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Currently, the machine learning group is well-understood and commonly used for 

predictive modelling and feature generation through linear methodologies such as reversals, 

principal analysis and canonical correlation analyses. All these approaches are typically 

intended to capture fascinating subspaces in the original space of high dimensions. These 

methods have all a closed-form approach because of its simple linear structures, which 

makes estimation and theoretical analysis for small datasets very straightforward. However, 

it is very common for a data set to have millions or trillions of samples and features in 

modern machine learning problems. We deal with the problem of fast estimation from large 

volumes of data for ordinary squares. The search operation is a very important operation 

and it is useful in many applications. Some applications when the data set size is large, the 

linear search takes the time which is proportional to the size of the data set. Binary search 

and interpolation search performs good for the search of elements in the data set in 

𝑂(𝑙𝑜𝑔 𝑛) and 𝑂(𝑙𝑜𝑔( 𝑙𝑜𝑔 𝑛)) respectively in the worst case. Now, in this paper, an effort 

is made to develop a novel fast searching algorithm based on the least square regression 

curve fitting method. The algorithm is implemented and its execution results are analyzed 

and compared with binary search and interpolation search performance. The proposed 

model is compared with the traditional methods and the proposed fast searching algorithm 

exhibits better performance than the traditional models. 
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1. INTRODUCTION

Searching operation on the data sets is the fundamental data 

operation. The popular searching algorithms are linear search 

and binary search. In linear search, the search starts from the 

beginning of the dataset and move sequentially towards the 

end of the dataset. Linear search performs search operation in 

𝑂(1) in the best case and 𝑂(𝑛) in the worst case if the data set 

size is 𝑛 [1, 2]. In binary search, search performs on the sorted 

data set by dividing the dataset exactly at the middle index and 

compare with the middle element. If the value is less than the 

target value, the binary search performs on the lower half 

recursively and if the value is greater than the target value, the 

binary search performs on the upper half recursively, until the 

match found or the considered half part is empty. Binary 

search performs in 𝑂(1) in the best case and 𝑂(𝑙𝑜𝑔 𝑛) in the 

worst case [1, 2]. The binary search became a very popular 

method that is used in practice, as they perform quite efficient 

and optimal even in worst-case scenarios [3]. This has become 

a primitive in many popular frameworks [4], database systems 

[5], and in many applications. 

Fast Regression (or Least Squares) has also been well 

studied and a lot of algorithms have been proposed based on 

the idea of random projection or subsampling. When the 

number of observations is much larger than the number of 

features, Gosselin et al. [6] use different kinds of fast random 

projections that approximately preserve inner products in the 

Euclidian space to reduce the actual sample size of the 

problem and then solve the least squares problem on reduced 

dataset. Random projection with such properties are 

sometimes called fast Johnson-Lindenstrauss transforms. 

Different random projections with this property are introduced 

[7] with concentration bounds on how well the inner product

is preserved. These techniques are applied in a fast ridge

regression algorithm [8] when the number of features are much

larger than the number of samples.

Interpolation search has been developed as an alternative to 

the binary search algorithm. In the interpolation search, the 

search performs based on the probing position of the matched 

value. Interpolation search performs the search in 

𝑂(𝑙𝑜𝑔(𝑙𝑜𝑔 𝑛)) [9], Now in the paper, a superior version of 

searching technique on a sorted dataset, as an alternative to the 

binary search and interpolation search is presented. 

Least-square fitting permeated science and technology more 

than two centuries ago since its application. In the study of 

data like that of biology, cognitive science, technology, 

physics and several other technological fields, linear least-

square regression is important [10]. 

Maybe the most common formula used for linear regression 

is a full-rank mXn in matrix A, in column A, in m - in the type 

b of column B, with m≥n; the task is to find nX1 in column 

vector x, in order to minimize the Euclidean norm ‖Ax−b‖. 

The LS' sensitivity to poor data is a major industry-related 

weakness [11]. In this case very large disruptions may happen 

due to a number of causes, just as simple as a technician 

unplugging a sensor, not properly fitting a chemical 

supplementary line filter for a sensor that was badly calibrated 

during a routine maintenance process [12]. More nuanced 

grounds for unanticipated and very significant disruptions in 

processes exist. For example, a test may take place with a new 
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value set in regression calculation preparation portion, which 

will seriously affect the output of another set used in the 

dataset [13]. The argument is, however, that in the industrial 

environment very large disruptions, bad information and 

major anomalies always occur and modelling must be robust 

to some extent [14]. A LS method is the least absolute value 

problem, which has inherent bad data rejection properties [15]. 

Contribution: The paper presents the novel techniques for 

fast searching operation on the sorted data sets. The proposed 

searching Algorithm presented in the upcoming section is 

devised only for the integer data sets. The main proposal in the 

main proposal in the work is to use develop the Searching 

algorithm based on the curve fitting concept using the least 

square method.  

 

 

2. PRELIMINARIES 

 

2.1 Curve fitting of straight line by least square method 

 

Curve fitting is a process in which we find the best fit curve 

for a set of data points. The curve may be a straight line, 

parabola, etc. Generally, we find a mathematical equation of 

the curve [16]. We can use this equation to find any point on 

the curve. For fitting a straight line on the data points, we use 

Least Square Method. The least square method always gives 

the best fit straight line i.e., the line covers all the data points 

with minimum error [17]. The error here is the difference 

between an actual data point and estimated data points that are 

on the line. The equation of the straight line is written as 

 

𝑦 = 𝑎𝑥 + 𝑏 (1) 

 

where, 𝑥 and 𝑦 are co-ordinates of the point on the line, a is 

slope or gradient of the line and b in y-intercept.  

In the least square method, for the given 𝑛 data points, first, 

it is to compute two coefficients 𝑎  and 𝑏  of the line which 

gives the best fit for the points [18]. Let us consider set of 𝑛 

points denoted by (𝑥1, 𝑦1) , (𝑥2, 𝑦2) , …, (𝑥𝑛 , 𝑦𝑛) . The first 

objective is to compute the slope 𝑎 and intercept 𝑏 of the line 

equation which gives the best fit for all 𝑛  points. The 

following two equations have been used to compute 𝑎 and 𝑏 

from all the given points. 

 
∑ 𝑦𝑖

𝑛
𝑖=1 =  𝑛𝑎 + 𝑏 ∑ 𝑥𝑖

𝑛
𝑖=1   (2) 

 

∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 = 𝑎 ∑ 𝑥𝑖

𝑛
𝑖=1 + 𝑏 ∑ 𝑥𝑖

2𝑛
𝑖=1   (3) 

 

Example: For the following given data set let us find the 

best fit straight line. 

 

x 2 3 5 7 9 

y 4 5 7 10 15 

 

Now, calculate the slope 𝑎 and intercept 𝑏 using Eq. (2) and 

Eq. (3). 

 

𝑎 = 1.518 and 𝑏 = 0.305 

 

The equation of the line is 

 

𝑦 = 1.518𝑥 + 0.305 

 

Table 1 given below is to show the difference in the actual 

values and the estimated values. 

The graph representation of the actual line and the estimated 

straight line using the least square method is presented in the 

following Figure 1. 

 

 
 

Figure 1. Graph with actual line and estimated straight line 

 

2.2 Correlation 

 

Correlation [19] is the measure of the linear relationship 

between two variables, and the correlation coefficient is the 

numerical measure of correlation. The value of the correlation 

coefficient is between -1 and 1 [20]. The general type of the 

correlation coefficient is Pearson Correlation Coefficient and 

is denoted as 𝑟. 

The correlation between two variables 𝑥 and 𝑦 is given as  

 

𝑟 =
1

𝑛
(∑

(𝑥−�̄�)(𝑦−�̄�)

𝜎𝑥 𝜎𝑦

𝑛
𝑖=0 )  (4) 

 

where, �̄�  is mean of 𝑥  values, �̄� is mean of 𝑦  values,  𝜎𝑥  is 

standard deviation of 𝑥 values, 𝜎𝑦 is standard deviation of 𝑦 

values. 

Table 1. Difference of actual and estimated value 

 
Actual 

Values 

Estimated 𝒚 value for given actual 𝒙 using Least Square 

method 

Estimated 𝒙 value for given actual 𝒚 using Least Square 

method 

𝒙 𝑦 𝑦 = 1.518𝑥 + 0.305  Error in 𝑦 𝑥 =
𝑦−0.305

1.518
  Error in 𝑥 

2 4 3.34 −0.66 2.43 0.43 

3 5 4.86 −0.14 3.09 0.09 

5 7 7.89 0.89 4.41 −0.59 

7 10 10.93 0.93 6.38 −0.62 

9 15 13.97 −1.03 9.68 −0.32 
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3. PROPOSED WORK 

 

3.1 Basic idea 

 

The novel fast searching algorithm that operates on sorted 

data sets, is developed based on the concept of straight line 

fitting (using least square method) [7, 8] and linear regression 

[9]. The linear trend in the data sets is exploited as the data set 

is already sorted. The given sorted data set is to be fitted in the 

straight line using the least square method, from which the 

equation is obtained for the best fit straight line, i.e. 

 

𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏  (5) 

 

where, 𝑥𝑖 is the index of the 𝑖𝑡ℎ element of the data set, 𝑦𝑖  is 

the 𝑖𝑡ℎ data value and 𝑎, 𝑏 are the coefficients that satisfy all 𝑛 

data elements, 𝑛 is the size of the data set. The coefficients 

𝑎 and 𝑏 are computed based on the curve fitting method [7, 8]. 

The backbone of our proposed searching algorithms is the 

above obtained Eq. (5). For our convenience, Eq. (5) is 

rewritten as  

 

𝑥𝑖 =
𝑦𝑖−𝑏

𝑎
  (6) 

 

Now, searching can be performed for the given target value 

by substituting it as 𝑦𝑖in the Eq. (6), to obtain its possible index.  

The model proposed developed a self-adaptive algorithm 

that takes account of the shortcomings of previous methods 

and does not include feedback law. This eliminates the need 

for a general rule to be decided or the F tuning to be replaced 

by tuning other parameters. Contraired to the standard DE, 

each ~yi is subject to changes in the proposed algorithm, with 

its own unique value of F ki. The model proposed implements 

a high-level F-optimization regression form. This is a one-

parameter ES, where the expense of the I-member corresponds 

to the objective improvement of the function value of XI over 

the previous α iterations. After that, an elitist selection would 

pick the best 50% participants and new children will be 

randomly generated for the next generation. This means that 

the quest for F and the main optimisation are running on 

various time scales. The F search is equal to α generations of 

principal search in each generation. The new F-values are 

randomly generated for high quest diversity. This means that 

some members with large values of F will be always present, 

some with small and medium F values between the boundary 

settings. 

 

3.2 Algorithm 

 

In this section, the primitive algorithm is presented first, i.e., 

searching algorithm that deals with the ideal data sets. The 

searching function given in Eq. (6) works perfectly when the 

data set is linear (index versus data value). For the given data 

set (sorted) of size 𝑛, the coefficients 𝑎 and 𝑏 are computed 

using the best line fitting given in Eq. (5). Now the primitive 

searching algorithm is devised as given in Algorithm-I. 

Step-1 in the above algorithm, computes the position for the 

target element 𝑦. The value at position 𝑥 be compared with the 

target value. If it matches returns the position 𝑥 indicating the 

successful search. Otherwise, it returns nothing indicating that 

the target value is not found in the dataset. The Algorithm-I 

works successful only when the data set is perfectly linear 

(ideal case), i.e., the difference between the successive 

elements of the dataset is constant. In other words, the 

correlation (formula) between 𝑥 and 𝑦 is 1. Furthermore, the 

following different abnormalities may also be encountered 

with some input datasets, in which case Algorithm-I cannot 

perform search properly.  

⚫ Non-linearity 

⚫ Outliers 

⚫ Zero-slope 

 

Algorithm-I Primitive Algorithm 

Input: 𝐴[ ], 𝑛, 𝑦, 𝑎, 𝑏// 𝐴[ ]: sorted array of size (𝑛);   

                   // 𝑦: target value; 

                               // 𝑎, 𝑏: coefficients 

Output:𝑥    //  𝑥 : index of 𝑦 in the dataset 𝐴[ ] 
1. 𝑥 = ⌊(𝑦 − 𝑏)/𝑎⌋  
2. if(𝐴[𝑥 ] == 𝑦) 

3.  return 

4. else 

5.   return ‘Not Found’ 

 

3.3 Searching over non- linear data sets 

 

The static design Y = Xβ + т is the basis for three separate 

datasets, in which X is scalable 2000 to1500. Three tests, X 

and β (more details in the following sections) are randomly 

generated and i.e. gaussian sound is added to Xβ to y. The 

number of iters is the number of passes by the sample size of 

data times and each iteration is O The data set is selected by 

cross-validation, but, when calculating the overall 

measurement costs, this costs are not considered. 

Now, to deal with non-linear data sets a few more steps need 

to be added to the algorithm Algorithm-I. Since the data set is 

non-linear, the target value may need not exactly present at the 

position given by the step-1 of Algorithm-I, but it may also 

present at any nearby position. So, the position may be 

incremented if the target value is greater than the value at 

current index and decremented if the target value is less than 

the value at current index. 

For example, given the following dataset 

 
Index 0 1 2 3 4 5 6 7 8 9 

Value 02 05 07 18 29 69 125 250 520 990 

 

And its coefficients will be 𝑎 = 85.29, 𝑏 = −182.31; For 

the given target value 2 , the first estimated position is 

computed as 𝑥 = ⌊(𝑦 − 𝑏)/𝑎⌋ = ⌊(2 − (−182.31))/
85.29⌋ = 2. 

Since, the value at index 2 is greater than the target, (i.e., 

7>2), the estimated position will be decremented until the 

target value is greater than or equal to value indexed by the 

estimated position (i.e., target will be compared with 05 and 

02 subsequently). If the matched value found, it will return the 

index indicating a successful search. Otherwise, the target 

element is not found in the data set.  

Now, to search the target key 250 ; the first estimated 

position is computed as 5 , where the key is less than the target 

key (𝑖. 𝑒, 69 < 250) . So, the estimated position will be 

incremented until the target is less than or equal to the key 

indexed by the estimated position (i.e., target key will be 

compared with 125 and 250 subsequently). 

 

3.4 Dealing with outliers 

 

Sometimes, the input data set may also have the key which 

is different from the other keys of the data set. In other words, 
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that key has data value with a high variant than other keys. 

Such keys are called outliers. Searching of outliers using Step-

1 in the algorithm Algorithm-I will always results the index 𝑥 

which is not in the given range i.e. out of bound. In that case, 

a search begins from either ends depending on the computed 

index 𝑥. For example, if computed index 𝑥 is greater than the 

highest index (𝑛 − 1) of the data set then index 𝑥 will be set 

to the highest index (𝑛 − 1) and that element gets compared 

with the target element. If the target key is less than the key 

indexed by 𝑥  then 𝑥  will be decremented and compared its 

corresponding key with the target, and the process repeats until 

the match found or target is greater than the key indexed by 𝑥. 

Similarly, if computed index 𝑥 is less than smallest index (0) 

of the data set then index 𝑥 will be set to 0 and that element 

gets compared with target element. If target key is greater than 

the key indexed by 𝑥  then 𝑥  will be incremented and its 

corresponding key gets compared with target, and the process 

repeats until the match found or target is less than the key 

indexed by 𝑥. 

 

3.5 Dealing with zero slope case 

 

When all the elements fitting into a perfect horizontal line 

then its slope will zero. Searching of the target element in the 

dataset using Algorithm-I results divide by zero attempt. To 

deal with this scenario when the slope is zero (i.e., 𝑎 = 0), 

searching for a given target key is performed by comparing it 

with any key of the data set. If it matches, it returns the index 

indicating a successful search. Otherwise, the element is not 

found. 

The algorithm Algorithm-I is now updated as Algorithm-

II to deal the datasets with all abnormal conditions. 

The limit, however, is that overconfidence is seen in very 

short branches, while a sampling randomness or 

approximation errors can be responsible for their short 

duration. For example, we have an infinite weight calculated 

for the values with an estimation of the null branch length 

(bi=0). This makes the approach applicable to larger datasets, 

while bi=0 is most likely because of the small quantity of 

variable sets. 

The proposed rapid search algorithm provides the optimal 

values and solution vector of the least square approach 

problem with precise relatively error approximations more 

quickly than current exact algorithms. The Randomized 

Hadamard is a transformation in both our algorithms. One 

samples constraints randomly and lightens the minor problem 

of these constraints, while the other spares a random screening 

and solves the minor problem of these coordinates. Both of 

them give relative error approximations when the solution is 

smaller and, where n is sufficiently greater than d, it can be 

measured in O(log n) time. 

 

Algorithm-II: Novel Fast Searching Algorithm 

Input: 𝑨[ ], 𝑛, 𝑦, 𝑎, 𝑏 // 𝐴[ ]: sorted array of size (𝑛);   

     // 𝑦: target value; 

                             // 𝑎, 𝑏: coefficients 

Output: 𝑥            //  𝑥 : index of 𝑦 in the dataset 𝐴[ ] 
1. if(𝑎 == 0) 

2. if(𝐴[0 ] == 𝑦) 

3.   return 0 

4.  else  

5. return ‘Not Found’ 

6. 𝑖 = ⌊(𝑦 − 𝑏)/𝑎⌋ 
7. if( 𝑖 < 0 ) 

8. 𝑖 = 0 

9. else if( 𝑖 > 𝑛 − 1 ) 

10. 𝑖 = n − 1 

11. while( 𝑖 ≥ 0 &&𝐴[𝑖] > 𝑦) 

12.              𝑖 = i − 1 

13. end while 

14. while( 𝑖 < 𝑛&&𝐴[𝑖] > 𝑦)  

15.  𝑖 = i + 1 

16. end while 

17. if(𝐴[𝑖] == 𝑦) 

18.  return 𝑖 
19. else 

20.  return ‘Not Found’ 

 

 

4. PROPOSED WORK DISCUSSION ON THE 

EXECUTION RESULTS 

 

The performance of our proposed search algorithm is 

analysed with the different types of data sets and thoroughly 

compared with binary search and interpolation search 

algorithms. These three algorithms were implemented using 

Python 3.7.5 programming on AMD A9 -9420 Radeon r5 with 

4GB RAM, in 64-bit Ubuntu19.10 environment. The 

experimentation was carried out on two different data sets: 

Linear and Non-liner data sets. The performance on each item 

in the data sets is analysed and presented in terms of the 

number of comparisons. The analysis of the proposed fast 

searching technique on linear dataset and nonlinear dataset is 

presented in the following Table 2 and Table 3 respectively. 

The graph representation of the actual data points and 

estimated data points of both linear data set and non-linear data 

set are given in Figure 2 and Figure 3 respectively.  

The execution results of the proposed fast search algorithm 

have been compared with the execution results of binary 

search and interpolation search algorithms. The comparison 

results are presented in the following table. The average 

number of comparisons of the different datasets of size 10, 100, 

1000, 10000, 100000 is given in Table 4. In each case, the 

dataset has been randomly taken between (0, 10), (0, 100), (0, 

1000), (0, 10000), (0, 100000) values. 

The results presented in Table 4, shows that the average 

number of comparisons (iterations) required for our proposed 

search algorithm is less than the other two cases. When the 

data is linear, our algorithm performs well than search on a 

non-linear dataset.  

 

 
 

Figure 2. Graph representation of actual and estimated points 

of linear dataset 
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Figure 3. Graph representation of actual and estimated points 

of non-linear dataset 

 

The total computation time of the proposed and the 

traditional methods are indicated in Figure 4. The total 

computation time levels of the proposed model are less that 

indicates the performance levels. 

The running time of the proposed and traditional methods 

are indicated in Figure 5. The running time of the proposed 

model is less than the traditional method that indicates the 

performance levels are better than the existing models. 

 
 

Figure 4. Total computation time levels 
 

 
 

Figure 5. Running time levels 

 

Table 2. Analysis of proposed search on linear dataset 

 
Number of comparisons required for search of each key in Linear dataset of size 𝒏 = 𝟏𝟎 

Index 0 1 2 3 4 5 6 7 8 9 

Key 105 409 603 680 844 857 904 929 941 956 

No. of Comparisons 1 2 2 1 2 2 1 2 2 3 

 

Table 3. Analysis of proposed search on Non-linear dataset 

 
Number of comparisons required for search of each key in Non-linear dataset of size 𝒏 = 𝟏𝟎 

Index 0 1 2 3 4 5 6 7 8 9 

Key 2 5 7 18 29 69 125 250 520 990 

No. of Comparisons 3 2 1 2 3 4 4 3 1 1 

 

Table 4. Comparison of binary search, interpolation search and proposed novel fast search techniques  

(number of iteration/comparisons) 

 

Data Set 

Size 

Range - data 

Items between (min, 

max) 

Avg No. of 

comparisons in 

Binary Search 

Avg No. of 

comparisons in 

Interpolation Search 

Avg No. of comparisons Proposed Novel 

fast Search 

𝑛 = 10 

(0,10) 2.1 1.7 1.2 

(0, 100) 2.9 2.2 1.7 

(0, 1000) 2.9 1.6 1.6 

(0, 10000) 2.9 1.8 1.5 

(0, 100000) 2.9 1.8 1.8 

𝑛 = 100 

(0,10) 2.9 1.1 1.2 

(0, 100) 4.8 1.8 2.1 

(0, 1000) 5.7 2.4 2.7 

(0, 10000) 5.8 3.1 3.3 

(0, 100000) 5.8 2.7 2.1 

𝑛 = 1000 

(0,10) 3.4 1.2 1.1 

(0, 100) 5.7 1.4 1.8 

(0, 1000) 8.2 3.1 4.6 

(0, 10000) 8.9 5.1 5.6 

(0, 100000) 8.9 9.2 5.1 

𝑛 = 10000 

(0,10) 2.9 1.3 1.1 

(0, 100) 5.8 1.4 1.3 

(0, 1000) 8.9 2.2 7.6 

(0, 10000) 11.5 3.5 9.4 

(0, 100000) 12.2 21.8 13.1 
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5. CONCLUSION 

 

The novel fast search algorithm has been proposed and 

implemented in this work. The algorithm has been developed 

based on the least square regression curve fitting technique. 

The algorithm has been covered all the cases of the possible 

datasets like linear, non-linear, outliers, and zero-slope values. 

The experiments have been conducted with different datasets 

of different sizes. The performance of the proposed search 

algorithm has been toughly analysed and compared with the 

performance of the binary search and interpolation search. 

Experimental results have shown that the proposed novel fast 

searching algorithm is taking a smaller number of comparison 

(iterations) compared to binary search and interpolation search. 
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