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ABSTRACT. For the registration between the preoperative computed tomography (CT) image 

and the intraoperative patient space in surgical navigation technology, this paper puts 

forward a registration technique based on the principal component analysis (PCA) and the 

iterative closest point (ICP) algorithm, using two feature point clouds from the medical image 

space and the actual patient space. Firstly, the feature point cloud of the image space was 

obtained through the reconstruction, segmentation and interactive operation of the CT image, 

while the corresponding feature point cloud in the actual patient space was collected by the 

optical locator in real time. Secondly, the eigenvectors of the two sets of point clouds were 

obtained through the PCA for rough registration, and the optimal solution of the registration 

matrix was found by the ICP. Finally, the effect of the proposed registration method was 

verified against point cloud data (the surgical navigation accuracy was evaluated through an 

experiment on the vertebra model), and the impacts of the number of point clouds and 

Gaussian noise on the registration error were investigated in details. The results show that 

the proposed method is simple and capable of realizing high registration accuracy, and 

completed registration with a less-than-2mm error in our experiment; in addition, the 

registration accuracy was greatly affected by the number of point clouds and the noise of the 

photoelectric locator. This research provides a general solution for registration in surgical 

navigation and lays the theoretical basis for improving intraoperative registration accuracy. 

RÉSUMÉ. Pour l’enregistrement entre l’image tomodensitométrique préopératoire et l’espace 

patient peropératoire dans la technologie de navigation chirurgicale,cet article propose une 

technique d'enregistrement basée sur l'analyse en composantes principales (PCA) et 

l'algorithme de ‘iterative closest point’ (ICP), utilisant deux nuages de points caractéristiques 

de l'espace image médical et de l'espace patient réel.Tout d'abord, le nuage de point 

caractéristique de l'espace image a été obtenu par la reconstruction, la segmentation et le 
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fonctionnement interactif de l'image tomodensitométrique, tandis que le nuage de point 

caractéristique correspondant dans l'espace patient réel a été collecté en temps réel par le 

localisateur optique.Deuxièmement, les vecteurs propres des deux ensembles de nuages de 

points ont été obtenus par la PCA pour un enregistrement approximatif et la solution 

optimale de la matrice d’enregistrement a été trouvée par le ICP.Enfin, l’effet de la méthode 

d’enregistrement proposée a été vérifié par rapport aux données de nuages de points (la 

précision de la navigation chirurgicale a été évaluée au moyen d’une expérimentation 

réalisée sur le modèle de la vertèbre), et les impacts du nombre de nuages de points et du 

bruit gaussien sur l’erreur d’enregistrement ont été examinés en détail.Les résultats montrent 

que la méthode proposée est simple et capable d’atteindre une grande précision 

d’enregistrement et que l’enregistrement est terminé avec une erreur inférieure à 2 mm dans 

notre expérience; De plus, la précision de l'enregistrement dépendait beaucoup du nombre de 

nuages de points et du bruit du localisateur photoélectrique.Cette recherche fournit une 

solution générale pour l’enregistrement en navigation chirurgicale et pose les bases 

théoriques pour améliorer la précision de l’enregistrement peropératoire. 
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1. Introduction 

Surgical navigation, an integration of stereotactic technology, modern imaging 

technology and computer technology, assists doctors in performing well-planned 

minimally invasive surgeries. The success of surgical navigation hinges on the 

intraoperative registration between images, patients and devices, especially the 

spatial transformation between images and patients. In other words, the registration 

technique and accuracy between the space of computed tomography (CT) images 

and that of patients, i.e. the one-to-one correspondence between positions in CT 

model space and those in actual space, determines the robustness, feasibility and 

reliability of the entire surgical navigation system (Goerlach et al., 2016). 

The existing intraoperative registration methods are either marker-based 

registration or marker-free registration (Luebbers et al., 2008; Zheng et al., 2007). 

The marker-based registration (Marmulla et al., 2005; Schramm et al., 1999) 

calculates the transformation parameters using the coordinates of some special 

additional markers (e.g. metal balls). This method is easy to implement and 

conducive to automatic and efficient registration. The marker-free registration can 

be further divided into landmark matching and surface matching. 

The landmark matching method relies on geometric features (e.g. points, lines 

and faces) in the same part of the human body or the defined registration area. 

During the surgery, the spatial positions of the same geometric features on the 

patient are measured by the positioning device, and the transformational relationship 

is determined between the image coordinate system and spatial coordinate system of 

these features. Clinical surgeons often implant markers that can be recognized by an 

image scanning device on the patient’s spine or directly use anatomical landmarks. 
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At least 4 pairs of points should be selected respectively from the patient’s spine and 

the 3D image reconstructed by computer, such that the computer could find the 

correspondence between the two sets of coordinates by a specific algorithm. In 

general, the landmark matching method features simple implementation, accurate 

solution, precise registration (which is positively correlated with the pairs of points) 

and high stability. Nevertheless, this method sometimes fails to determine the exact 

correspondence via point registration when the anatomical landmarks are not clear, 

the additional marker coordinates are not accurately detected, or the artificial 

markers are difficult to add. 

The surface matching method is an extension of the iterative closest point (ICP) 

algorithm proposed by Besl and McKay (1992). By this method, the image 

coordinates of the feature surface are derived from the image, and then the spatial 

coordinates of the surface points are obtained by the positioning device; next, the 

optimal transformational relationship between the image coordinates and image 

coordinates is determined through the iterative minimization of the distance between 

the two sets of coordinates. Unlike point registration, the ICP does not require the 

exact correspondence between two point sets. Instead, the iteration starts on an 

initial correspondence and uses the registration between corresponding point sets: 

first, determine the set of the closest points corresponding to the set of measured 

points; then, determine the set of the closest points corresponding to that set by 

optimal analysis; finally, find an optimized correspondence and an optimized 

registration result. 

Despite the good registration effect on the point sets whose exact correspondence 

is difficult or impossible to obtain, the ICP is low in computing efficiency and prone 

to local minimum. So far, many scholars have improved the ICP algorithm and 

achieved certain results. To reduce the impact of mismatched points, Marani et al., 

(2016) assumed that the distance error of the matching points obeys the zero-mean 

normal distribution and uses the 3σ criterion to remove the mismatched points. 

Mohammadzade et al., (2013) viewed the points in the pair with the smallest 

Euclidean distance as the potential matching points, adopted the neighborhood 

points with the same normal vector as the matching points, and obtained the rigid 

body transformation matrix via singular value decomposition. Considering the 

sensitivity of the ICP to the initial iterative values, FitzGibbon (2001) replaced 

singular value decomposition with Levenberg Marquardt (LM) algorithm to 

optimize nonlinear error function, which significantly improves global convergence. 

To reduce the ICP’s computational cost, Jost & Heinz (2008) put forward a 

neighborhood search algorithm based on time complexity, realized the fast search 

for matching points, and improved the real-time performance of the ICP. 

Rusinkiewicz & Levoy, (2001) proposed a fast registration method based on point-

to-projection search for the nearest neighbors, which greatly improves the 

registration efficiency. Li & Gfiffiths, (2000) presented an iterative closest line 

(ICL) algorithm, in which the registration is realized through directly connecting 

points in two point clouds and finding corresponding line segments. 

To mitigate the sensitivity of the ICP to the initial iterative values, this paper 

introduces rough registration before accurate registration. Specifically, the initial 
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conditions were realized through principal component analysis (PCA) based on the 

feature points. After the rough registration, the accurate surface matching was 

conducted through iterative point method, aiming to minimize the rotation 

misalignment between the CT image space and the patient space and overcome the 

local convergence of the ICP. After introducing the principle of the registration 

algorithm in PCA-ICP rough and fine registrations, the author provided the 

registration method based on feature point cloud, and then verified the proposed 

intraoperative registration method by vertebra model. The registration results were 

subjected to an analysis of influencing factors. 

2. Materials and method 

2.1 Principle of ICP registration algorithm 

2.1.1. Corresponding point set registration algorithm 

The registration of corresponding point sets can be abstracted into the following 

mathematical problem. Let W={wi} and M={mi}(i=1,2,…n) be the coordinates of a 

point set in the patient coordinate system and the image coordinate system, 

respectively, where n is the number of registration points. The problem is to find the 

optimal transformation matrix TW-M such that the transformed coordinates TW-M(wi) 

are as close as possible to coordinates of mi. After determining the correspondence 

between the target point cloud and the reference point cloud, the optimal registration 

parameters between the two point sets should be determined by a proper 

optimization method. For the said mathematical problem, the commonly used 

optimization methods include the unit quaternion method introduced by Berthold 

and the singular value decomposition (SVD) method. 

Inspired by the unit quaternion theory, this paper relies on the least squares 

method to derive the optimal transformation matrix between the two coordinate 

systems. In the quaternion method, four rotation parameters are used to represent the 

rotation transformation and three translation parameters to represent the translation 

transformation in the rigid body transformation matrix TW-M. All these parameters 

are placed in a vector q=[qR, qT], where qR is the rotation matrix represented by the 

quaternion and qT is the translation vector represented by the three translation 

parameters. Then, the mathematical problem can be transformed into the search for 

the minimum value of the objective function f(q): 
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The mathematical problem is solved in the following steps: 

(1) Calculate the centroid w0 of point set W and that m0 of point set M: 
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(2) Calculate the covariance matrix C of the two point sets W and M: 
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(3) Construct the symmetric matrix E from the covariance matrix C: 
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Where tr(C) is the trace of the covariance matrix C, i.e. the sum of the diagonal 

elements of that matrix. 

(4) Calculate the eigenvalue and eigenvector of the symmetric matrix E: 

According to Berthold’s algorithm, the rotation matrix qR represented by the 

quaternion Q(q0, qx, qy, qz) minimizes the value of the objective function f(q), when 

the quaternion equals the eigenvector corresponding to the maximum eigenvalue of 

the symmetric matrix E. The quaternion-based solution to matrix qR can be 

expressed as: 
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According to the centroid w0 of point set W and that m0 of point set M, the 

translation matrix qT can be derived from qR: 

0 0T Rq m q w= −
                                                     (6) 

(5) Calculate the registration error: 

After obtaining the values of the rotation matrix qR and the translation matrix qT 

according to the following formula: 
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2.1.2. ICP registration algorithm 

The ICP algorithm is an advanced registration method based on free-form 

surface. It has a good effect on the registration of the point sets whose exact 

correspondence is difficult or impossible to obtain. For the registration between the 

CT image space and the patient space, the point set of the patient space and that of 

the image space were defined as W={wi, i=0,1,2,…n} and M={mj, j=0,1,2,…k}, 

respectively, with n and k being the number of registration points. There is not 

necessarily a one-to-one correspondence between the elements of W and those of M. 

In addition, it is assumed that k≥n because the number of elements in the two sets 

does not have to be the same. The registration is to obtain the rotation and 

translation transformation matrices of the two spaces. The ICP registration algorithm 

can be described as follows: 

(1) Read the two point sets to be registered: 

First, obtain a set of coordinate points W={wi, i=0,1,2,…n} from the patient 

coordinate system and a set of coordinate points M={mj, j=0,1,2,…k} from the 

image coordinate system; then, read the two point sets to be registered and treat 

them as the input data for ICP algorithm. 

(2) Calculate the closest points: 

Search for the closest point in the set M to each point in the set W by Delaunay 

triangulation, and collect all these points in the set M into a new set of coordinate 

points M’={mr’, r=0,1,2,…n}. 

(3) Calculate the transformation matrices: 

After determining the correspondence between the points, calculate the 

transformation relationship between the sets of coordinate points W and M’ by the 

unit quaternion optimization method such that 
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In the resulting two transformation matrices, R is a 33 rotation matrix, and T is 

a 31 translation matrix. 

(4) Update the set of coordinate points: 

Transform the coordinates of the set of coordinate points W by the 

transformation matrices R and T, forming the new set of coordinate points W’={wt’, 

t=0,1,2,…n}, where wt’=R(wt)+T. 

(5) Calculate the root mean square error: 

Calculate the root mean square error between W’ and M’ and terminate the 

iteration if the error is smaller than the pre-set limit . 
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2.1.3. PCA-ICP registration algorithm 

The optimal registration matrix was searched for through coarse registration and 

fine registration. 

(1) Coarse registration 

Considering the strict requirements of the iterative algorithm on the initial value, 

the coarse registration provides an iterative initial value near the global optimal 

solution, with the aim to prevent the local minimum and reduce the computing time. 

Here, the two sets of coordinate points W and M are regarded as the sample values 

of two 3D random vectors. Next, three eigenvectors were obtained for the two sets 

by the PCA (Huizinga et al., 2016), and four corresponding pairs of feature points 

were identified according to the respective centers of gravity. After that, the initial 

registration matrix T0 was derived through the previously mentioned registration 

method of the corresponding point set. 

(2) Fine registration 

The number of iterations, the number of elements in W, the number of elements 

in M and the pre-set accuracy are denoted as k, Nw, NM and , respectively. 

① Let k=0, M0=M and T0=T0. Find the points with the closest Euclidean distance 

to points mi
0 (i=1,2,…,NM) in M0 using the K.D. tree (Rajendra et al., 2014), forming 

a point set: 
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Set the initial residual: 
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② Repeat the above steps to compute the situation under 1k + : 
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Then, the mean residual can be obtained as: 
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③ Terminate the algorithm if |rk+1-rk| or k reaches the upper bound of the 

number of iterations. Then, Tk·Tk-1·…T0 is the final registration matrix. Otherwise, 

go to step ④. 

④ Find the registration matrix T in homogeneous coordinates by applying the 

quaternion method on the point sets corresponding to Mk+1 and Dk+1. Let Tk+1=T and 

go to step ②. 

2.2 Registration method based on feature point cloud 

For surgical navigation, the registration can be realized by the above algorithm 

after extracting the feature elements of the image space and the patient space. 

2.2.1. Establishment of registration coordinate system 

Registration is the basic problem in the implementation of surgical navigation. 

The core task is to find the relationship between the independent coordinate systems 

of different devices, unify them in a coordinate system, and realize the spatial 

transformation between them. 

 

Figure 1. Registration coordinate system for surgical navigation 

The established registration coordinate system for surgical navigation is shown 

in Figure 1. Specifically, a model coordinate system {W} was set up in the computer 

image space, a patient coordinate system {P} was built in the surgical part of the 
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patient, and an optical measurement coordinate system {M}was created on the 

optical positioner. The patient coordinate system {P} was determined by a reference 

rigid body. The rigid body is fixed and passive, and has its own coordinate system 

{S}. In addition, the robot end effector installed with the passive rigid body was 

defined as a tracking tool coordinate system {T}. The entire system takes the optical 

measurement coordinate system {M} as the absolute reference system, and relies on 

optical positioning technology to achieve spatial registration between the above 

coordinate systems. 

2.2.2. Acquisition of feature surface point cloud from the image space 

The preoperative CT image exists in the format of DICOM (Digital Imaging and 

Communications in Medicine). With self-defined geometric coordinates, the image 

is a 3D discrete gray field obtained through discrete sampling of continuous space. 

The 3D model of the spine was reconstructed using the Marching Cubes algorithm 

(Newman & Hong, 2006). This model is a surface rendering model, whose 

geometric description is based on the coordinate system defined before the scanning 

of CT data. After that, an interactive mouse point acquisition method was developed 

using the VTK visualization toolkit, in an attempt to obtain the coordinates of the 

3D point set in the feature area for model reconstruction. By this method, the 3D 

point cloud W on the feature area of the reconstructed model can be picked up 

interactively, completing the digital acquisition from the feature surface of the image 

space. 

2.2.3. Acquisition of feature surface point cloud from the patient space 

The feature surface point cloud from the patient space was acquired by the 

optical locator Polaris Spectra (rated positioning accuracy<0.25mm) developed by 

the Canadian company NDI. As a passive infrared optical stereo positioning system, 

Passive Polaris describes the attitude transformation parameters of coordinate 

transformation with the 3D coordinates and Euler angles of spatial points, as well as 

the 3D coordinates and quaternion information. Under optical tracking, the surgical 

entity and the probing tool were linked together to form a rigid body. Therefore, the 

posture of the surgical entity against the probing tool can be obtained by the spatial 

variation technique of optical tracking. Specifically, the probe was swiped on a pre-

set feature surface (corresponding to the feature surface on the reconstructed model) 

in the surgical part of the patient, such that the locator could record in real time the 

point cloud M in the actual workspace, completing the digital acquisition from the 

feature surface of the patient space. To obtain quality point cloud data, a certain 

threshold was set for the sampling distance threshold so that the point cloud obeys a 

relatively uniform distribution. Note that, in actual surgery, the area characterized by 

M only needs to be a subset of that characterized by W, owing to the limitations of 

the surgical operation area and the specific situation of intraoperative exposure. 
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2.2.4. Registration process 

As shown in Figure 2, the feature areas are not necessarily continuous after the 

feature elements were extracted from the two spaces. Using the proposed algorithm, 

the obvious anatomical feature points on the spine surface were adopted first for 

rough registration, producing the initial transformation matrix. On this basis, the 

registration accuracy was enhanced by the ICP to derive the registration matrices for 

W and M. Then, it is possible to transform the coordinates in the virtual image space 

of the computer with those in the surgical site, that is, achieving the registration 

purpose. The ICP ensures the convergence to the target value, for the distance 

between the corresponding points is reduced in each iteration. Moreover, the 

correspondence is improved through each search of the nearest point. The 

registration process for surgical navigation is shown in Figure 3 below. 

         

(a) 3 feature areas of the spine model         (b) Point cloud of each feature area 

Figure 2. Point clouds in feature areas 

 

Figure 3. Registration process for surgical navigation 

0

100

200

300

-50

0

50

100
-100

-50

0

50



Registration method for three-dimensional point cloud      67 

3. Verification and results analysis 

3.1 Verification of PCA-ICP registration algorithm 

The ICP algorithm has a strict requirement on the initial value. If the rotation and 

translation misalignments between the two point sets to be matched are too large, the 

accuracy and convergence speed of the algorithm will be inevitably influenced, 

adding to the probability of falling into the local optimum trap. To verify the effect 

of the PCA-ICP registration algorithm, a set of a given number of points was 

adopted and denoted as the reference point set (blue point cloud). Then, the 

reference point set underwent rotation and translation transformations, forming the 

target point set (red point cloud). In addition to the translation transformation, the 

target point set was rotated by 60° around the Z axis with respect to the reference 

point set. After that, the ICP algorithm and the PCA-ICP algorithm were adopted to 

register the reference point set to the target point set. The registration effects of the 

two algorithms are shown in Figures 4 and 5. It can be seen that the PCA-ICP 

algorithm outperformed the ICP algorithm in the registration effect when the two 

point sets had a large rotational misalignment. Only the PCA-ICP algorithm 

managed to eliminate this misalignment. 

 

(a) Pre-registration 

 

(b) Post-registration 

Figure 4. Registration effect of the ICP algorithm 
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(a) Pre-registration 

 

(b) Post-registration 

Figure 5. Registration effect of the PCA-ICP algorithm 

3.2. PCA-ICP registration based on feature point cloud  

The PCA-ICP algorithm based on feature point cloud was adopted for the 

registration experiment on a vertebra model. Firstly, the spine model was subjected 

to the CT scan at the layer spacing of 0.625mm and the pixel pitch of 0.439mm. 

Then, the 3D surface model of the spine model was established by the proposed 

interactive 3D reconstruction method. After that, three obvious features of the 

reconstruction model were selected as registration areas for the registration 

experiment (Figure 6). The interactive mouse point acquisition method was 

employed to collect the registration point cloud W (1,238 points) from the three 

feature areas as shown in Figure 6. The collected sample serves as the registration 

point set of the image space. Meanwhile, the point cloud M (1,377 points) was 

sampled by a probe in the patient space, which serves as the registration point set of 

that space. 
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Figure 6. Three feature areas 

Figure 7(a) shows the distribution of registration point sets of the image space 

and the patient space before the registration, while Figure 7(b) displays the 

registration effect of the ICP algorithm on the two spaces. It can be seen that the 

point set of the image space overlapped that of the patient space, indicating that the 

PCA-ICP algorithm is a feasible way to register between the two spaces in an 

efficient and accurate manner. 

    

(a) Pre-registration                             (b) Post-registration 

Figure 7. Registration results between image space and patient space 

3.3 Verification of the registration accuracy of the PCA-ICP algorithm 

Since metal balls can be easily recorded on CT images, five metal balls were 

pasted on the spine model to verify the registration accuracy. The 3D model of the 

spine model was generated through 3D reconstruction of the image (Figure 8). Then, 

the coordinates of the steel balls were calculated in the image space and the patient 

space. To eliminate the impact of random errors, ten groups of coordinate data were 

obtained for each steel ball, and the mean value was taken as the coordinates (Table 
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1). Let vPi be the coordinates of the i-th steel ball in the image space, TPi be the 

coordinates of the i-th steel ball after the rough and fine registrations by the ICP 

based on the feature point clouds, and dist(vPi, TPi) be the distance between these two 

types of coordinates (i=1,2,…5). Then, the mean registration error can be defined as: 

5

1

1
(dist( , ))

5

v T

i iEr P P= 
                                              (15) 

 

(a) Spine model 

 

(b) Reconstructed model 

Figure 8. Spine model with steel balls and its 3D reconstructed model 

Table 1. Registration errors for spine model 

No Δx (mm) Δy (mm) Δz (mm) ΔL (mm) 

1 1.21 1.3 0.8 1.52 

2 1.33 0.6 1.25 1.92 

3 -0.8 -1.3 0.9 1.77 

4 0.75 -0.82 1.4 1.78 

5 1.1 0.7 -1.2 1.77 

Ten ICP registration experiments were performed on the vertebra, and the mean 

registration error of each steel ball was calculated by equation (15). As shown in 

Table 1, the maximum average error was 1.75mm. The result falls in the allowable 

error range specified in previous references: Herring et al., (1998) pointed out that 
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the ICP-based surface matching can achieve a less-than-2mm registration error, due 

to the large curvature change on the skeletal surface of the human body; the ICP 

registration error usually falls below 2mm, as stated in References (Tamura et al., 

2005; Sugano et al., 2010). Through comparison, it is learned that the proposed 

algorithm can reliably and accurately complete the registration transformation 

between the image space and the patient space. 

3.4 Analysis of factors affecting registration error 

3.4.1. Impact of the number of registration points on registration error 

Four obvious anatomical points were selected by a probe from the spine surface. 

The coordinates of these points were obtained in the virtual space and the actual 

space, and the initial matrix was calculated based on these data. After that, a series 

of points were taken from the spine surface for ICP registration against the initial 

matrix. During the ICP registration, the collected points were distributed evenly on a 

vertebra. 5 points firstly were collected from the vertebra, and next 5 points were 

added each time as a registration point until 100 points are reached finally. The 

registration points were subjected to ICP registration separately and the registration 

errors were computed. Let vPi be the coordinates of the i-th steel ball in the virtual 

space, TPi be the coordinates of the i-th steel ball after the ICP registration, and 

dist(vPi, TPi) be the distance between these two types of coordinates. Then, the mean 

registration error can be defined as: 

                        1

1
( ( , ))

n
v T

i iRMS dist P P
n

= 
                                     (16) 

 

Figure 9. Registration error curve of the spine model 
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The registration error curve in Figure 9 shows that: the registration error 

exhibited a declining trend with the increase in the number of registration points; the 

registration effect was dampened if the target point set fails to cover many of the 

points in the source set; the initial error is positively correlated with the number of 

points needed for registration. In light of these, the target point set should be located 

in the actual sampling area as much as possible for actual registration, and the initial 

registration matrix should be as accurate as possible. 

3.4.2. Impact of random noise on registration error 

The point cloud M collected by binocular stereo vision method tends to have 

many noises and outliers. To evaluate the impact of the optical locator noise on the 

registration matrix, the positioning error of the optical locator was simulated by 

adding zero-mean Gaussian noise to the point cloud M before the registration. Let T 

and T+ΔT be the registration matrices obtained before and after the addition of 

noise, respectively, and W and M be the point sets from the image space and the 

patient space, respectively. Then, the impact of the added noise on the registration 

error can be calculated according to equation (17). The registration errors at 

different levels of Gaussian noise are illustrated in Figure 10. It can be seen that the 

registration error increased with the standard deviation of Gaussian noise, reached 

the maximum when the latter surpassed 0.5 and remained stable thereafter. 

                     
( ) ( )E T W T T W T W = − + • =  •

                              (17) 

 

Figure 10. Registration errors at different levels of Gaussian noise 

3.4.3. Analysis of error factors 

The above analysis reveals that the model registration experiment is affected by 

the following factors. 
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(1) Image scanning accuracy: 

The 3D reconstruction accuracy depends on the layer spacing and the resolution 

of the scanned image before the surgery. In general, the layer spacing is negatively 

correlated with the resolution and the 3D reconstruction accuracy. 

(2) Model reconstruction accuracy  

The closer there constructed surface model is to the real object, the more 

accurate the coordinates of the sampled registration points. The model 

reconstruction may be affected by the iso-surface extraction accuracy of the 

Marching Cubes (MC) algorithm. The reconstruction accuracy is also influenced by 

the ambiguity of medical images, as it is difficult to set an accurate threshold due to 

the blurry boundaries between different tissues.  

(3) Accuracy of the registration algorithm 

The registration accuracy hinges on the selection of registration point sets from 

the image space and the patient space. If two point sets are from the same data 

source, the registration will be relatively accurate. By contrast, the registration will 

be erroneous if the two point sets are only partially overlapped. In addition, the 

registration accuracy is higher at a greater number of registration points, but more 

time will be consumed in this case. 

(4) Accuracy of the positioner and the positioning probe 

The precision of the positioner is the key to the overall accuracy of the 

registration system. The registration accuracy may be affected by the existence of 

interference sources, partial blocking, damage or contamination of the tracking 

marks, and the improper use of the tools. There is a certain error in the calibration of 

the positioning probe, which may be introduced to the registration system during the 

point acquisition by the probe. 

(5) Random error 

Registration error may arise due to human factors, which are unpredictable and 

random in nature. 

4. Conclusions 

This paper proposes a 3D point cloud registration method based on the PCA-ICP 

algorithm. The method is simple and capable of realizing high registration accuracy. 

In our experiment on the spine model, the proposed method completed registration 

with a less-than-2mm error. Considering the significant impacts of the number of 

point clouds and the noise of the photoelectric locator on the registration accuracy, 

the author selected a proper number of point clouds, adopted suitable collection 

methods, and prevented the inclusion of positioning noise. This research provides a 

general solution for registration in surgical navigation and lays the theoretical basis 

for improving intraoperative registration accuracy. 
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