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The socio-economic and ecological value of Lake Victoria is threatened by significant regional 

development and urbanization. This study analyzed spatial-temporal land use/land cover 

changes in the Kenyan Lake Victoria basin from 1978–2018 using Landsat 3, 4-5 and 8 

imagery, with a view to identifying the extent and potential impacts of urbanization on the 

basin. Supervised image classification was undertaken following the Maximum Likelihood 

algorithm to generate land use/land cover maps at ten-year intervals. Results indicate that the 

basin is characterized by six main land use/land cover classes namely, agricultural land, water 

bodies, grasslands and vegetation, bare land, forests and built-up areas. Further, the results 

indicate that the basin has experienced net increases in built-up areas (+97.56%), forests 

(+17.30%) and agricultural land (+3.54%) over the last 40 years. During the same period, it 

experienced net losses in grassland and vegetation (-37.36%), bare land (-9.28%) and water 

bodies (-2.19%). Generally, the changing landscapes in the basin are characterized by 

conversion of natural environments to built-up environments and driven by human activities, 

urban populations and public policy decisions. The study therefore recommends the 

establishment of a land use system that creates a balance between the ecological realm and 

sustainable development. 
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1. INTRODUCTION

Land use refers to the ways in which human beings use and 

manage land and its re-sources as a way of sustaining their 

lives [1]. It differs from land cover, which refers to the 

biological and physical materials that exist on the surface of 

land, whether natural or manmade [2, 3]. Land use includes 

agricultural, residential, commercial or any other 

anthropogenic uses of the land by people. This implies the 

exploitation of land, and the associated resources, which 

translates into denaturalization of the land [1]. Land cover, on 

the other hand, includes both the natural and man-made/caused 

changes which occur on the surface of land over time. Land 

use and land cover are often used together as land use/land 

cover change (LULC), which is regarded as the product of 

natural and socio-economic aspects of an area and their 

accompanying anthropogenic manipulation in space and time 

[4].  

Mostly, LULC involve converting naturally existing land 

into agricultural land or build-up areas for residential or 

commercial purposes. Depending on where and how LULC 

change takes place, it can be detrimental to the integrity of the 

natural resources or it could be beneficial. Studies have 

established the negative impacts of changes in LULC to be in 

the form of losses in forest cover, biodiversity, and increased 

frequency of flooding disasters as well as global warming [5-

7]. Land use/land cover change can be beneficial in terms of 

provision of food, living spaces and materials such as fuel 

wood for human use [8]. 

LULC assessment through remote sensing has gained 

extensive usage globally as a research tool for monitoring 

changes in the environment and natural resources for 

management purposes [9]. The widespread application of 

remote sensing is because it enables understanding of 

interactions between the environment and anthropogenic 

activities. Further, remote sensing is widely used due to the 

spatial extent of most satellite images and the long timeframe 

of imagery collection, which enables analysis of change over 

a longer period of time and wider geographical coverage [10]. 

Studies have shown that remote sensing can accurately map 

out the distribution pattern of land use/land cover over 

enormous geographical area [11, 12].  

The assessment of LULC changes using remote sensing 

techniques has been used since mid-1970s in both developing 

and developed worlds [13], especially in the fields of 

agriculture and environmental studies [14-16], to generate 

insights for decision-makers on the planning and management 

of the environment [17]. In Brazil, increasing urbanization 

trends due to land use and land cover changes in the Middle 

Rio Grande was evaluated through remote sensing of the 

declining upland mixed vegetation cover [18]. A study in the 

United Kingdom using remote sensing evaluated the 
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environmental impacts of urban land use and land cover 

change in Merseyside and found that the increasing built-up 

areas has caused the decline in green spaces [19]. In Central 

Europe reduction in species diversity due to urban growth was 

reported from an evaluation of land use impacts on the 

environment via remote sensing [20]. In Southern Asian 

countries of India and China, rapid urbanization has been 

reported from the assessment of the impacts of land use and 

land cover change on the ecosystem services conducted 

through remote sensing [21, 22]. In the developing world, 

combined GIS and remote sensing techniques has been used 

in analyzing urbanization trends from the changes in land use 

and land cover in the Blue Nile basin in Northwest Ethiopia 

[23], White Nile basin in Sudan [24], Murchinson Bay 

catchment of the Ugandan Lake Victoria basin [25] and Azrou 

Forest in the Central Middle Atlas of Morocco [26] among 

others. 

In Kenya, LULC changes have been studied on a diversified 

range of terrains, from watersheds and river basins [27], to the 

forests, lakes and water towers within the country [28]. Some 

of the most recent studies covered the unplanned human 

settlements of Were et al. [28], forested highlands [29] and the 

drainage basins along the shores of Lake Victoria [27, 30]. The 

unanimous conclusions derived from all these studies is that 

land use/land cover changes are occurring at a high rate in 

different parts of the country for different reasons. Some 

changes occur to pave way for built-up areas [31, 32] while 

others happen to create space for agriculture and settlements 

[27-29]. Despite these diverse studies in Kenya, the land use 

and land cover dynamics of several Kenyan landscapes having 

important natural resources and ecosystems, such as the Lake 

Victoria basin, have never been evaluated. The knowledge 

gaps still remain to be filled with more studies through the 

application of remote sensing techniques.  

The Lake Victoria basin, shared among three East African 

countries, provides land resources which support more than 25 

million human inhabitants [33], through water provision, 

agricultural production and fishing [34]. Considered the 

greatest natural re-source in the East African region [35], this 

basin is one of the regions in the country that has faced rapid 

LULC changes over the years. In spite of its global 

significance, land degradation in the basin has been estimated 

to be affecting over 60% of the area [33]. The changes in land 

use and land cover within the lake region have altered the 

hydrology of many rivers within the basin and ultimately the 

lake itself [30, 36]. The lake is characterized by various urban 

centers that have developed over the years from small 

settlements, including one large city, Kisumu. This has 

escalated with the devolved system of governance adopted by 

Kenya in 2010, following promulgation of a new constitution, 

which has seen most development shift to the counties/regions. 

As these lakeside towns continue to grow in population and 

socio-economic activity, the lake is likely to bear some 

environmental impacts. However, no studies have explicitly 

quantified the extent of urbanization happening within the 

Lake Victoria basin and the environmental impacts it has on 

the ecological health of the Lake Victoria ecosystem. 

Therefore, as an exploratory study into the extent and potential 

impacts of watershed urbanization, this study sought to 

analyze land use and land cover changes in the Kenyan basin 

of Lake Victoria from 1978-2018. The information produced 

from this study is expected to aid management decision 

making in the region for sustainable environmental 

management of the lake. 

2. METHODOLOGY 

 

2.1 Study area 

 

Lake Victoria is located along the Equator between latitudes 

0°20 Ń-3°S and longitudes 31°39 É–34°53 Ẃ; and an 

average elevation of 1134 meters above sea level. The lake is 

shared among the three East African countries, Kenya (6%), 

Uganda (45%) and Tanzania (49%) [35, 37]. The lake is 

considered the second largest fresh water body in the world 

carrying approximately 2750 km3 of water by volume within 

a total surface area of 68,000 km2 [35]. With an average depth 

of 40 meters and a maximum depth of 84 meters, Lake Victoria 

is considered relatively shallow [38]. Located in a region 

experiencing an average annual rainfall of 900mm-2600 mm, 

direct precipitation represents the major source (about 80%) of 

water in the Lake Victoria. The rest of the water comes from 

draining streams and rivers. The White Nile is the major outlet 

of Lake Victoria, flowing northwards from Uganda to Egypt. 

The basin experiences mean annual evaporation rates of 

1100mm-2400 mm, making the water balance of the lake to be 

primarily characterized by precipitation and evaporation [39]. 

In addition to the lake/water surface, Lake Victoria has a 

catchment area of about 195,000 Km2 which spans beyond 

Kenya, Uganda and Tanzania to Rwanda and Burundi. About 

22% (43,000 Km2) lies in Kenya. This study focused only on 

the Kenyan portion of the lake’s basin, specifically on the five 

administrative counties that immediately border the lake. 

These include Busia, Migori, Kisumu, Siaya and Homabay 

(Figure 1). The counties are regional administrative units of 

the Republic of Kenya and therefore form the basis for spatial 

LULC analysis. These counties cover a total area of about 

16,000 Km2 which, for the purpose of this study, is hereafter 

referred to as the Kenyan Lake Victoria Basin (KLVB). The 

KLVB is located on the western region of Kenya. The KLVB 

experiences inflows in the form of rivers including Sondu 

Miriu, Yala, Awach and Nzoia, among others. 

 

 
 

Figure 1. Map of Kenyan Lake Victoria Basin (KLVB) 

 

2.2 Research methods 

 

2.2.1 Data sources and acquisition methods 

In order to analyze the spatial-temporal LULC changes in 

KLVB for the last four decades (1978-2018) at a decadal 

interval, remote sensing and GIS techniques were employed. 

The study utilized the following satellite imageries: Landsat 3 

Multispectral Scanner (MSS) acquired for the month of 

January for the year 1978, Landsat 4, 5 Thematic Mapper (TM) 

336



 

acquired for the month of January for the years 1988, 1998 and 

2008, and Landsat 8 OLI –TIRS (Operational Land Satellite – 

The study utilized the following satellite imageries: Landsat 3 

Multispectral Scanner (MSS) acquired for the month of 

Thematic Infrared Sensor) acquired for the month of January 

for the year 2018.  

All the Landsat imageries used in this study were freely 

obtained from the United States Geological Survey (USGS) 

website: www.earthexplorer.usgs.gov. Table 1 provides 

further details on the Landsat satellite imageries. To enhance 

consistency and accurate interpretation, all satellite imageries 

were acquired for the dry season (January) because they are 

characterized by little to no cloud cover and less moisture 

content hence minimal reflectance.  

 

Table 1. Properties of the Landsat satellite imageries used for the LULC study 

 
YEAR Sensor Path/Row Acquisition Date Resolution (m) Cloud cover Season Source 

     (%)   

1978 Land sat 3 MSS 170/60 Jan, 1978 30 0 Dry USGS 

1988 Land sat 4,5 TM 170/60 Jan, 1988 30 1 Dry USGS 

1998 Land sat 4,5 TM 170/60 Jan, 1998 30 1 Dry USGS 

2008 Land sat 4,5 TM 170/60 Jan, 2008 30 0 Dry USGS 

2018 Land sat 8 OLI-TIRS 170/60 Jan, 2018 30 0 Dry USGS 

2.2.2 Data Pre-processing  

After acquisition, all the imageries were imported into 

ERDAS Imagine 2015 Version for pre-processing. Pre-

processing was done to systematically correct the images and 

to enhance their visualization and interpretability. Firstly, 

appropriate bands were layer stacked together to form one 

single composite image to bring out the true color image of the 

scene. The bands were combined in the following order for 

different Landsat images: Landsat 4-5 Thematic Mapper 

(Bands 1, 2, 3,4,5,6 and 7); Landsat 7 (Bands 1, 2,3,4,5, 7 and 

pan sharpened with Band 8 (Band 6 was left out due to its 

default setting in Landsat 7); and Landsat 8 (Bands 2,3,4,5,6,7 

and pansharpened by band 8). The following bands were left 

out in Landsat 8 due to the following reasons; Band 1-Its 

mainly used to map coast waters, Band 9 - It represents cirrus 

cloud, and Bands 11 &12 are thermal bands [40].  

After layer stacking, pan sharpening was done to enhance 

visualization. Images with panchromatic resolution, mainly 

Landsat 7 and 8 were pansharpened using panchromatic bands 

to increase their spatial resolution from 30 m to 15 m. This was 

followed by radiometric correction. The main radiometric 

correction carried out was haze reduction to reduce the impacts 

of haze captured on the images [2]. Mosaicking was carried 

out to merge three separate satellite raw images and the area 

of interest was clipped from the mosaic using the extent of the 

Lake Victoria Region of Kenya. 

 

2.2.3 Data processing and analysis 

To obtain the land use/land cover, supervised classification 

using Maximum Likelihood algorithm [2] was carried out 

using ERDAS Imagine. In the supervised classification 

process, the LULC classes were defined as agricultural land 

(comprising surface areas dedicated to the cultivation of crops, 

vegetables and fruits), water bodies (comprising are-as under 

rivers, lakes, swamps and wetlands), grasslands & vegetation 

(comprising areas covered by grasses, shrubs and bushes), 

bare land (comprising exposed rocky or soil sur-faces lacking 

any vegetation cover), forests (comprising areas under 

naturally occurring or planted indigenous and exotic trees) and 

built-up areas (comprising areas under residential, commercial, 

industrial and infrastructural establishments).  

Six (6) ground-truth polygons, each representing the six 

LULC classes, were randomly selected and digitized based on 

aerial photographs and visual analysis of geographical 

locations on Google Earth maps. Each training sample 

polygon used in classification process contained 17 pixels, 

bringing the total training sample to 100 pixels. The training 

sample polygons which were found with unwanted pixels were 

thrown out and replaced with the new ones with wanted 

spectral signatures. After training the image using signature 

editor, the Maximum Likelihood algorithm was run a couple 

of times to obtain the defined classes in the image. Due to the 

medium resolution of the images used, Pixel based 

classification was used to classify images of the study years 

separately. After producing the land use/land cover, the 

images were loaded in the ArcGIS to design the final LULC 

maps of 1978, 1988, 1998, 2008 and 2018 with appropriate 

cartographic elements. Based on the processed data, the study 

identified six LULC classes in the Lake Victoria Basin. 

 

2.2.4 Post-processing 

In remote sensing, accuracy assessment is necessary in 

determining the quality of the information obtained from the 

satellite imageries [41]. It involves a comparison between the 

information from ground reference points to that from the 

classified maps. In this process, a confusion or error matrix 

comprising important statistical elements of producer’s 

accuracy, user’s accuracy, overall accuracy, Kappa 

statistics/coefficient [42] were produced for each image. After 

obtaining supervised classified images that represent the 

various LULC classes for this study, accuracy assessment was 

carried out for the study years. The accuracy assessments for 

the classification images of 1978, 1988, 1998 and 2008 were 

done using historical data obtained through analysis of the 

available ancillary data (including topographical maps) and 

sampling of past backdated Google Earth images of the area 

of interest.  

All the ground truthing, conducted using Google Earth 

images to ascertain what was on the ground during those past 

study years, were carried out on the exact year and season the 

Landsat image was captured. For the 2018 classification image, 

accuracy assessment was accomplished by checking the 

remote sensed data against the ground-truthing data obtained 

during the field visit done during the dry season in 2018. 

During fieldwork, 100 randomly selected ground reference 

points distributed within the study area were used to cover the 

2018 classification image. During verification, the class value 

where each random point located on the image was specified 

and reference made with a medium-resolution image to 

ascertain the accuracy of a pixel where the random points are 

located. Finally, accuracy assessment criteria (namely 

producer accuracy, user accuracy, overall accuracy and Kappa 

coefficient) were computed for each of the LULC classes in 

the classified maps following the established formulas [43] 
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and a report in form of confusion (error) matrix produced for 

each of the LULC maps. 

After supervised classification and accuracy assessments, 

change detection analysis was carried out to determine the 

coverage for the various LULC classes in each map through 

consideration of the pixel count against the total area of the 

basin. These areal coverage estimations were presented in 

square kilometers as well as percentages for each year (1978, 

1988, 1998, 2008 and 2018). Trends of spatial-temporal 

changes for the LULC in the KLVB were then determined to 

indicate the scale of environmental changes in the watershed. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Classification and distribution of LULC changes 

 

Six classes of LULC were identified in the Lake Victoria 

basin. The classified LULC maps of 1978 (Figure 2), 1988 

(Figure 3), 1998 (Figure 4), 2008 (Figure 5), and 2018 (Figure 

6) show that the basin is characterized by water bodies, 

grasslands & vegetation, forest cover, built-up areas, bare land 

and agricultural land. This is in agreement with a previous 

study [44] which had identified the same LULC types on the 

Ugandan side of Lake Victoria Basin. Based on the LULC 

maps, the areal coverage of the various LULC classes with 

respect to time were determined and presented in Table 2 and 

Figure 7. 

 

 
 

Figure 2. LULC classified map of the KLVB for 1978 

 

 
 

Figure 3. LULC classified map of the KLVB for 1988 

 
 

Figure 4. LULC classified map of the KLVB for 1998 

 

 
 

Figure 5. LULC classified map of the KLVB for 2008 

 

 
 

Figure 6. LULC classified map of the KLVB for 2018 

 

 
 

Figure 7. LULC in KLVB from 1978 - 2018 
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Table 2. LULC statistics of KLVB between 1978 and 2018 

 

Class Name 

1978 1988 1998 2008 2018 

Area 

(km2) 

% 

Cover 

Area 

(km2) 

% 

Cover 

Area 

(km2) 

% 

Cover 

Area 

(km2) 

% 

Cover 

Area 

(km2) 

% 

Cover 

Agricultural 

Land  
8748.15 55.46 9868.42 63.65 8934.31 56.64 9223.35 58.48 9058.19 57.45 

Water Bodies 3789.51 24.03 3764.44 24.28 3784.03 23.99 3807.51 24.14 3706.60 23.51 

Grasslands & 

Vegetation 
1644.94 10.43 370.71 2.39 1177.93 7.47 984.08 6.24 1030.33 6.53 

Bare Land 771.83 4.89 370.71 2.39 585.08 3.71 590.15 3.74 700.18 4.44 

Forests 430.14 2.73 482.30 3.11 609.17 3.85 472.84 3.00 504.56 3.20 

Built-up Areas 388.15 2.46 647.65 4.18 682.19 4.33 695.11 4.41 766.82 4.86 

Total  15772.71 100 15772.71 100 15772.71 100 15772.71 100 15772.71 100 

 

Table 3. LULC decadal net changes in the KLVB for the period of 1978 – 2018 

 

LULC 

Class  

1978 - 1988 1988 - 1998 1998 - 2008 2008 - 2018 
 (Overall Change) 

1978 - 2018 

Area 

(km2) 

% 

Change 

Area 

(km2) 

% 

Change 

Area 

(km2) 

% 

Change 

Area 

(km2) 

% 

Change 

Area 

(km2) 

% 

Change 

Agricultur

al Land  
1120.27 12.81 -934.11 -9.47 289.04 3.24 -165.16 -1.79 310.05 3.54 

Water 

Bodies 
-25.07 -0.66 19.59 0.52 23.49 0.62 -100.91 -2.65 -82.91 -2.19 

Grasslands 

& 

Vegetation 

-1274.23 -77.46 807.22 217.75 -193.85 -16.46 46.243 4.70 -614.62 -37.36 

Bare Land -401.12 -51.97 214.36 57.82 5.076 0.87 110.03 18.64 -71.65 -9.28 

Forest 52.16 12.13 126.87 26.30 -136.33 -22.38 31.72 6.71 74.42 17.30 

Built-up 

Areas 
259.51 66.86 34.54 5.33 12.92 1.89 71.71 10.32 378.68 97.56 

 

Throughout the 40 years under study, the largest LULC 

class in the KLVB was agricultural land accounting for almost 

half of the total surface area of 15772.71 km2 (Table 2). This 

is because the communities living within the basin 

predominantly grow crops and keep livestock as the major 

sources of livelihood, besides fishing. The agricultural land 

has shown increasing trend over time though not in a steady or 

uniform manner since it sharply increases from 1978 to the 

peak of 1988 and then drops sharply in 1998 from where it 

stabilizes to be fairly constant throughout the period leading 

up to 2018 (Figure 2). Change detection data revealed that 

agricultural land has increased over time from 1978 to 2018 

by 3.53% (Table 3) with potential implications on the 

environment. 

The second largest LULC in the watershed has consistently 

been an area covered by water bodies which have fairly 

remained constant in areal coverage oscillating around 24% 

from 1978 to 2018. However, from the change detection 

results in Table 3, the area covered by water bodies has 

declined marginally over time from 1978 to 2018 by 2.19%. 

Grasslands and vegetation constitute the third largest LULC 

class and there has been an overall steady decrease in coverage 

of this category in the basin over the past 40 years (Figure 2), 

losing about 37.36% by 2018 from the initial coverage of 1978. 

The next largest LULC closely following grasslands and 

vegetation is bare land which has witnessed a slightly irregular 

trend over the past 40 years (Figure 2), culminating in 9.28% 

loss in coverage between 1978 and 2018 (Table 3). The least 

extensive LULC classes in terms of coverage are forests and 

built-up areas, respectively (Table 2). Results show that the 

areal coverage of both classes has been nearly equal (Figure 

2). Furthermore, the two classes exhibited the same pattern of 

a steady increasing trend from 1988 to 2018. According to the 

change detection results in Table 3, forests and bare land have 

both increased over time from 1978 to 2018 by 17.30% and 

97.56%, respectively. 

The natural environments in the basin are increasingly being 

converted to build environments and/or for agricultural 

production. These changes are driven by rapid population 

growth and urbanization. The high population growth around 

the KLVB is due to rural-urban migration as well as natural 

increase [45] while urbanization is seen to be a consequence 

of increased economic growth and the population. High 

population growth in the watershed region comes with 

increased demand for food, materials and development of 

infrastructure which consequently put pressure on the land 

resources leading to clearing of natural vegetation to provide 

space for agricultural expansion and settlement. The resultant 

losses in natural vegetation cover have the potential of 

contributing to loss of fragile ecosystems (such as wetlands) 

which in turn would lead to loss of ecological goods and 

services. 

 

3.2 Spatial -temporal trends and change detection 

 

Over the past four decades, the basin underwent substantial 

changes in areal coverage both spatially and temporally 

(Figure 8), reflecting a change in the environment. Those 

LULC changes have occurred due to pervasive urbanization in 

the watershed. Urbanization and environmental degradation 

are recognized as one of the challenges in the region where the 

watershed is located [46].  

Further analyses of these results revealed specific net 

changes in the LULC classes for every decade from 1978 to 

2018 (Table 3 and Figure 9). These changes can positively or 

negatively impact the environment.
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Figure 8. Trends of LULC classes in KLVB Watershed 

(1978-2018) 
 

 
 

Figure 9. LULC decadal net changes in the KLVB for the 

period of 1978 – 2018 

 

3.2.1 Pattern of LULC changes between 1978 and 1988 

Both positive and negative growth patterns were observed 

among the various LULC classes in Lake Victoria Basin 

during the period between 1978 and 1988 (Figure 9). The 

results indicate that the watershed was dominated by 

agricultural land as the most extensive LULC covering about 

8748.15 km2 (55.46%) of the total area in 1978 but increased 

to 9868.42 km2 (65.65%) in 1988, translating to a net gain in 

coverage of 12.81% during that period (Figure 9). Forests and 

built-up areas also exhibited positive growth patterns during 

this period, recording net gains of 12.13% and 66.86% 

respectively from their original coverage (Figure 9). The rest 

of the LULC classes recorded a negative growth pattern from 

1978 to 1988 as follows (Figure 9); water bodies slightly 

decreased by 0.66%, grasslands and vegetation decreased by 

77.46%, and bare land decreased by 51.97% (Figure 9).   

From these analyses, it can be deduced that this decade 

experienced the greatest environmental change due to the 

conversion of areas under water bodies, grasslands and 

vegetation, and bare land to agricultural land, forests, and 

built-up areas. Basically, the land areas under built 

environment and agriculture were overtaking the natural 

landscapes. This could be attributed to the rapid population 

growth witnessed in this region which was estimated to be 5% 

per annum around that particular period [47]. It is documented 

that the environmental changes caught the attention of 

Kenya’s second president Moi who then established a 

Permanent Presidential Commission on Soil Conservation and 

Afforestation (PPCSCA) in 1981 to encourage nationwide 

environmental conservation efforts [48]. 

 

3.2.2 Pattern of LULC changes between 1988 and 1998 

In this period, all the LULC classes of the watershed 

exhibited positive growth patterns with exception of 

agricultural land, which showed negative growth pattern 

(Figure 9). Agricultural land covering about 9868.42 km2 

(65.65%) in 1988 dropped to about 8934.31 km2 (56.64%) of 

the total watershed area by 1998 (Table 2). There was a net 

loss of about 9.47% of agricultural land from 1988 (Figure 9). 

The rest of the LULC classes registered positive growth 

between 1988 and1998, with grassland and vegetation class 

recording the highest gain of 217.75% (Figure 9). Bare land 

and forest cover also showed a significant increase during this 

period (1988-1998) with a net gain of 57.82% and 26.30%, 

respectively. The other two LULC classes recorded almost 

negligible positive growth pat-terns from 1988 to 1998 as 

follows: built-up areas grew by 5.33% while water bodies 

grew by 0.52%. (Figure 9). 

Generally, there was an increased coverage for all the 

LULC classes during this decade except for the agricultural 

land, which showed a decline in its coverage. This could be 

attributed to aggressive government afforestation and 

reforestation programs championed by the new Kenyan 

government of that time aimed at achieving the forest cover 

recommended by UNEP, which had been headquartered in 

Nairobi around that time. This came against the backdrop of 

the Beijer Institute report of 1979 that raised an alarming 

forecast predicting that by 2000 there wouldn’t be any forested 

area in Kenya [49], but wasn’t acted upon. This report would 

later trigger aggressive forest conservation and management 

measures in Kenya including the formulation of new policy 

and legal framework for sustainable forest management during 

the period of 1988 and 1999 [49]. 

 

3.2.3 Pattern of LULC changes between 1998 and 2008 

During the period of 1998 to 2008, the study area underwent 

remarkable changes in the coverage of the LULC classes as 

shown in Figure 9. There was an erratic trend in the growth 

patterns of the LULC classes with four classes presenting 

small (almost negligible) positive growth patterns while two 

others showed considerable negative growth patterns. Positive 

growth trends in agricultural land dominated the coverage of 

the watershed during this decade, recording 8934.31 km2 in 

1998 and increasing this coverage by 3.24% (+289.04 km2) to 

9223.35 km2 in 2008 (Table 3). The rest of the classes that 

showed minimal positive growth patterns during this period 

(1998 - 2008) are: built-up areas, bare land and water bodies 

recording marginal net gains of 1.89%, 0.87%, and 0.62% 

respectively (Figure 9). Since these are pretty small 

percentages, it can be assumed that they occur within the error 

threshold of classification, hence implying that the four LULC 

classes remained relatively constant in the watershed during 

this period. 

Nonetheless, during the same period (1998 - 2008), 

grasslands and vegetation declined considerably by losing 

16.46% of its original cover of 1988 while forests declined 

substantially by losing 22.38% of its original coverage of 1988 

(Figure 9). Generally, in this decade, great losses observed in 

both grasslands and vegetation, and forest portray a period of 

widespread deforestation and vegetation removal. This 

represents a major undoing of the gains realized in the 

previous decade (1988 - 1998). This is the consequence of 

policy lapses from the government coupled with a burgeoning 

population and massive urban expansion aimed at steering 

economic development in the region. This was done at the 

expense of conservation.  

It has been reported [50] that this happened because the new 
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Kenyan government of 2002 had drastically ripped off earlier 

conservation laws and policies and formulated their own new 

ones but these new laws and policies couldn’t get enacted in 

good time and once, they finally got enacted, they couldn’t get 

implemented because the government prioritized fulfilling 

their promise of economic development to the people, 

neglecting conservation. According to previous assessment, 

the losses in forest and grasslands and vegetation during this 

period must have been exacerbated by government action of 

grabbing 2000 ha from Mau forest land and using it to settle 

the Ogiek community [51]. Also, during this period, there was 

an upcoming election and so influential government officials 

were illegally allocated 10,000 ha as part of political cronyism 

[51]. 

 

3.2.4 Pattern of LULC changes between 2008 and 2018 

LULC change detection for this period revealed that the 

study area experienced both great net gains and net losses 

among the various LULC classes (Figure 9). Contrary to the 

previous decade where both agricultural land and water bodies 

experienced positive growth trends, during this decade (2008 

- 2018) they both started incurring losses in coverage though 

still marginal in nature (Figure 9). Agricultural land slightly 

dropped from the original coverage by 1.79% (Table 3). On 

the other hand, water bodies coverage also dropped by 2.65% 

from the original coverage of 3807.512 km2 in 2008 to 

3706.604 km2 in 2018. However, the rest of the LULC classes 

acquired net gains as follows: bare land in-creased by 18.64%, 

built-up areas increased by 10.32%, forests cover increased by 

6.71%, and lastly, grasslands and vegetation increased by 

4.70%. Results show that this is the only decade when the 

environment seems to have been impacted positively by the 

changing land uses since all the LULC classes gained coverage 

while agricultural land and are-as under water bodies 

fluctuated. It seems that the agricultural land might have been 

converted to built-up areas by the sprawling urban centers in 

the watershed. 

The rapid spatial and temporal changes observed in the 

LULC of KLVB can be generally attributed to human 

activities and urban populations. This conforms to the findings 

of similar study in China [52]. Land use/land cover changes 

usually lead to various changes in the socio-economic aspects 

of a society, but this often comes at a cost on the environment 

[53]. The increased conversion of natural landscapes to 

agricultural production and/or built environments in the 

KLVB over time has potentially affected the environment 

around the watershed. The KLVB regularly experiences 

periodic floods, water pollution, air pollution, soil erosion and 

invasive species encroachment among others [35, 37, 54]. This 

study affirms that these environmental challenges must be due 

to the long-term land use/land cover changes in the region. The 

floods and water pollution in the watershed can be attributed 

to increased built-up environment which creates impervious 

surfaces in the form of roads and pavements, consequently 

preventing run-off water from seeping into the ground. This 

run-off water often carries pollutants and delivers them to 

water sources used by the residents, hence non-point water 

pollution [55]. Further, this water run-off contributes to 

flooding, which exacerbates the erosivity of the soil [53].  

Urbanization of the watershed resulting from increased 

built-up environments also contributes to point-source 

pollution emanating from the municipal waste waters as well 

as increased air pollution from industries and motorized 

vehicles. This can lead to public health risks [56]. The rapid 

increase in coverage of agricultural land at the expense of 

natural landscapes amounts to habitat modification which 

could potentially lead to loss of biodiversity. Intensified 

agricultural practices, especially on the riparian landscapes, 

have the tendency of causing erosion which then contributes 

to sedimentation of water bodies, hence reduced water level or 

surface under waters. Furthermore, Lake Victoria has been 

previously found to be suffering from the invasive species 

called water hyacinth (Eichhornia crassipes) [37]. This might 

have been caused by pollution and agricultural practices 

around the lake which deliver nutrients from fertilizers and 

other chemicals into the lake water exacerbating 

eutrophication, thereby favoring growth of this invasive 

species. It has been previously established that the changing 

landscapes can contribute to the invasive species menace [57]. 

 

3.3 Accuracy assessment of the LULC classification 

 

The Landsat images used in this study were authenticated 

using a confusion (error) matrix which is summarized and 

presented in Tables 4 and 5. Confusion matrix is suitable for 

classification of satellite images [2]. In accuracy assessment 

reports, the overall accuracies and the overall Kappa statis-tics 

/ coefficient values are the most essential elements for testing 

classification accuracy since they represent a combination of 

all the aspects of the classification [43]. 

The results of the confusion matrix (Tables 4 and 5), show 

that the overall accuracy of the 1978, 1988, 1998, 2008 and 

2018 Landsat classification images were 86.00%, 88.00%, 

87.00%, 92.00% and 92.00%, respectively. For this study, all 

the imageries used for LULC classification registered an 

overall accuracy of over 86%. An overall accuracy of over 

80% is acceptable [58]. Moreover, overall classification 

accuracy in the range of between 84% and 85% is highly 

recommended [59]. From the foregoing, the LULC 

classification for this study was acceptable and hence reliable.  

The confusion matrix results shown in Tables 4 and 5 also 

indicate that the overall Kappa coefficient values of the 1978, 

1988, 1998, 2008 and 2018 Landsat classification images were 

0.78, 0.81, 0.77, 0.85 and 0.87, respectively. The study 

generally recorded values in the range of 0.77 – 0.81 for all the 

classification imageries. Based on the agreement rating criteria 

for Kappa statistics / coefficient [60], this classification 

showed strong agreement with the reference data. The Kappa 

statistics/coefficient essentially measures the accuracy or 

agreement between data obtained from classified imageries to 

the data obtained from the ground reference points. Of all the 

classified images, the lowest producer’s accuracy calculated 

for the six classes was 50% recorded by forest in 1978 image 

and bare land in 1998 image while the highest producer’s 

accuracy was the maximum 100% recorded by several LULC 

classes in various classification images. The producer’s 

accuracy basically represents the map ac-curacy from the point 

of view of the image trainer (producer) [61]. On the other hand, 

user’s accuracy calculated for the six classes in the 

classification images ranged from 50% (recorded by bare land 

in 1988 image) to 100% (also recorded by several LULC 

classes in various classification images). User’s accuracy 

represents the error of commission [61]. Finally, the Kappa 

statistics values for the six classes for all the classification 

images were generally in the range of 0.49 -1.00 showing high 

reliability of the classification data. 
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Table 4. Summarized confusion (error) matrix report for the classification maps for the years 1978, 1988 and 1998 

 

LULC Class 

1978 1988 1998 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Kappa 

statistic 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Kappa 

statistic 

Producer’s 

Accuracy 

(%) 

User’s 

Accuracy 

(%) 

Kappa 

statistic 

Agricultural 

Land 
96.1 83.1 0.65 95.9 87.0 0.75 98.3 86.6 0.67 

Water Bodies 77.8 91.3 0.88 82.8 88.9 0.84 84.2 80.0 0.75 

Grasslands & 

Vegetation 
80.0 88.9 0.88 100.0 100.0 1.00 60.0 100.0 1.00 

Bare Land 80.0 80.0 0.79 100.0 50.0 0.49 50.0 100.0 1.00 

Forests 50.0 100.0 1.00 66.7 100.0 1.00 60.0 100.0 1.00 

Built-up Areas 100.0 100.0 1.00 100.0 50.0 0.49 66.7 100.0 1.00 

Overall 

Accuracy (%) 
86.0 88.0 87.0 

Overall Kappa 

statistic 
0.78 0.81 0.77 

 

Table 5. Summarized confusion (error) matrix report for the classification maps for the years 2008 and 2018 

 

LULC Class 

2008 2018 

Producer’s 

Accuracy (%) 

User’s Accuracy 

(%) 

Kappa 

statistic 

Producer’s 

Accuracy (%) 

User’s Accuracy 

(%) 

Kappa 

statistic 

Agricultural Land 96.4 91.0 0.76 100.0 94.9 0.88 

Water Bodies 91.3 91.3 0.89 82.6 95.0 0.94 

Grasslands & 

Vegetation 
66.7 100.0 1.00 100.0 75.0 0.73 

Bare Land - - - 71.4 100.0 1.00 

Forests 66.7 100.0 1.00 66.7 80.0 0.79 

Built-up Areas 66.7 100.0 1.00 100.0 66.7 0.66 

Overall Accuracy 

(%) 
92.0 92.0 

Overall Kappa 

statistic 
0.85 0.87 

 

 

4. CONCLUSIONS 

 

Remote sensing provides a rapid and effective way of 

monitoring LULC to detect environmental changes. This is 

demonstrated by the detailed analysis of the LULC changes in 

the Lake Victoria watershed (Kenyan region) which was 

carried out in this study using high resolution classified 

Landsat satellite images. However, the use of remote sensing 

in monitoring is limited by the fact that it requires a certain 

level of skills to interpret the imagery and that its accuracy has 

to be verified using ground survey data. 

The study shows that Lake Victoria Basin has undergone 

considerable land use/land cover change from 1978-2018. The 

changing landscapes in the basin are characterized by 

conversion of natural environments to build environments and 

driven by human activities, urban populations and public 

policy decisions. The surface areas under built-ups areas, 

forests and agricultural land are increasing while areas under 

grasslands and vegetation, bare land and water bodies are 

diminishing in the KLVB. These point to a steadily urbanizing 

watershed. These changes are responsible for environmental 

degradation in the basin which includes increased pollution, 

reduced water quality, increased erosion and emergence of 

invasive species. Countering this degradation would require 

urgent measures aimed at diversification of livelihoods as well 

as environmental conservation in the basin area. To do this, the 

study recommends the establishment of a land use system that 

creates a balance between the ecological realm and sustainable 

development. The ecological conservation aspects need to be 

entwined with the land use/land cover management in order to 

protect biodiversity threatened by habitat modification. This 

can be accomplished by local land use planning which needs 

to allocate various crop growing, forestry and controlled 

grazing activities to suitable lands so as to control erosion, 

design the siting of various infrastructures such as roads, water 

supply and local markets to maximize soil and water 

conservation, and finally apply new technology such as remote 

sensing in carrying out restoration and management of 

degraded areas. 
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