
  

  

Effect of Chemical Reaction and Thermo-Diffusion in an Electrically Conducting Walters’ B 

Fluid over a Vertical Stretching Surface 

 

 

B.J. Akinbo1*, B.I. Olajuwon1, I.A. Osinuga1, S.I. Kuye2 

 

 

1 Department of Mathematics, Federal University of Agriculture, Abeokuta, Nigeria  
2 Department of Mechanical Engineering, Federal University of Agriculture, Abeokuta, Nigeria  

 

Corresponding Author Email: akinbomaths@gmail.com 

 

https://doi.org/10.18280/ti-ijes.650106 

  

ABSTRACT 

   

Received: 2 November 2020 

Accepted: 16 January 2021 

 In this article, the significance of chemical reaction and thermo-diffusion in Walters’ B fluid 

is examined with medium porosity under the influence of non-uniform heat 

generation\absorption. The nonlinear ordinary differential equations describing the flow are 

obtained via similarity variables and tackled by Homotopy Analysis Method. The results 

show among others that involvement of chemical reaction contributes to the shrinking of 

concentration buoyancy effect while dimensionless temperature overshoot with large values 

of convective heat parameter and heat generation\absorption which enable thermal potency 

to gain entrance to the quiescent-fluid, indicating that the two parameters can be used for 

drying of the components.  
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1. INTRODUCTION 

 

The boundary layer transport over a vertical surface is an 

essential type of flow encountered in many engineering 

processes (See Vajravelu and Hadjinicolaou [1]) due to its 

daily applications in various sectors like boundary layer 

resistors in aerodynamics and fabrication of adhesive tapes 

e.t.c. The modeling of Newtonian fluid which has a perfect 

agreement with Navier Stoke equation has plays a significant 

role in modeling of several manufacturing process. However, 

the recent development in Science and Technology brings 

about the concept of Non-Newtonian fluid which also found 

to be an integral part of fluid mechanics to overcome low 

thermal conductivity of polymeric liquid among others. Hayat 

et al. [2] reported the opposite behaviors of temperature-field 

and concentration-field for thermal Biot number on convective 

flow of Magnetohydrodynamic Walters-B nanlfluid with 

variable thickness via a nonlinear stretching sheet. Sharma et 

al. [3] investigated stability of Walters’ (Model B′) type of 

stratified elastico-viscous fluid with horizontal magnetic 

strength and rotation in medium porosity. On the contrary to 

Newtonian type of fluids, the system is observed to be unstable 

on the account of stable stratification via small values assigned 

for permeability. Sharma and Rana [4] studied thermal 

instability through elastico-viscous-Walters' (Model B’) via 

rotation in medium porosity and variable gravity and pinpoint 

that Walters’ (model B’) acts like Newtonian model for 

stationary convection case. Similar case is reported through 

the two rotating viscoelastic superposed (Walters B') fluids by 

Kumar and Singh [5] and Makanda et al. [6] worked on free 

convection in the flow of viscoelastic model through a cone in 

a medium porosity with impact of viscous dissipation. Prakash 

et al. [7] examined Magnetohydrodynamic dusty viscoelastic 

(Walters’ liquid model-B) stratified type of fluid through a 

medium porosity with variable viscosity. Joneidi et al. [8] used 

Homotopy Analysis Method to investigate Walters’ B model 

fluid in a vertical channel via porous wall. Other researchers 

like [9-15]. 

Triggered by the previous effort in the literature with very 

little attentions on Walters’ B fluid under the influence of the 

convective boundary condition, this work is set to investigate 

the influence of chemical reaction and thermo-diffusion in an 

electrically conducting Walters’ B fluid over a vertical 

stretching-sheet, embedded in a porous medium with 

convective boundary condition. Walters’ B fluid is a subclass 

of non-Newtonian type of fluid that discloses the behaviors of 

various polymeric liquids encountered in chemical 

engineering and biotechnology among others 

 

 

2. MATHEMATICAL FORMULATION 

 

We consider a steady flow of an incompressible Walters’ B 

fluid over a vertical layer. The heat transfer analysis is 

executed with non-uniform heat generation\absorption while 

the mass transfer is considered with reaction rate and thermo 

diffusion effect. The layer wall is considered constant with 

temperature (and Concentration)  𝑇 and 𝐶  higher than the 

ambient temperature 𝑇∞(Concentration 𝐶∞)  respectively. 

We assumed that the plated is heated by convection at 

temperature 𝑇𝑓 which provides heat transfer coefficient ℎ𝑓. A 

magnetic field 𝐵0 of uniform strength is applied in y-direction. 

The magnetic reynold number is assumed to be very small, and 

so, the induced magnetic parameter is not taken account. The 

Joule heating effect is as well neglected as it really very small 

to slow the motion of free convection. 𝑥 − 𝑎𝑥𝑖𝑠  is taken 

parallel to the direction of the flow and 𝑦 − 𝑎𝑥𝑖𝑠 is normal to 

it (see Figure 1). The stretching sheet is moving with a velocity 

𝑢w(𝑥) = 𝑎𝑥 and 𝑎 > 0. 

Adopting the assumption expressed above, the two-

dimensional Walters’ B model equation is given as (Mihra et 

al. [16]) 
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Figure 1. Flow configuration 
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with a suitable boundary condition slated as follows 𝑢(𝑥, 0) =
𝑢w(𝑥) = 𝑎𝑥, 𝑣(𝑥, 0) = 0, 

 

−𝑘
𝜕𝑇(𝑥, 0)

𝜕𝑦
= ℎ𝑓[𝑇𝑓 − 𝑇(𝑥, 0)], C(𝑥, 0) = 𝐶w (5) 

 

𝑈(𝑥,∞) = 0, 𝑇(𝑥,∞) = 𝑇∞, 𝐶(𝑥,∞) = 𝐶∞ (6) 

 

where 𝑢  and 𝑣  in the expression above, respectively denote 

the velocity components in 𝑥 and 𝑦 directions, 𝑇𝑚 is the mean 

fluid temperature,  𝑄0  is the non-uniform heat 

generation\absorption defined as 𝑄0 =
𝑘𝑢w(𝑥)

𝜌𝐶𝑝𝑥ѵ
[𝐴(𝑇 − 𝑇∞)𝑢 +

(𝑇 − 𝑇∞)𝐵],  𝛽𝑇 represents thermal expansion coefficient, 𝐶𝑝 

is the specific heat at constant pressure, while ѵ  denotes 

kinematic viscosity,  𝛽𝑐  body forth concentration expansion 

coefficient, 𝐷𝑚  is the mass diffusivity, 𝛼 represents thermal 

diffusivity while 𝜎  is the fluid electrical conductivity, 𝑔 

denotes acceleration due to gravity while 𝑟 typifies chemical 

rate coefficient and 𝜌 is the density.  

On introducing the stream function 𝑢 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −

𝜕𝜓

𝜕𝑥
, 

the continuity equation (1) is automatically satisfied (Hashim 

et al. [17] and Narender et al. [18]). Applying the similarity 

variables defined by 

 

η = 𝑦√
𝑎

ѵ
 , 𝜓 = 𝑥√𝑎ѵ𝑓(η),

𝜃(η) =
𝑇 − 𝑇∞

𝑇𝑓 − 𝑇∞

,

∅(η) =
𝐶 − 𝐶∞

𝐶𝑤 − 𝐶∞

 

(7) 

On equations (2-6), where 𝜂 represents the independent 

similarity variable 𝜃(η) and ∅(η), denote the temperature and 

concentration respectively, give the dimensionless Momentum, 

Energy and Concentration equations as follows 

 

𝑑3𝑓
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(8) 
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𝑑2∅
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𝑑2𝜃
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with 
 

𝑓(𝜂 = 0) = 0,
𝑑𝑓(𝜂 = 0)

d𝜂
= 1,

𝑑𝜃(𝜂 = 0)

d𝜂
= 𝐵𝑖[𝜃(𝜂 = 0) − 1],

∅(𝜂 = 0) = 1 

(11) 

 
𝜕𝑓(𝜂 → ∞)

∂𝜂
= 0, 𝜃(𝜂 → ∞) = 0 = ∅(𝜂 → ∞) (12) 

 

where 𝑅 =
𝑟

𝑎
 body-forth rate of chemical reaction, 𝑀𝑛 =

𝜎𝐵0
2

𝜌𝑎
 

is the magnetic field, 𝛽 =
𝑎𝑘0

ѵ
 is the Weissenberg Number, 

𝑃𝑠 =
ѵ

𝐾𝑎
 stands for porosity parameter, 𝜆𝑇 =

𝐺𝑟𝑥

(𝑅𝑒𝑥)2
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thermal buoyancy parameter, while 𝜆𝑀 =
𝐺𝑐

(𝑅𝑒𝑥)2
 body forth 

mass buoyancy parameter, 𝐺𝑟𝑥 =
𝑔𝛽𝑇(𝑇−𝑇∞)𝑥3

ѵ2  represents 

thermal Grashof Number while 𝐺𝑐𝑥 =
𝑔𝛽𝐶(𝑇−𝑇∞)𝑥3

ѵ2  denotes 

solutal Grashof Number, 𝑅𝑒𝑥 =
𝑢(𝑥)

ѵ
 is the Relyold Number, 

𝑃𝑟 =
ѵ𝜌𝐶𝑝

𝑘
 is the prandtl number, 𝑆𝑐 =

ѵ

𝐷𝑚
 is the Schmidtl 

number, 𝑆𝑟 =
𝐾𝑇(𝑇𝑓−𝑇∞)

𝑇𝑚(𝐶𝑤−𝐶∞)
 is the Soret number, and 𝐵𝑖 =

ℎ𝑓

𝑘
√

ѵ

𝑎
 

connotes convective heat parameter. Owing to the engineering 

application of the study, the expression for skin friction 

coefficient, Local Nusselt number, and Local Sherwood 

number are respectively considered as 
 

𝑅𝑒𝑥

1
2𝐶𝑓 = (1 − 𝛽)𝑓′′(0),

𝑅𝑒𝑥

−
1
2 𝑁𝑢 = −𝜃′(0), 𝑅𝑒𝑥

−
1
2𝑆ℎ

= −∅′(0) 

(13) 

 

Following Akinbo and Olajuwon [19], 𝜏𝑤 act as shear stress 

on the plate, 𝑞𝑤 body forth the surface while 𝑞𝑚 expresses the 

surface mass. 
 

 

3. HOMOTOPY ANALYSIS METHOD (HAM) 
 

In solving nonlinear differential equation, many methods 
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can be used, such as shooting techniques with Rung-kutta 

method, differential transformation method and so on. 

Homotopy Analysis Method is chosen over others, having 

standout as most efficient method in solving higher order 

nonlinear differential equations with both small and far field 

boundary conditions. In line with Hayat et’ al. [2], the initial 

guesses, which satisfies (11) and (12) are given by: 

 

𝑓0(𝜂) = 1 − 𝑒𝑥𝑝(−𝜂),

𝜃0(𝜂) =
𝐵𝑖 𝑒𝑥𝑝(−𝜂)

(1 + 𝐵𝑖)
 , ∅0(𝜂)

= 𝑒𝑥𝑝(−𝜂) 

(14) 

 

and the auxiliary linear operations 𝐿𝑓 , 𝐿𝜃 , and 𝐿∅  which are 

respectively taken as: 

 

𝐿𝑓[𝑓(𝜂; 𝑟)] =
𝜕3𝑓(𝜂; 𝑟)

𝜕𝜂3
−

𝜕𝑓(𝜂; 𝑟)

∂𝜂
, 𝐿𝜃[𝜃(𝜂; 𝑟)]

=
𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2
− 𝜃(𝜂; 𝑟) 𝐿∅[(𝜂; 𝑟)]

=
𝜕2∅(𝜂; 𝑟)

𝜕𝜂2
− ∅(𝜂; 𝑟) 

(15) 

 

It agrees with the following properties: 

 

𝐿𝑓[𝐶1 + 𝐶2 𝑒𝑥𝑝(𝜂) + 𝐶3 𝑒𝑥𝑝(−𝜂)] = 0,

𝐿𝜃[𝐶4 + 𝐶5 𝑒𝑥𝑝(−𝜂)]
= 0 𝐿∅[𝐶6 + 𝐶7 𝑒𝑥𝑝(−𝜂)] = 0 

(16) 

 

where 𝐶1, 𝐶2, . . . , 𝐶7 denote constants. 

 

3.1 Zero-order deformation problem 

 

(1 − 𝑟)𝐿𝑓[𝑓(𝜂; 𝑟) − 𝑓0(𝜂)]

= 𝑟ℏ𝑓𝐻𝑓(𝜂)𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(17) 

 

(1 − 𝑟)𝐿𝜃[𝑓(𝜂; 𝑟) − 𝜃0(𝜂)]
=  𝑟ℏ𝜃𝐻𝜃(𝜂)𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)] 

(18) 

 

(1 − 𝑟)𝐿∅[𝑓(𝜂; 𝑟) − ∅0(𝜂)]

=  𝑟ℏ∅𝐻∅(𝜂)𝑁∅[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)] 
(19) 

 

here ℏ ≠ 0  and 𝐻 ≠ 0  represent the auxiliary function and 

𝑟 ∈ [0,1] is the embedded parameter, satisfying the following 

boundary conditions. 

 

𝑓(𝜂 = 0; 𝑟) = 0,
𝜕𝑓(𝜂; 𝑟)

∂𝜂
│𝜂=0 = 1,

𝜕𝜃(𝜂; 𝑟)

∂𝜂
│𝜂=0

= 𝐵𝑖[𝜃(𝜂 = 0; 𝑟) − 1],
∅(𝜂 = 0; 𝑟) = 1 

(20) 

 
𝜕𝑓(𝜂; 𝑟)

∂𝜂
│𝜂→∞ = 0,

𝜃(𝜂 → ∞; 𝑟) = 0 = ∅(𝜂 → ∞; 𝑟) 

(21) 

 

where the 𝑁𝑓 , 𝑁𝜃 , and 𝑁∅  denote the nonlinear operator, 

expressed as  

 

𝜕3𝑓(𝜂; 𝑟)

𝜕𝜂3
+ 𝑓(𝜂; 𝑟)

𝜕2𝑓(𝜂; 𝑟)

𝜕𝜂2
− (

𝜕𝑓(𝜂; 𝑟)

∂𝜂
)

2

− (𝑀𝑛 + 𝑃𝑠)
𝜕𝑓(𝜂; 𝑟)

∂𝜂
+ 𝜆𝑇𝜃(𝜂; 𝑟) + 𝜆𝑚∅(𝜂; 𝑟)

− 𝛽

[
 
 
 
 2

𝜕𝑓(𝜂; 𝑟)

∂𝜂

𝜕2𝑓(𝜂; 𝑟)

𝜕𝜂2

−𝑓(𝜂; 𝑟)
𝜕4𝑓(𝜂; 𝑟)

𝜕𝜂4
− (

𝜕2𝑓(𝜂; 𝑟)

𝜕𝜂2
)

2

]
 
 
 
 

= 0 

(22) 

 

𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2
+ 𝑃𝑟

𝜕𝜃(𝜂; 𝑟)

∂𝜂
𝑓(𝜂; 𝑟) +  𝐴

𝜕𝑓(𝜂; 𝑟)

∂𝜂
 

+ 𝐵𝜃(𝜂; 𝑟) = 0 

(23) 

 

𝜕2∅(𝜂; 𝑟)

𝜕𝜂2
+ 𝑆𝑐𝑓(𝜂; 𝑟)

𝜕∅(𝜂; 𝑟)

∂𝜂
+ 𝑆𝑟

𝜕2𝜃(𝜂; 𝑟)

𝜕𝜂2
 

− 𝑅𝑆𝑐∅(𝜂; 𝑟) = 0 

(24) 

 

Applying 𝑟 = 0  and 𝑟 = 1 , we respectively have the 

following solution from equation (17)-(19). 

 

𝐿𝑓[𝑓(𝜂; 0) − 𝑓0(𝜂)] = 0,

𝐿𝜃[𝜃(𝜂; 0) − 𝜃0(𝜂)]
= 0,           𝐿∅[∅(𝜂; 0) − ∅0(𝜂)]

= 0 

(25) 

 

𝑓(𝜂; 0) = 𝑓0(𝜂), 𝜃(𝜂; 0) = 𝜃0(𝜂),
∅(𝜂; 0) = ∅0(𝜂) 

(26) 

 

with 

 

𝑓(𝜂 = 0; 0) = 0,
𝜕𝑓(𝜂 = 0; 0)

∂𝜂
= 1,

𝜕𝜃(𝜂 = 0; 0)

∂𝜂
= 𝐵𝑖[𝜃(𝜂 = 0; 0) − 1],
∅(𝜂 = 0; 0) = 1 

(27) 

 
𝜕𝑓(𝜂 → ∞; 0)

∂𝜂
= 0, 𝜃(𝜂 → ∞; 0) = 0

= ∅(𝜂 → ∞; 0) 

(28) 

 

0 = 𝑁𝑓[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟), ∅(𝜂; 𝑟)], 0

= 𝑁𝜃[𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟)],
0 = 𝑁∅[𝑓(𝜂; 𝑟), ∅(𝜂; 𝑟)] 

(29) 

 

But ℏ𝑓 , 𝐻𝑓(𝜂) ≠ 0, ℏ𝜃𝐻𝜃(𝜂) ≠ 0 and ℏ∅𝐻∅(𝜂) ≠ 0 

 

𝑓(𝜂; 1) = 𝑓(𝜂), 𝜃(𝜂; 1) = 𝜃(𝜂), ∅(𝜂; 1) = ∅(𝜂) (30) 

 

with 

 

𝑓(𝜂 = 0; 1) = 0,
𝜕𝑓(𝜂 = 0; 1)

∂𝜂

= 1,
𝜕𝜃(𝜂 = 0; 1)

∂𝜂
= 𝐵𝑖[𝜃(𝜂 = 0; 𝑟) − 1], ∅(𝜂
= 0; 1) = 1 

(31) 
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𝜕𝑓(𝜂 → ∞;1)

∂𝜂
= 0, 𝜃(𝜂 → ∞; 1) = 0 

= ∅(𝜂 → ∞;1) 

(32) 

 

When 𝑟 rise from zero to one, the function 𝑓(𝜂; 𝑟), 𝜃(𝜂; 𝑟) 

and  ∅(𝜂; 𝑟)  tends to  𝑓0(𝜂) , 𝜃0(𝜂)  and ∅0(𝜂)  to be 

solutions 𝑓(𝜂), 𝜃(𝜂) and ∅(𝜂). By the application of Taylor 

series, 

 

𝑓(𝜂; 𝑟) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 ,

𝜃(𝜂; 𝑟)

= 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)𝑟𝑚

∞

𝑚=1

    ∅(𝜂; 𝑟)

= ∅0(𝜂) + ∑ ∅𝑚(𝜂)𝑟𝑚

∞

𝑚=1

 

(33) 

 

where 

 

𝑓𝑚(𝜂) =
1

𝑚!

𝜕𝑚𝑓(𝜂; 𝑟)

𝜕𝜂𝑚
,

𝜃𝑚(𝜂)

=
1

𝑚!

𝜕𝑚𝜃(𝜂; 𝑟)

𝜕𝜃𝑚
, and ∅𝑚(𝜂)

=
1

𝑚!

𝜕𝑚∅(𝜂; 𝑟)

𝜕∅𝑚
 

 

 

The convergence of the series (33) is subject to the auxiliary 

parameter ℏ. Assuming ℏ is chosen such that the series (33) 

converge at 𝑟 = 1, we have 

 

𝑓(𝜂) = 𝑓0(𝜂) + ∑ 𝑓𝑚(𝜂)

∞

𝑚=1

,

𝜃(𝜂) = 𝜃0(𝜂) + ∑ 𝜃𝑚(𝜂)

∞

𝑚=1

,

∅(𝜂) = ∅0(𝜂) + ∑ ∅𝑚(𝜂)

∞

𝑚=1

 

(34) 

 

The mth-order deformation are expressed as 

 

𝐿𝑓[𝑓𝑚(𝜂) − 𝜒𝑚𝑓𝑚−1(𝜂)]

= ℏ𝑅𝑚
𝑓 (𝜂), 𝐿𝜃[𝜃𝑚(𝜂)

− 𝜒𝑚𝜃𝑚−1(𝜂)]

= ℏ𝑅𝑚
𝜃 (𝜂) 𝐿∅[∅𝑚(𝜂)

− 𝜒𝑚∅𝑚−1(𝜂)] = ℏ𝑅𝑚
∅ (𝜂) 

(35) 

 

𝑓𝑚(𝜂 = 0; 𝑟) = 0,
𝜕𝑓𝑚(𝜂 = 0; 𝑟)

∂𝜂
= 0,

𝜕𝜃𝑚(𝜂 = 0; 𝑟)

∂𝜂
= 𝐵𝑖[𝜃𝑚(𝜂 = 0; 𝑟)],                ∅𝑚(𝜂
= 0; 𝑟) = 0 

(36) 

 
𝜕𝑓𝑚(𝜂 → ∞; 𝑟)

∂𝜂
= 0,

𝜃𝑚(𝜂 → ∞; 𝑟) = 0 
= ∅𝑚(𝜂 → ∞; 𝑟) 

(37) 

Where, 

 

𝑅𝑚
𝑓 (𝜂)

=
𝑑3𝑓𝑚−1(𝜂)

𝑑𝜂3
− (𝑀𝑛 + 𝑃𝑠)

𝑑𝑓𝑚−1(𝜂)

𝑑𝜂

+ ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2
 

− ∑
𝑑𝑓𝑛(𝜂)

𝑑𝜂

𝑚−1

𝑛=0

𝑑𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂

− 𝛽

[
 
 
 
 
 
 
 
 
2 ∑

𝑑𝑓𝑛(𝜂)

𝑑𝜂

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2
−

∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑4𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂4
−

∑
𝑑2𝑓𝑛(𝜂)

𝑑𝜂2

𝑚−1

𝑛=0

𝑑2𝑓𝑚−1−𝑛(𝜂)

𝑑𝜂2
]
 
 
 
 
 
 
 
 

+   𝜆𝑇𝜃𝑚−1(𝜂)

+ 𝜆𝑀 ∅𝑚−1(𝜂) 

(38) 

 

𝑅𝑚
𝜃 (𝜂) =

𝑑2𝜃𝑚−1(𝜂)

𝑑𝜂2
+ 𝑃𝑟 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑𝜃𝑚−1−𝑛(𝜂)

𝑑𝜂

+  𝐴
𝑑𝑓𝑚−1(𝜂)

𝑑𝜂
+ 𝑄𝜃𝑚−1 

(39) 

 

𝑅𝑚
∅ (𝜂) =

𝑑2∅𝑚−1(𝜂)

𝑑𝜂2
+ 𝑆𝑐 ∑ 𝑓𝑛(𝜂)

𝑚−1

𝑛=0

𝑑∅𝑚−1−𝑛(𝜂)

𝑑𝜂

+  𝑆𝑟
𝑑2𝜃𝑚−1(𝜂)

𝑑𝜂2
− 𝑅𝑆𝑐∅𝑚−1(𝜂) 

(40) 

 

and  𝜒𝑚 = 0  𝑓𝑜𝑟  𝑚 ≤ 1, 𝜒𝑚 = 1  𝑓𝑜𝑟  𝑚 > 1 

 

Therefore, the general solutions of equation (35) are 

 

𝑓𝑚(𝜂) = 𝑓𝑚
∗(𝜂) + 𝐶1 + 𝐶2 𝑒𝑥𝑝(−𝜂) + 𝐶3 𝑒𝑥𝑝(𝜂) (41) 

 

𝜃𝑚(𝜂) = 𝜃𝑚
∗ (𝜂) + 𝐶4 + 𝐶5 𝑒𝑥𝑝(𝜂) (42) 

 

∅𝑚(𝜂) = ∅𝑚
∗ (𝜂) + 𝐶6 + 𝐶7 𝑒𝑥𝑝(𝜂) (43) 

 

3.2 Convergence of the HAM solution 

 

 
 

Figure 2. ℏ𝑓 , ℏ𝜃 , ℏ∅-curves for 𝑓′′(0), 𝜃′(0) and ∅′(0) 

respectively 
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Following Liao [20], Hayat et al. [21] and Akinbo and 

Olajuwon [19, 22] suggestions, the non-zero auxiliary 

parameters ℏ𝑓, ℏ𝜃 and ℏ∅ play a pivotal role in controlling the 

convergence region of the series solution. On introducing 𝐴 =
0.01, 𝐵 = 0.01, 𝛽 = 0.1, 𝑀𝑛 = 1, 𝑃𝑠 = 1, 𝜆𝑇 = 0.1, 𝜆𝑀 =
0.1, 𝑃𝑟 = 0.72, 𝑆𝑐 = 0.62, 𝑆𝑟 = 0.1, 𝐵𝑖 = 0.1 and 𝑅 = 0.1, 

we have the admissible values of ℏ𝑓 , ℏ𝜃  and ℏ∅  which are 

presented at a region where ℏ − curve becomes parallel, such 
as −1.8 ≤ ℏ𝑓 ≤ −0.4,  −1.5 ≤ ℏ𝜃 ≤ −0.5  and −2.1 ≤ ℏ∅ ≤ −0.4 

(See Figure (2)). 

 

 

4. DISCUSSION OF RESULTS 

 

Table 1. Computational results for the Skin-friction coefficient, Local Nusselt number and Local Sherwood number/Validation 

with Galerkin Weighted Residual Method (GWRM) 

 
Parameters Results with HAM Results with GWRM 

𝛽 𝑀𝑛 𝜆𝑇 𝜆𝑀 𝑃𝑟 𝑆𝑐 𝐵𝑖 𝑆𝑟 𝑅 𝑃𝑠 𝐴 𝐵 𝑅𝑒𝑥

1
2𝐶𝑓 𝑅𝑒𝑥

−
1
2 𝑁𝑢 𝑅𝑒𝑥

−
1
2𝑆ℎ 𝑅𝑒𝑥

1
2𝐶𝑓 𝑅𝑒𝑥

−
1
2 𝑁𝑢 𝑅𝑒𝑥

−
1
2𝑆ℎ 

0.1 1.0 0.1 0.1  0.72 0.62  0.1  0.1  0.1  1.0 0.01  0.01 
0.3  
0.5  
     0.1  
     2.0  
         1.0  
         2.0  

             1.0  
             2.0 
                 1.0  

                3.0  
                     0.24 
                     0.78 
                            0.5 
                            1.0 
                                 1.0 
                                 1.5 
                                     0.5 
                                     1.0 
                                          0.1 
                                          2.0 

                                               0.05 
                                               0.07 

                                                      0.05 
                                                      0.07 

−1.58886 

−1.40790 

−1.19857 

−1.31333 

−1.84864 

−1.50084 

−1.41481 

−1.21416 

−0.81233 

−1.59138 

−1.59655 

−1.58441 

−1.59032 

−1.57261 

−1.56599 

−1.58802 

−1.58749 

−1.59327 

−1.59619 

−1.31333 

−1.84864 

−1.58630 

−1.58500 

−1.58593 

−1.58363 

0.07589 

0.07487 

0.07409 

0.07772 

0.07452 

0.07752 

0.07866 

0.07958 

0.08149 

0.08053 

0.09050 

0.07613 

0.07581 

0.19931 

0.25120 

0.07628 

0.07638 

0.07565 

0.07553 

0.07772 

0.07452 

0.07080 

0.06823 

0.07031 

0.06584 

0.41664 

0.40112 

0.38153 

0.44286 

0.39681 

0.43231 

0.44580 

0.47460 

0.51920 

0.41522 

0.41215 

0.23366 

0.48398 

0.41257 

0.41079 

0.37734 

0.35542 

0.67247 

0.88396 

0.44286 

0.39681 

0.41821 

0.41900 

0.41823 

0.41943 

−1.58879 

−1.40786 

−1.19855 

−1.31331 

−1.84862 

−1.50081 

−1.41479 

−1.21415 

−0.81231 

−1.59135 

−1.59654 

−1.58440 

−1.59031 

−1.57260 

−1.56597 

−1.58801 

−1.58747 

−1.59325 

−1.59617 

−1.31332 

−1.84861 

−1.58628 

−1.58500 

−1.58591 

−1.58363 

0.07587 

0.07485 

0.07407 

0.07770 

0.07450 

0.07750 

0.07859 

0.07956 

0.08147 

0.08051 

0.09048 

0.07611 

0.07580 

0.19930 

0.25120 

0.07625 

0.07636 

0.07564 

0.07551 

0.07771 

0.07451 

0.07079 

0.06821 

0.07030 

0.06584 

0.41662 

0.40110 

0.38151 

0.44284 

0.39680 

0.43230 

0.44578 

0.47459 

0.51918 

0.41520 

0.41213 

0.23364 

0.48396 

0.41255 

0.41077 

0.37732 

0.35540 

0.67245 

0.88394 

0.44283 

0.39680 

0.41820 

0.41900 

0.41821 

0.41943 

  

Table 2. The convergence of iterations 

 
Order of 

Approximation 
𝑓′′(0) −𝜃′(0) −∅′(0) 

10 

12 
14 
16 
18 
20 
22 
24 
26 

−1.7663 

−1.7660 

−1.7658 

−1.7656 

−1.7655 

−1.7654 
− 1.7653  
− 1.7653 

−1.7653 

0.0772 

0.0768 

0.0764 

0.0762 

0.0760 

0.0759 

0.0758 

0.0757 

0.0757 

0.4206 

0.4188 

0.4177 

0.4171 

0.4168 

0.4166 

0.4165 

0.4165 

0.4165 

 

 
 

Figure 3. Behavours of 𝑀𝑛 on Velocity 𝑓′(𝜂) 

In this section, the behaviors of various parameters 

encountered are discussed by holding 𝐴 = 0.01 , 𝐵 = 0.01 , 

𝛽 = 0.1, 𝑀𝑛 = 1 , 𝑃𝑠 = 1, 𝜆𝑇 = 0.1, 𝜆𝑀 = 0.1, 𝑃𝑟 = 0.72, 

𝑆𝑐 = 0.62 , 𝑆𝑟 = 0.1 , 𝐵𝑖 = 0.1  and 𝑅 = 0.1 , constant for 

each varying parameter.  

 

 
 

Figure 4. Behavours of 𝑀𝑛 on Temperature 𝜃(𝜂) 

 

Figures 3-4 illustrate the effect of Magnetic field (𝑀𝑛) on 

velocity and temperature profiles. From Figure 3, we observed 

that increase in 𝑀𝑛  improve the magnetic interaction and 

electric field which pioneer retarding force called Lorentz 

force that act against the flow and reduces the motion of the 

fluid and its layer thickness. However, the opposite 
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phenomenon is observed on fluid temperature as higher values 

of 𝑀𝑛 enhances the temperature distribution across the layer 

due to the frictional heating produced within the boundary 

layer. This in turns increases thermal boundary layer thickness 

 

 
 

Figure 5. Behaviours of 𝛽 on Velocity 𝑓′(𝜂) 

 

 
 

Figure 6. Behaviours of 𝛽 on Temperature 𝜃(𝜂) 

  

Figures 5-6 depict the behaviours of Weissenberg number 

𝛽 on Velocity and Temperature profiles. It is observed from 

Figure 7 that increase in 𝛽 slow down the velocity distribution 

across the layer which in tuns lower its boundary layer 

thickness. The physics behind this reduction corresponds to 

the large values of 𝛽 which pioneer viscoelasticity through the 

tensile stresses that consequently reduce the motion of the 

fluid. However, reverse phenomenon is observed on 

temperature profile (See Figure 6). 

Figures 7-8 presents the influence of generation\absorption 

(𝐴, 𝐵) on temperature profile. As expected, increase in (𝐴, 𝐵) 

magnifies temperature effect across the boundary which 

overshoot the temperature profile to its peak values and 

suddenly fall monotonically to the free stream zero value far 

away from the plate surface agreeing with the far field 

boundary conditions, thereby strengthen the thermal boundary 

layer thickness. However, similar behaviour is observed on 

temperature profile (See Figure 9) due to the interaction of 

convective heat parameter (𝐵𝑖) . This justifies that higher 

values of 𝐵𝑖  stimulates more convective heating across the 

boundary layer which in turns increases the operating 

temperature (and boundary layer thickness) and enable the 

thermal effect to penetrate to the quiescent fluid. 

Figure 10 is plotted to show the effect of prandtl number 

(𝑃𝑟) on temperature profile. Increase in 𝑃𝑟 owing to the low 

thermal diffusivity enhances the conducting process higher 

than the convection, which ultimately lower the molecular 

motion of which its aftermath effect reduces fall the 

temperature distribution across the boundary layer and lower 

its layer thickness. This reveals that at smaller values of 𝑃𝑟, 

the fluid possesses higher thermal diffusivity. Figure 11 

depicts the physical behaviours of Schmidtl number (𝑆𝑐) on 

concentration profiles. Higher values of 𝑆𝑐 as a result of low 

molecular diffusivity, suppresses the diffusion properties of 

the fluid, which ultimately reduces the concentration profile 

and declines concentration boundary layer thickness. 

 

 
 

Figure 7. Behavours of 𝐴 on Temperature 𝜃(𝜂) 

 

 
 

Figure 8. Behaviours of 𝐵 on Temperature 𝜃(𝜂) 

 

 
 

Figure 9. Behaviours of 𝐵𝑖 on Temperature 𝜃(𝜂) 

 

 
 

Figure 10. Behaviours of 𝑃𝑟 on Temperature 𝜃(𝜂) 
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Figure 11. Behaviours of 𝑆𝑐 on Concentration ∅(𝜂) 

 

 
 

Figure 12. Behaviours of 𝑅 on Concentration ∅(𝜂) 

 

The effect of chemical reaction parameter (𝑅)  on 

concentration profile is presented in Figure 12. It is noticed 

that higher values of 𝑅  pioneers greater Shrinking on 

concentration buoyancy effect which consequently declines 

concentration profile and lower its layer thickness. 

 

 
 

Figure 13. Behaviours of 𝜆𝑇 on Velocity 𝑓′(𝜂) 

 

Figures 13-14 exhibit the behaviors of thermal buoyancy 

parameter  (𝜆𝑇)  on velocity temperature profiles and 

concentration profiles while the mass buoyancy 

parameter ( 𝜆𝑀) is reported in Figures 15-16 for velocity and 

concentration profile respectively. The higher values of 

(𝜆𝑇 , 𝜆𝑀) accelerate the motion of the fluid maximize the fluid 

velocity (and its layer thickness). However, opposite 

phenomenon are observed on temperature and concentration 

profiles which respectively decline thermal and concentration 

boundary layers thicknesses. These results agreed with the 

expectation as 𝜆𝑇 > 0 contributes to the cooling of the surface 

and 𝜆𝑀 > 0 shows a greater concentration at the plate surface 

than free stream concentration. 

 
 

Figure 14. Behaviours of 𝜆𝑇 on Temperature 𝜃(𝜂) 

 

 
 

Figure 15. Behaviours of 𝜆𝑀 on Velocity 𝑓′(𝜂) 

 

 
 

Figure 16. Behaviours of 𝜆𝑀 on Concentration ∅(𝜂) 

 

Figures 17-18 presents the effect of Soret number (𝑆𝑟) on 

temperature and concentration profiles. Physically, we 

observed from Figure 17 that increase in 𝑆𝑟 contribute to the 

cooling of the surface which ultimately reduces the thermal 

boundary layer thickness. However, concentration boundary 

layer thickness declines due to the opposite phenomenon 

observed on concentration profile (See Figure 18). 

 

 
 

Figure 17. Behavours of 𝑆𝑟 on Temperature 𝜃(𝜂) 
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Figure 18. Behaviours of 𝑆𝑟 on Concentration ∅(𝜂) 

 

 
 

Figure 19. Behaviours of 𝑃𝑠 on Velocity 𝑓′(𝜂) 

 

The effect of porosity parameter ( 𝑃𝑠)  on velocity and 

temperature profiles are presented in Figures 19-20. Increase 

in 𝑃𝑠 causes a greater resistance to the flow and slow down the 

movement of the fluid particles which ultimately reduces the 

momentum boundary layer thickness. The interactions of 

𝑃𝑠 > 0  pioneer heating within the layer that consequently 

boosts thermal boundary layer thickness. 

 

 
 

Figure 20. Behaviours of 𝑃𝑠 on Temperature 𝜃(𝜂) 

 

From Table 1, HAM and GWRM are in good concordat in 

comparison. It is obvious from the table that almost all values 

of skin-friction coefficient  𝑅𝑒𝑥

1
2𝐶𝑓  demonstrated negative, 

indicating weaker movement of the flow due to the drag forces 

on the surface. However, the local Nusselt number 𝑅𝑒𝑥

−
1
2 𝑁𝑢 

and Sherwood number 𝑅𝑒𝑥

−
1
2𝑆ℎ  improves for higher values 

of (𝜆𝑇 , 𝜆𝑀). This in turns strengthen the rate of heat and mass 

transfer with an opposite result as Weissenberg number (𝛽), 

Magnetic Parameter (𝑀𝑛) , Soret number (𝑆𝑟)  and Prandtl 

number (𝑃𝑟) gain strength. It is also observed from the table 

that rate of heat transfer experienced a greater boost for large 

values of Biot number (𝐵𝑖) with a similar phenomenon on rate 

of mass transfer as Schmidtl number (𝑆𝑐) and Reaction rate 

parameter (𝑅) increases. Table 2 presents the convergence of 

the iteration with the far field boundary condition. It can be 

seen from the table that momentum and concentration 

equations converge at 22𝑡ℎ − 𝑜𝑟𝑑𝑒𝑟  while the energy 

equation converges at 24th-order of iterations. 

 

 

5. CONCLUSION 

 

In this paper, HAM is presented at 20th-order of 

approximation to solve the governing equations describing the 

interaction of chemical reaction and thermo-diffusion in a 

hydromagnetic Walters’ B fluid. The choice of 20th-order is 

to meet the far field boundary condition and the behaviors of 

embedded parameter are discussed accordingly through graph 

and table with the following conclusions drawn from the 

results obtained. 

❖ The temperature 𝜃(𝜂)  improves due to the slow 

movement of the fluid particles with the interaction 

of porosity parameter. 

❖ The model equation exhibits the properties of 

Newtonian fluid in the absence of Weissenberg 

number. 

❖ The interaction between chemical reaction (𝑅) and 

Schmidtl number (𝑆𝑐)  enhances the Sherwood 

number 𝑅𝑒𝑥

−
1
2𝑆ℎ which inturns magnifies the rate of 

mass transfer 

❖ The interaction of magnetic field pioneer the Lorentz 

force, which act against the flow and slowdown the 

motion of the fluid across the boundary 

❖ Large values of thermal buoyancy parameters (𝜆𝑇) 

contributes to the cooling of the surface which has 

immerse application in the cooling of the components 

while convective heat parameter (𝐵𝑖)  and 

generation\absorption (𝐴, 𝐵)  exhibited reverse 

behaviors which enable the thermal effect to the 

quiescent fluid. 
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NOMENCLATURE 

 

𝐴 space-dependent heat generation/absorption 

𝐵 temperature-dependent heat generation/absorption 

𝛽 Weissenberg number  

𝑀𝑛 Magnetic field parameter  

𝑃𝑠 porosity parameter 

𝑃𝑟 prandtl number  

𝑆𝑟 Soret number 

𝑅 Reaction rate parameter  

𝜆𝑇 Thermal buoyancy parameter  

𝜆𝑀 Mass buoyancy parameter  

𝑆𝑐 Schmidt number 

𝐵𝑖 convective heat parameter 

𝛽𝑇 thermal expansion coefficient 

𝛽𝑐 concentration expansion coefficient 

𝐶𝑝 specific heat at constant pressure 

𝐷𝑚 mass diffusivity 

𝛼 thermal diffusivity 

𝑔 acceleration due to gravity 

𝐶𝑓 Surface drag force 

𝑁𝑢 Nusselt number 

𝑆ℎ Sherwood number 

𝑘𝑇 Thermal diffusion ratio 

𝑇𝑚 Mean fluid temperature 

 

Greek symbols  

 

𝜂 Similarity variable  

𝛼 thermal diffusivity 

𝜓 Stream function 

ѵ kinematic viscosity 

𝜎 fluid electrical conductivity 

𝜌 fluid density 
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