluid happens which boosts the 

thermal buoyancy force resulting in the increase of fluid 

velocity. The nanoparticle volume fraction depicts an 

inhibiting tendency within the boundary layer region with an 

increase in sheet temperature. 

It is noticed from Figs. 10(a) to 10(c) that an increase in the 

value of , causes a significant increase in  near the 

sheet and it becomes increasingly greater than that near the 

free stream, whereas,  and , decreases on 

increasing . The momentum boundary layers get wider 

while the thermal boundary and solutal boundary layer gets 

slender with an augment in the stretching parameter. It is 

evident in Figs. 11(a) to 11(c) that an increase in the 

momentum slip parameter A is equivalent to a decrease in the 

relative velocity of the stretching sheet and the fluid. It is 

observed that the nanofluid velocity is an increasing function 

of A close to sheet and it is an increasing function of A in most 

of the boundary layer region. Species concentration and 

nanofluid temperature are decreasing functions of the velocity 

slip parameter A. It is depicted from the Figs. 12(a) to 12(c) 

that the fluid velocity, fluid temperature and species 

concentration increase on increasing Nc in the region near the 

sheet whereas Nc tends to reduce them in a region away from 

the sheet. This means that convective parameter helps in the 

development of fluid velocity, fluid temperature and species 

concentration near the surface of the sheet. 

 

 
(a) 

 
(b) 

 
5(c) 

 

Figure 8. Velocity, Temperature and Concentration profiles 

when 5, 5, 6.785, 0.5, 0.5,RLe N Pr Nr Nb= = = = =
 

2, 0.1, 0.5 and 0.5r A Nc = = = =
 

 ( )f 
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Figure 9. Velocity, Temperature and Concentration profiles 

when 5, 5, 6.785, 0.5, 0.5,RLe N Pr Nr Nb= = = = =
 

0.5, 0.1, 0.5 and 0.5Nt A Nc= = = =
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(b) 
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Figure 10. Velocity, Temperature and Concentration profiles 

when 0.5, 0.5, 2, 0.5,rLe Nb Nt A= = = = =
 

0.55, 5, 6.785 and 0.5RNc N Pr Nr= = = =
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Figure 11. Velocity, Temperature and Concentration profiles 

when 5, 5, 6.785, 0.5, 0.5,RLe N Pr Nr Nb= = = = =
 

0.5, 2, 0.1 and 0.5rNt Nc = = = =  

 
(a) 

 
(b) 

 
(c) 

 

Figure 12. Velocity, Temperature and Concentration profiles 

when 5, 5, 6.785, 0.5, 0.5,RLe N Pr Nr Nb= = = = =
 

0.5, 2, 0.1 and 0.5rNt A = = = =
 

 

Table 1. Effects of pertinent flow parameters on  

𝑁𝑅 𝑃𝑟 Nr Nb Nt 𝜃𝑟 𝜆 A Nc 𝐶𝑓 𝑁𝑢𝑟 𝑆ℎ𝑟 

5 6.78 0.5 0.5 0.5 2 0.1 0.5 0.5 0.4651707 0.3780885 0.9766999 

10         0.4196224 0.2834969 0.9364707 

15         0.4023874 0.2516668 0.9207321 

 2        0.3942130 0.3589477 0.9054326 

 4        0.4367750 0.3709364 0.9490008 

 6        0.4588823 0.3765629 0.9706576 

  0.0       0.64053 0.3914825 1.0877007 

  0.5       0.4651707 0.3780885 0.9766999 

  1.0       0.2501794 0.3585308 0.8198084 

   0.1      0.3705462 0.3880395 0.5024957 

   0.3      0.4373877 0.3861262 0.890095 

   0.5      0.4651707 0.3780885 0.976699 

    0.1     0.4561292 0.3869511 1.0448784 

    0.3     0.4606825 0.3824911 1.0107468 

    0.5     0.4651707 0.3780885 0.9766999 

     1.0    0.3896824 0.2384759 0.9108293 

     1.5    0.4213095 0.2917721 0.9391199 

     2.0    0.4651707 0.3780885 0.9766999 

      0.1   0.4651707 0.3780885 0.9766999 

      0.2   0.3777369 0.3903687 1.1017037 

      0.3   0.2871379 0.4016929 1.2183719 

       0.1  0.5576657 0.3630913 0.8253737 

       0.2  0.5080685 0.3714420 0.9094790 

       0.3  0.4651707 0.3780885 0.9766999 

        0.5 0.4651707 0.3780885 0.9766999 

        1.0 0.5554214 0.5514547 0.8814304 

        1.5 0.5709457 0.6947957 0.6994342 

The effects of pertinent flow parameters viz. thermal 

radiation parameter NR, Prandtl number Pr, nanoparticle 

buoyancy ratio Nr, Brownian motion parameter Nb, 

thermophoresis parameter Nt, temperature ratio parameter θr, 

, andfC Nur Shr
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stretching parameter λ, momentum slip parameter A, and 

convective parameter Nc on the flow field is tabulated in Table 

1. 

It is perceived from Table 1 that thermal radiation, nano-

particle buoyancy ratio, stretching of sheet and momentum slip 

reduces skin-friction. This can be attributed to the fact that 

thermal radiation, nano-particle buoyacy ratio, stretching of 

sheet and momentum slip has a tendency to reduce the 

frictional force between the surface and the fluid in contact. 

That is why, it is also seen that these agencies enhance fluid 

velocity. It is also seen that the Brownian motion, 

thermoporesis, convection, temperature ratio and Prandtl 

number enhance skin friction which is due to the fact that an 

increase in all these parameters increases the collision of the 

nanoparticles near the surface of the sheet which increases the 

surface drag force. Nanoparticle buoyancy ratio, temperature 

ratio, stretching of sheet, momentum slip and convection tend 

to enhance rate of heat transfer whereas Brownian motion, 

thermophoresis, thermal radiation and thermal diffusion has a 

reverse effect on it. A greater value of nanoparticle buoyancy 

ratio or temperature ratio enhances the rate at which the 

surface is cooled, thereby increasing the rate of heat transfer. 

Stretching of sheet increases the surface area of heat transport 

from the surface to ambience and hence aids in heat transfer. 

Momentum slip enhances heat transfer by increasing the fluid 

flow accross the surface while thermal convection naturally 

suppports heat transfer. Brownian motion and thermoporesis 

actually raises the ambient temperature which reduces the 

temperature difference between the surface and the ambience 

and, hence, heat transfer is reduced. Similar effect is observed 

with thermal radiation and thermal diffusion. Brownian 

motion, temperature ratio, stretching of sheet and momentum 

slip tend to enhance rate of mass transfer by reducing species 

concentration ambient to the surface of the sheet (please see 

the effect of these paramters on species concentration) which 

increases the concentration difference between the surface and 

ambient flow. This enhances the rate of mass transfer. Thermal 

radiation, thermal diffusion, nanoparticle buoyancy ratio, 

thermophoresis, temperature ratio and convection reduce the 

rate of mass transfer by increasing the solutal concentration. 

 

 

4. CONCLUSIONS 

 

The present paper brings out for the first time the combined 

effects of non-linear thermal radiation, hydrodynamic partial 

slip, Brownian motion and thermophoresis on two 

dimensional double-diffusive mixed flow of a viscous, 

incompressible optically thick nanofluid over a convectively 

heated stretching sheet. An efficient numerical scheme SLLM 

is applied to solve the non-linear governing equation. The 

numerical solution unveils many new results which are 

presented through graphs. Interestingly, it is found that 

thermal radiation reduces fluid temperature. It is due to the 

fact, that the effect of radiation in heat equation is inversely 

proportional to the thermal radiation parameter NR. Brownian 

diffusion urge nanoparticles to retreat from the surface of the 

sheet resulting in a decrease in nanoparticle volume fraction 

accross the boundary layer region. Thermophoretic force 

enrich fluid velocity by propelling the nanoparticles from a 

region of high temperature to a region of low temperature. 

Brownian motion and thermoporesis actually raises the 

ambient temperature which reduces the temperature difference 

between the surface and the ambience and, hence, heat transfer 

is reduced. Stretching of the sheet causes widening of the 

momentum boundary layer and slandering of thermal 

boundary and solutal boundary layers. In addition, stretching 

of the sheet leads to an increase in the surface area of heat 

transport from the surface to ambience and, therefore, aids in 

heat transfer. Momentum slip enhances heat transfer by 

increasing the fluid flow accross the surface while thermal 

convection naturally supports heat transfer. Thermal radiation, 

nano-particle buoyacy ratio, stretching of sheet and 

momentum slip reduce skin-friction by decreasing the 

frictional force between the surface and the fluid in contact. 

 

 

ACKNOWLEDGMENT 

 

Authors are highly thankful to reviewers whose 

constructive suggestions helped to present the manuscript in 

its present form. 

 

 

REFERENCES  

 

[1] Crane LJ. (1970). Flow past a stretching plate. Z. Angrew 

Math Phys 21: 645-647. 

https://doi.org/10.1007/BF01587695 

[2] Choi SUS. (1995). Enhancing thermal conductivity of 

fluids with nanoparticles. Proceedings of the 1995 

ASME International Mechanical Engineering Congress 

and Exposition, San Francisco, USA ASME FED 

231/MD 66, pp. 99-105. 

[3] Kelson NA, Desseaux A. (2001). Effect of surface 

conditions on flow of a micropolar fluid driven by a 

porous stretching sheet. Int J Eng. Sci 39: 1881-1897. 

https://doi.org/10.1016/S0020-7225(01)00026-X 

[4] Bhargava R, Kumar L, Takhar HS. (2003). Finite 

element solution of mixed convection micropolar flow 

driven by a porous stretching sheet. Int J Eng. Sci 41: 

2161-2178. https://doi.org/10.1016/S0020-

7225(03)00209-X 

[5] Prasad KV, Vajravelu K. (2009). Heat transfer in the 

MHD flow of a power law fluid over a non-isothermal 

stretching sheet. Int J Heat Mass Transf. 52: 4956-4965. 

https://doi.org/10.1016/j.ijheatmasstransfer.2009.05.022 

[6] Shaw S, Kameswaran PK, Sibanda P. (2013). 

Homogeneous-heterogeneous reactions in micropolar 

fluid flow from a permeable stretching or shrinking sheet 

in a porous medium. Boundary Value Problems 2013: 77. 

https://doi.org/10.1186/1687-2770-2013-77 

[7] Seth GS, Sharma R, Kumbhakar B, Chamkha AJ. (2016). 

Hydromagnetic flow of heat absorbing and radiating 

fluid over exponentially stretching sheet with partial slip 

and viscous and Joule dissipation. Eng. Computation 

33(3): 907-925. https://doi.org/10.1108/EC-05-2015-

0122 

[8] Das S, Putra N, Thiesen P, Roetzel W. (2003). 

Temperature dependence of thermal conductivity 

enhancement for nanofluids. J Heat Transfer 125: 567-

574. https://doi.org/10.1115/1.1571080 

[9] Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ. 

(2001). Anomalously increased effective thermal 

conductivity of ethylene glycol-based nanofluids 

containing copper nanoparticles. Appl Phys Lett 78(6): 

718-720. https://doi.org/10.1063/1.1341218 

1023



 

[10] Minsta HA, Roy G, Nguyen CT, Doucet D. (2009). New 

temperature dependent thermal conductivity data for 

water-based nanofluids. Int J Therm. Sci. 48: 363-371. 

https://doi.org/10.1016/j.ijthermalsci.2008.03.009 

[11] Buongiorno J. (2006). Convective transport in 

nanofluids. J. Heat Transfer 128: 240-250. 

https://doi.org/10.1115/1.2150834 

[12] Buongiorno J. (2009). A benchmark study of thermal 

conductivity of nanofluids. J Appl Phys 106. 

https://doi.org/10.1063/1.3245330 

[13] Nadeem S, Haq RU, Khan ZH. (2014). Heat transfer 

analysis of water-based nanofluid over an exponentially 

stretching sheet. Alexandria Eng. J 53: 219-224. 

https://doi.org/10.1016/j.aej.2013.11.003 

[14] Das M, Mahatha BK, Nandkeolyar R. (2015). Mixed 

convection and nonlinear radiation in the stagnation 

point nanofluid flow towards a stretching sheet with 

homogenous-heterogeneous reactions effects. Procedia 

Engineering 127: 1018-1025. 

https://doi.org/10.1016/j.proeng.2015.11.451 

[15] Nguyen NT, Wereley ST. (2009). Fundamentals and 

applications of microuidics. Artech house, London. 

[16] Li D. (2008.) Encyclopedia of Microuidics and 

Nanofluidics. Springer USA. 

[17] Ramzan M, Bilal M, Chung JD. (2017). Effects of 

thermal and solutal stratification on Jeffrey magneto-

nanofluid along an inclined stretching cylinder with 

thermal radiation and heat generation/absorption. 

International Journal of Mechanical Sciences 131: 317-

324. https://doi.org/10.1016/j.ijmecsci.2017.07.012 

[18] Ramzan M, Yousaf F, Farooq M, Chung JD. (2016). 

Mixed convective viscoelastic nanofluid flow past a 

porous media with Soret—DuFour effects. 

Communications in Theoretical Physics 66(1): 133. 

https://doi.org/10.1088/0253-6102/66/1/133 

[19] Turkyilmazoglu M. (2017). Condensation of laminar 

film over curved vertical walls using single and two-

phase nanofluid models. European Journal of 

Mechanics-B/Fluids 65: 184-191. 

https://doi.org/10.1016/j.euromechflu.2017.04.007 

[20] Aziz A. (2009). A similarity solution for laminar thermal 

boundary over a flat plate with a convective boundary 

condition. Comm Nonlinear Sci and Num Simul 15: 

1064-1068. https://doi.org/10.1016/j.cnsns.2008.05.003 

[21] Noghrehabadi A, Pourrajab R, Ghalambaz M. (2013a). 

Flow and heat transfer of nanofluids over stretching sheet 

taking into account partial slip and thermal convective 

boundary conditions. Heat Mass Transf. 49: 1357-1366. 

https://doi.org/10.1007/s00231-013-1179-y 

[22] Noghrehabadi A, Saffarian MR, Pourrajab R, Ghalambaz 

M. (2013b). Entropy analysis for nanofluid flow over a 

stretching sheet in the presence of heat 

generation/absorption and partial slip. J Mech Sci Tech 

27: 927-937. https://doi.org/10.1007/s12206-013-0104-0 

[23] Turkyilmazoglu M. (2016). Magnetic field and slip 

effects on the flow and heat transfer of stagnation point 

Jeffrey fluid over deformable surfaces. Zeitschrift für 

Naturforschung A 71(6): 549-556. 

https://doi.org/10.1515/zna-2016-0047 

[24] Turkyilmazoglu M. (2017). Mixed convection flow of 

magnetohydrodynamic micropolar fluid due to a porous 

heated/cooled deformable plate: exact solutions. 

International Journal of Heat and Mass Transfer 106: 

127-134. 

https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.056 

[25] Ramzan M, Bilal M, Farooq U, Chung JD. (2016). Mixed 

convective radiative flow of second grade nanofluid with 

convective boundary conditions: An optimal solution. 

Results in Physics 6: 796-804. 

https://doi.org/10.1016/j.rinp.2016.10.011 

[26] Ramzan M, Bilal M, Chung JD, Mann AB. (2017). On 

MHD radiative Jeffery nanofluid flow with convective 

het and MSS boundary conditions. Neural Computing 

and Applications 1-10.  

[27] Makinde OD, Aziz A. (2011). Boundary layer flow of a 

nanofluid past a stretching sheet with convective 

boundary condition. Int J of Therm. Sci 50: 1326-1332. 

https://doi.org/10.1016/j.ijthermalsci.2011.02.019 

[28] Makinde OD, Khan WA, Khan ZH. (2013). Buoyancy 

effects on MHD stagnation point flow and heat transfer 

of a nanofluid past a convectively heated 

stretching/shrinking sheet. Int J Heat Mass Transf. 62: 

526-533. 

https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049 

[29] Bhaskar Reddy N, Poornima T, Sreenivasulu P. (2014). 

Influence of variable thermal conductivity on MHD 

boundary layer slip flow of ethyleneglycol based Cu 

nanofluids over a stretching sheet with convective 

boundary condition. Int J Eng Math Article ID 905158. 

http://dx.doi.org/10.1155/2014/905158 

[30] Uddin MJ, Khan WA, Ismail AIM. (2012). Scaling group 

transformation for MHD boundary layer slip flow of a 

nanofluid over a convectively heated stretching sheet 

with heat generation. Math Prob in Eng. 20. 

http://dx.doi.org/10.1155/2012/934964 

[31] Mahatha BK, Nandkeolyar R, Nagaraju G, Das M. 

(2015). MHD stagnation point flow of a nanofluid with 

velocity slip, non-linear radiation and Newtonian 

heating. Procedia Eng. 127: 1010-1017. 

https://doi.org/10.1016/j.proeng.2015.11.450 

[32] Ramzan M, Chung JD, Ullah N. (2017). Radiative 

magnetohydrodynamic nanofluid flow due to gyrotactic 

microorganisms with chemical reaction and non-linear 

thermal radiation. International Journal of Mechanical 

Sciences 130: 31-40. 

https://doi.org/10.1016/j.ijmecsci.2017.06.009 

[33] Ramzan M, Bilal M, Kanwal S, Chung JD. (2017). 

Effects of variable thermal conductivity and non-linear 

thermal radiation past an Eyring Powell nanofluid flow 

with chemical reaction. Communications in Theoretical 

Physics 67(6): 723. https://doi.org/10.1088/0253-

6102/67/6/723 

[34] Uddin Md J, Hoque AKMF. (2018). Convective heat 

transfer flow of nanofluid in an isosceles triangular 

shaped enclosure with an uneven bottom wall. Chem Eng 

Trans 66: 403-408. https://doi.org/10.3303/CET1866068 

[35] Bubbico R, Celatab GP, D’Annibaleb F, Mazzarottaa B, 

Menalea C (2015). Comparison of the heat transfer 

efficiency of nanofluids. Chem Eng Trans 43: 703-708. 

https://doi.org/10.3303/CET1543118 

[36] Motsa SS. (2013). A new spectral local linearization 

method for nonlinear boundary layer flow problems. J 

Applied Math 1-15. 

http://dx.doi.org/10.1155/2013/423628 

[37] Trefethen LN. (2000). Spectral Methods in Matlab, 

SIAM. https://doi.org/10.1137/1.9780898719598

 

1024




