
Parallelization of the K-Means++ Clustering Algorithm

Sara Daoudi*, Chakib Mustapha Anouar Zouaoui, Miloud Chikr El-Mezouar, Nasreddine Taleb

RCAM Laboratory Dept of Electronics, Djillali Liabès University, Sidi Bel Abbes 22000, Algeria

Corresponding Author Email: sara.daoudi@univ-sba.dz

https://doi.org/10.18280/isi.260106 ABSTRACT

Received: 18 November 2020

Accepted: 27 January 2021

K-means++ is the clustering algorithm that is created to improve the process of getting

initial clusters in the K-means algorithm. The k-means++ algorithm selects initial k-

centroids arbitrarily dependent on a probability that is proportional to each data-point

distance to the existing centroids. The most noteworthy problem of this algorithm is when

running happens in sequential mode, as this reduces the speed of clustering. In this paper,

we develop a new parallel k-means++ algorithm using the graphics processing units (GPU)

where the Open Computing Language (OpenCL) platform is used as the programming

environment to perform the data assignment phase in parallel while the Streaming SIMD

Extension (SSE) technology is used to perform the initialization step to select the initial

centroids in parallel on CPU. The focus is on optimizations directly targeted to this

architecture to exploit the most of the available computing capabilities. Our objective is to

minimize runtime while keeping the quality of the serial implementation. Our outcomes

demonstrate that the implementation of targeting hybrid parallel architectures (CPU &

GPU) is the most appropriate for large data. We have been able to achieve a 152 times

higher throughput than that of the sequential implementation of k-means ++.

Keywords:

clustering, K-means clustering, K-means++,

GPGPU, OpenCL, parallel K-means++,

streaming SIMD extension (SSE)

1. INTRODUCTION

Clustering is one of the fundamental descriptive data mining

tasks. Clustering is the unsupervised learning procedure of

grouping a set of objects into the same class [1]. Cluster

analysis depends on the assignment of a set of objects into

subsets (named clusters) so that objects within a similar cluster

are identical according to pre-designated criteria [2]. Various

applications are found in ref. [3, 4].

The k-means clustering algorithm developed by McQueen

in 1967 [5], one of the simplest unsupervised clustering

algorithms, assigns each point in a cluster whose center

(centroid) is closest. In general, this algorithm includes three

stages: initialization, computation, and convergence.

The center is the mean of all the objects in the cluster; its

coordinates are the mean for each feature separately from all

the objects in the cluster, where each cluster is depicted by its

centroid. However, what is important to note is that the authors

in ref. [6] have determined that the K-means implementation

will converge to a local optimum; the selection of the first

cluster centers has been crucial when implementing the K-

means algorithm. The challenge is to ensure a better

initialization of the centroids. There are several approaches to

achieve this goal. In ref. [7], it was proposed to use a smart

technique to seed the initial centroids for k-means, leading to

a combined algorithm called k-means++. k-means ++ has

rapidly proved to be one of the most popular, with

implementations in areas such as clustering geographic

information [8], summarizing microblogs [9], social network

analysis [10], and image compression [11]. The k-means++

method chooses the starting centroids arbitrarily based on a

probabilistic approach that is proportional to each data point

distance to the existing centroids. To select the k initial

centroids, K-means++ needs k-iterations, and because of that;

it might not be an efficient method for the dataset with a large

number of clusters. Bahmani et al. [12] present another K-

means initialization method, nevertheless, they do not furnish

time comparisons between their implementation and K-means

or even K-means++. The most noteworthy problem of this

algorithm is when running happens in sequential mode, as this

reduces the speed of clustering. In our work, we choose to

exploit the Graphics Processing Units (GPUs) since they

guarantee higher performance. In addition, the GPUs are going

to be progressively utilized for real-time implementations of

the k-means algorithm. For a quick overview please refer to

[13-16].

In this paper, we propose a new parallel implementation of

the k-means ++ algorithm using GPUs. The Open Computing

Language (OpenCL) [17, 18] platform is used as a

programming environment in conjunction with the use of the

Streaming SIMD Extension (SSE) technology [19]. The focus

is on optimizations directly targeted to this architecture to

exploit the most of the available computing capabilities. K

means++ is an iterative algorithm in which each iteration

includes two phases: data assignment and k-centroids up-date.

To accelerate the compute-intensive parts of k-means++, the

initialization step to select the initial k-centroids is performed

in parallel using SSE instructions while the data assignment

step is loaded to the GPUs in parallel. Only the K- centroids

recalculation and the convergence test steps are performed by

the CPU.

So our contributions are outlined as follows:

1. We present a new initialization step algorithm to select

the initial centroids in parallel using the SSE technology,

because the initialization phase to select the initial centroids

must be calculated with precision

Ingénierie des Systèmes d’Information
Vol. 26, No. 1, February, 2021, pp. 59-66

Journal homepage: http://iieta.org/journals/isi

59

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.260106&domain=pdf

2. We present a new point assignment algorithm for GPUs,

the OpenCL platform is used while using the Local memory

and Private memory to compute the distance.

3. We will show how the parallel K-means++

implementation scales to large datasets and we will examine

its performance compared to that of the sequential k-means++.

The rest of the paper is organized in various sections.

Section 2 provides an outline of related works on accelerating

the k-means++ algorithm. Section 3 will briefly introduce the

sequential K-Means++ algorithm. Section 4 will present a

detailed description of our original parallel K-Means++ using

OpenCL and SSE technology. Section 5 will focus on

reporting the synthesis results and discussions. Finally,

Section 6 concludes the paper.

2. RELATED WORKS

Cluster analysis has been an important research topic for

data mining researchers for many years. In the past, under the

condition of small data size, researchers mainly focused on the

optimization problem of the k-means algorithm itself.

And then several methods have been invented to parallelize

the clustering algorithms [20-22] including k-means [13-16,

23-25] to further improve the efficiency of them.

In our previous article reported in ref. [15], we have

compared three different approaches dealing with a parallel

implementation of k-means: OpenMP, Pthread, and OpenCL.

The results have demonstrated that all three parallel techniques

showed a significant increase in speed, with the best results

being achieved by OpenMP for smaller datasets and by

OpenCL for larger datasets.

There are however few works reported on the parallelization

of K-means++. The earliest work is a Master thesis by Karch

[11], and then the work of Maliheh et al. [26]. In [11], the

thesis examines the parallelization of both k means++ and k

means over GPU utilizing CUDA. They only parallelized the

computation of distances of data points to each seed and none

of the other portions of the k-means++ implementation. They

have used a GPU Nvidia GeForce 9600M GT card obtaining a

maximum speed-up that is 5 times faster than that of the CPU

implementation. In ref. [26], the authors aim to parallelize the

most time-consuming steps of the k-means++ method, the

initialization step is offloaded to the GPUs in parallel using

CUDA. The initial centers are picked consecutively by a

probability that is proportional to the distance to the nearest

center using the GPU GeForce GTX 1070 card. Utilizing this

approach, they were able to obtain a speed-up that is 36 times

faster than that of the CPU implementation. In our present

work, we have parallelized the data assignment phase on GPU

using OpenCL while the initialization step to select the initial

centroids has been performed in parallel using SSE

instructions in the CPU because the initialization phase to

select the initial centroids must be calculated with precision,

so it is an excellent choice to make optimizations using SSE

technology. The K-centroids recalculation and the

convergence tests phases have been performed by the CPU

because these steps do not consume a lot of time compared to

the other phases.

To sum up, we have adapted in this work our Kmeans++

parallelization strategy to handle large datasets. To perform

this implementation, we have been using the OpenCL platform

and the SSE technology. Finally, we have compared this

parallel Kmeans++ implementation with the sequential

Kmeans++ one.

3. PROPOSED METHOD

3.1 K-means ++

The K-means algorithm [5] picks the first centers randomly.

Since they depend on pure luck, they can be chosen really

badly. The K-means++ algorithm [12] tries to solve this issue,

by spreading the first centers evenly. The serial

implementation of K-means++ is shown in pseudocode

Algorithm 1.

Algorithm 1: The Serial k-means++ Algorithm

 Input: X;Setof data points (N), number_of_clusters(k),

k>0

Output: A data pointsN partitioned into k clusters

 1: Select centroids c1, c2, …, c:

 1-a. Choose one center ci uniformly at random from

among the data points X.

 1-b. Take a new center ci, for every data-point x,

calculate D(x), the distance among x, and the nearest

center that has just been picked. choosing x € X with

probability
𝐃(𝐱)𝟐

∑ 𝐃𝐱∈𝐗 (𝐱)𝟐 .

 1-c. Repeat Steps 1-b until k centers have been

chosen.

 O(#N x D x K)

 2: Iterate until a convergence condition is satisfied

 3: For each data point xi, i=1..N:

 4: For each data cluster cj, j=1..K:

 5: Compute the distance to cj, given all D dimensions

 6: Assign the membership of data-point xi to nearest

cluster j

 7: For each data cluster cj, j=1..K:

 8: Compute the centroid: cj =the mean of all data-points

whose membership is J

 O(N x D x Kx #iterations)

We appeal the weighting utilized in step 1-b <D2

weighting>.

Algorithm 1 shows that, after the selection of each centre,

the distance of each point to the nearest cluster is updated. It

is detailed as follows:

1-a Choose one center uniformly at random from among the

data points.

1-b For every data-point x, calculate D(x), the distance

among x and the nearest center that has just been picked. The

Euclidean distance is commonly used as a measure of cluster

scatter for K-means++ clustering. This metric is preferred

because it minimizes the mean distance between points and the

centroids [27]. In this article, the Euclidean distance is applied.

 What's more, pick one new data-point at arbitrary as a new

center utilizing a weighted probability distribution where a

point x is picked with probability proportional to D(x)2 (see

formula (1)). k-means++ uses distance D(x)2 weighting

method to cull the next opportune centre. This algorithm

reduces the instability effect occurring in K-Means and

provide better stable clustering results [28].

Probability p(x)=
𝐷(𝑥)2

∑ 𝐷𝑥∈𝑋 (𝑥)2 (1)

60

1-c Repeat Steps 1-b until k centers have been chosen.

2- K-Means++ is an amendment to the K-Means algorithm

in order to surmount the arbitrary selection of initial cluster

centre. We can continue with the standard K-Means algorithm

after initializing the centroids. Using K-Means++ to initialize

the centroids tends to improve the clusters. Although it is

computationally costly relative to random initialization,

subsequent K-Means often converge more rapidly. For every

iteration, the k-means clustering executes two phases; firstly,

the data assignment phase, which associates every data-point

with its nearest centroid relying on a distance metric (here the

Euclidean distance metric is used). The result of the data

assignment phase is a membership vector indicating the new

cluster center for every data-point. Secondly, after the data

assignment phase, k-means execute another phase which is

updating the centroids. This phase calculates the new centroids

by computing the average of all the data-points belonging to

the same cluster. Assuming that the number of objects (points)

in cluster i is defined as si the formula for the cluster update

step is shown here:

ci =
1

si
∑ Xj

s

j=1

 (2)

In the initialization step, to select the initial K-centers, k-

means++ has to make a full pass through the data for every

cluster center sampled. This leads to the maximum

computational complexity of (N*K*D), where N is the number

of data-points, D the dimensionality of the data and K the

number of cluster. The most computationally-intensive part of

this implementation is the distance calculation step. After the

initialization step we proceed to utilize standard k-means. For

each iteration of the k-means clustering implementation, the

maximum computational complexity is (D*N*K +N*K +

N*D). The most computationally part of this implementation

is the distance computation step. The most computationally-

intensive part of this implementation is the distance

calculation step that requires one subtraction, one addition,

and one multiplication to compute the distance partial sum per

each data point. In general, the number of operations is

approximately equal to *D*N*K*3 corresponding to the

number _of iterations.

3.2 The parallel K-means++ implementation

The K-Means++ algorithm is an iterative method. Thereby,

the computation of a distance between each point and the

various clusters shows a lot of parallelism within each iteration,

since the For loops of lines 3 to 6 (Algorithm 1) are time

consuming for both the smallest and the biggest datasets.

Therefore, the 3 to 6 steps part of pseudocode Algorithm 1 is

an excellent candidate to explore parallelization. As we

previously referenced, we aim to parallelize the most time-

consuming phase of the initialization step to select the initial

centroids of the K-means++ algorithm, namely the ‘For’ loop

of line 1-b (Algorithm 1). The distance of all points to the

chosen center should be determined and afterward, the clusters

are picked based on a probability formula. These are the most

testing parts of parallelizing the K-means++.

A parallel implementation is shown in pseudo code

Algorithm 2 using OpenCL and The SSE technology. In the

following, the main stages are described in more details.

Figure 1 indicates an overview of the proposed approach.

Initialize center points of K
cluster using k-means++ In

Parallel using SSE

Start

Pass sample set from memory
to GPU

Recalculate the new centroids
of each cluster & Calculate
MSE (Mean squared error)

Convergent

Get clustered resultats &
membership

End

Host Device

Calculate the distance from
each Sample point to the

centre points

Mark the cluster with the
smallest distance

Y

N

CPU GPU

using SSE OpenCL C++

Figure 1. Steps of a parallel K-means++ implementation

The initialization phase to select the initial centroids is

performed in parallel using the SSE instructions (The detailed

code for optimization is shown in Algorithm 2), then the

distance of all points to the chosen center should be

determined, and afterward the clusters are picked based on a

probability formula (1).

In addition, the SSE instruction allows us to compute four

floating-point numbers with precision [19, 29]; we have

already mentioned previously that the initialization phase to

select the initial centroids must be calculated with precision,

so it is an excellent choice to make optimizations using SSE

technology.

This work will investigate the possibility of utilizing the

SSE technology to accelerate the initialization step of

kmeans++ algorithm to select the initial centroids by executing

multiple computations with a single instruction. In 1999 with

Pentium III, Intel introduced SSE to the ‘x86 architecture’ [19].

In [19], the authors have given a lot of details on the abilities

and motivations of SSE. SSE adds eight 128-bit wide registers

to the architecture [19]. With the arrival of the Pentium 4, Intel

presented the second generation of SSE, usually known as

SSE2 [30].

The SSE instructions allow in our implementation from the

initialization phase where we will calculate the distances

between each pair of data-points and data-clusters requiring

“N” floating point operations, say in matrix distance, a similar

number of the distances may be executed in N/4 cycles, instead

of N cycles. This is because four floating point distances

should be done in a single cycle. Nevertheless, the

rearrangement of data in a format that is acceptable for SIMD

computation is required. This consumes a few clock cycles.

The OpenCL [31] platform is used as a programming

environment to calculate the assignment phase of the k-means

++ algorithm in parallel on GPU (see Algorithm 2). OpenCL

61

is utilized to accelerate different applications in various areas

like computational chemistry, bioinformatics, and other fields

of research [31, 32].

When using OpenCL, we think about several distinct

methodologies for parallelization including:

• Global Memory

• Local memory

• Private memory

The steps to implement parallel K-means++ method

utilizing OpenCL and SSE (see Figure 1) are shown below:

Step 1: We choose one cluster uniformly at random from

among the data. After that, we use The SSE instructions to

calculate the distance of all points to the chosen center which

should be determined and afterward, the clusters are picked

based on a probability formula. Then, we go on and read the

user load clusters and data, and then set the number of clusters.

The predefined number of iterations is utilized as a

convergence criterion.

Step 2: We copy the user load datasets and the initial K -

clusters from the memory to the GPU.

Step 3: In this step, we utilize the OpenCL platform to

calculate the Euclidean distance. The N-threads correspond to

the N-load data, and the workload of each thread is as

expressed in formula (3). Thus, each cluster is loaded by its

workgroup only once into the local memory, then gets shared

among all the threads in the workgroup. Afterward, each

thread computes the distance among the point of the dataset

and cluster. We then save the index of the cluster that is the

nearest to the point of the dataset.

Thread = Ceil (
Numberofobjects

Threads
) (3)

Step 4: The load data are arranged depending on the closest

center, and then the partial results are copied to the global

memory of the GPU.

Step 5: In CPU, we recalculate the new centroid of each

cluster and calculate the Mean Squared Error (MSE). If the

maximum iteration number is attained, we will continue to the

next step, and if not, we will return to the preceding step.

Step 6: The end of the algorithm, we get the clustered results.

4. EXPERIMENTAL RESULT

In this section, we will explain the evaluation part and

analysis of the performance of the Kmeans++ algorithm in

both parallel mode (GPU) and serial mode (CPU). Our

implementation was performed on windows 7 and exploited

our heterogeneous computing environment, that integrated an

Intel(R) Xeon(R) X5650 @2.67GHz, 12GB of RAM, a GPU

Nvidia GeForce GTX 1060 with 6 GB memory, and Nvidia

OpenCL 1.2 for the GPU code to run K-means++.

We have used randomly generated datasets for running our

experiments for random floating-point among data between −1

and +1 [33].

Datasets with variables N (number of Objects) vary from

2048 to 4194304 data points which are computed with

different dimensions. Furthermore, these datasets are

computed for various clusters.

We have studied the performances of respectively GPU and

CPU implementations when processing data with various

cluster sizes K, object sizes N, dimension sizes D, and iteration

sizes.

In this work, the number of iterations defined previously is

utilized as a convergence criterion because this way, it is much

easier to identify the acceleration factor. For a better

interpretation, the performances are presented by both the

throughput in gflops and the execution time in milliseconds.

We have looked at the performance of the parallel

implementation of the k-means ++ algorithm using GPU and

that of the sequential implementation of the k-means ++ on a

CPU. Then, for both GPU and CPU implementations runs, the

same datasets were utilized.

1. We have compared the computation time only in the

initialization phase to select the initial k-clusters in

parallel using SSE instructions with the one in the

initialization phase to select the initial k-clusters in series

without using SSE of the k-means ++ algorithm, where

the number of iterations here is the number of k-clusters.

2. We then compared the clustering time, which is the global

time for all iterations, which includes the computation and

communication time between the CPU and the GPU and

does not include the time obtained for the initialization of

the k-clusters, where the pre-defined number of iterations

is used as a convergence criterion. When the number of

iterations is fixed, it is much easier to identify the

acceleration factor.

62

4 16 32 64 128 256 512 --

0,1

1

10

100

1000

10000

Execution time performance of different approaches

 (d=2 , N=8192)
tim

e-
m

ill
is

ec
on

ds

k-clusters

 Without SSE

 with SSE

Figure 2. Execution time for the initialization step with and

without using SSE instructions of k-means++ with varying

cluster sizes when dataset=8192

2 4 16 32 64 128 256 512

0,1

1

10

100

1000

10000

100000

tim
e-

m
ill

is
ec

on
ds

k-clusters

 Without SSE

 with SSE

Execution time performance of different approaches

 (d=2 , N=65536)

Figure 3. Execution time for the initialization step with and

without using SSE instructions of k-means++ with varying

cluster sizes when dataset=65536

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

1,
04

85
8E

6
2,

09
71

5E
6

4,
19

43
E6

8,
38

86
1E

6

10

100

1000

10000

100000

1000000

1E7

Execution time performance of different N sizes

 (d=4 , K=128)

tim
e-

m
illi

se
co

nd
s

N-objects

 Without SSE

 with SSE

Figure 4. Execution time for the initialization step with and

without using SSE instructions of k-means++ with varying

object sizes when K-cluster =4

We have applied SIMD SSE instructions to the initialization

step (The detailed code for optimization is shown in algorithm

2) and got the optimization results which are shown in Figures

2, 3, and 4.

Figures 2, 3 shows the Execution time for the initialization

step to select the initial centroids when using SSE and without

using SSE of the k-means++ algorithm with different cluster

sizes on CPU when data-points were set to 8192 and 65536,

respectively. A conclusion might be drawn that whatever the

number of clusters, the parallel implementation using the SSE

instructions surpasses the traditional implementation (without

using the SSE).

Figure 4 shows the Execution time for the initialization step

for selects the initial centroids when we used the SSE and

without used the SSE, of k-means++ algorithm with different

object sizes. A conclusion might be drawn that whatever the

number of objects the version parallel using the SSE

outperforms significantly the one without the use of SSE.

From these figures, we notice the performance gain when

using SSE. In Figure 4, we take a scale dataset of 524288

points with 4 features to calculates the 128 initials centers, the

performance gain due to our parallel implementation of the

initialization step using the SSE instructions is up to 50.86%

compared with no optimization (the traditional

implementation of the initialization step without using SSE for

the k-means ++ algorithm).

2 4 16 32 64 128 256 512

0

100

200

300

400

500

600

700

800

900

Execution time performance of different K sizes

 (d=2,N= 8192, iteration=20)

T
IM

E
-M

IL
IS

E
C

O
N

D
NCLUSTERS

 GPU

 CPU

Figure 5. Execution time for k-means++ with varying cluster

sizes on GPU and CPU when dataset=8192

2 4 16 32 64 128 256 512

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Throughput performance of different K sizes

 (d=2,N= 8192, iteration=20)

G
FL

O
P

S

NCLUSTERS

 GPU

 CPU

Figure 6. Throughput for k-means++ with varying clusters

sizes on GPU and CPU when dataset=8192

2 4 16 32 64 128 256 512

10

100

1000

10000

100000

Execution time performance of different K sizes

 (d=2,N= 4194304, iteration=20)

m
ill

is
ec

on
d

NCLUSTERS

 GPU

 CPU

Figure 7. Execution time for k-means++ with varying cluster

sizes on GPU and CPU when dataset=4194304

63

2 4 16 32 64 128 256 512

0

10

20

30

40

50

60

70

80

90

Throughput performance of different K sizes

 (d=2,N= 4194304, iteration=20)

G
F

LO
P

S

NCLUSTERS

 GPU

 CPU

Figure 8. Throughput for k-means++ with varying cluster

sizes on GPU and CPU when dataset=4194304

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

1,
04

85
8E

6
2,

09
71

5E
6

4,
19

43
E

6
8,

38
86

1E
6

10

100

1000

10000

100000

1000000

Execution time performance of different N objects sizes

 (d=4,k=128)

T
IM

E
-M

IL
IS

E
C

O
N

D

N-objects

 GPU

 CPU

Figure 9. Execution time for k-means++ with varying object

sizes on GPU and CPU

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

6
5
5
3
6

1
3
1
0
7
2

2
6
2
1
4
4

5
2
4
2
8
8

1
,0

4
8
5
8
E

6
2
,0

9
7
1
5
E

6
4
,1

9
4
3
E

6
8
,3

8
8
6
1
E

6

0

10

20

30

40

50

Throughput performance of different N objects sizes

 (d=4,k=128)

G
F

L
O

P
S

N-objects

 GPU

 CPU

Figure 10. Throughput for k-means++ with varying object

sizes on GPU and CPU

1 2 4 8 16 32 64 128 512 1024 --

0

10

20

30

40

Throughput performance of different iterations sizes

 (D=16,N=2097152,K=64)

G
F

L
O

P
S

iterations

 GPU

 CPU

Figure 11. Throughput for k-means++ with varying

iterations sizes on GPU and CPU

2 4 16 32 64 128

0,1

1

10

100

1000

10000

100000

1000000

Execution time performance of different K sizes

 (d=16,N= 4194304, iteration=20)

m
ill

is
e

co
n

d

N-CLUSTERS

 CPU

 GPU

Figure 12. Execution time for k-means++ with varying

cluster sizes on GPU and CPU when dataset=4194304

2 4 16 32 64 128

0

20

40

60

k-clusters

Throughput performance of different K sizes

 (D=16,N=4194304,iteration=20)

G
F

L
O

P
S

 CPU

 GPU

Figure 13. Throughput for k-means++ with varying cluster

sizes on GPU and CPU when dataset=4194304

The throughputs of running different dimensional data with

different clusters, objects and iteration sizes are shown in

Figures 6, 8, 10 and 11, 13.

Figures 5, 7, 9 and 12 show the execution time for k-

means++ implementation with different cluster sizes and with

varying object sizes on GPU and CPU. More exactly, the CPU

surpasses the GPU implementation when the data size is small,

the number of dimensionalities is less than or equal to 2 and

the number of clusters is less than 4 (k<4 and d2). Moreover,

the GPU implementation increases the data transmission

because the datasets are copied from the memory of CPU to

the GPU and then the partial results are copied from the GPU

to the memory of CPU.

The GPU implementation of k-means++ achieves better

results at large cluster and medium feature sizes, as

demonstrated in the figures. We will use Local memory and

Private memory to compute the distance. When the cluster size

is large and because the clusters are saved in local memory,

more data could be reutilized enhancing more the efficiency of

the kernel.

Some conclusions could be drawn regardless of the number

of objects, clusters and iterations, in that the GPU outperforms

the CPU significantly except when the data size is small and

the number of dimensionalities is less than or equal to 2 and

the number of clusters is less than 4. The GPU performs

consistently across any cluster, object or iteration sizes.

The speedup of the parallel implementation of the k-means

++ algorithm utilizing GPU over the sequential version of k-

means ++ could reach up to 152 times.

64

Table 1. k-Means++ GPU versus CPU implementation: Peak throughput results

Data size Feature Dimension K-clusters

Peak Throughput

GPU

(GFLOPS)

Peak Throughput

CPU

(GFLOPS)

Speed-Up

4194304
2 512 96,0843 0,635007 151,32

4 256 85,928 0,934129 91,987

65536

16 64 26,8435 1,21758 22,047

32 32 13,7424 1,36585 10,062

64 16
7,80336

1,49241 5,2287

128 4 4,88862 1,53684 3.181

For this GPU implementation, the peak throughput for

different datasets, dimensions, and k sizes is summarized in

Table 1. The peak throughput for the GPU implementation is

consistently high from the two -dimensional feature to the 16-

dimensional one, but starts to decrease after the dimension

exceeds 16. This is because it is no longer possible to

completely use the GPU resources (local memory) at big

dimension sizes. As it is indicated in Table, the maximum

speedup of 152 times is reached when processing two-

dimensional data.

4.1 Comparison with among the proposed work and the

literature

In this section, we compare our best performance obtained

against other best state-of-the-art performances, As shown by

Table 2, we obtain an acceleration of more than X152

compared with the Sequential k-means++. we tested a

maximum of data size of 16.777.216 while the best-published

result to date is obtained by ref. [26] using CUDA that achieve

an acceleration of X36 compared with the Sequential k-

means++. They tested a maximum of data size of 10 million.

Table 2. Comparison with among the proposed work and the

literature

Paper Technology Speed-Up

[11] GPU Nvidia GeForce 9600M GT 5

[26] GeForce GTX 1070 36

Our work GPU NVIDIA GTX 1060 152

5. CONCLUSION

In this paper, we provide a comprehensive study over the

parallelization of the K-means++ algorithm. We propose a

new parallel implementation of the k-means ++ algorithm

using the graphics processing unit (GPU). The Open

Computing Language (OpenCL) platform is used as a

programming environment with the use of the Streaming

SIMD Extension (SSE) technology. The focus is on

optimizations directly targeted to this architecture to exploit

the most of the available computing capabilities. This

algorithm includes three stages: Initialization, computation,

and convergence. K means++ is a compute-intensive iterative

technique; each iteration includes two phases: data assignment

and k centroids up-date. To accelerate the compute-intensive

parts of k-means++, the initialization step is calculated in

parallel using the SSE technology and the data assignment step

is loaded to the GPU in parallel. Only the K centroids

recalculation and the convergence test steps are performed by

the CPU. Our results show that the implementation of

targeting hybrid parallel architectures (CPU & GPU) is the

most appropriate for large data. We have achieved a 152 times

higher throughput than that of the sequential version of k-

means ++.

ACKNOWLEDGMENTS

The research being reported in this publication was

supported by the Algerian Directorate General for Scientific

Research and Technological Development (DGRSDT).

REFERENCES

[1] Han, J., Kamber, M. (2006). Data Mining: Concepts and

Techniques. Second Edition, Elsevier Inc., Rajkamal

Electric Press.

[2] Estivill, C.V. (2002). Why so many clustering

algorithms-a position paper. In: Newsletter ACM

SIGKDD Explorations Newsletter Homepage Archive,

4(1): 65-75. https://doi.org/10.1145/568574.568575

[3] Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.

(1998). Cluster analysis and display of genome-wide

expression patterns. Proc Natl Acad Sci., 95(25): 14863-

14868.

[4] Cuomo, S., Michele, P., Pragliola, M. (2017). A

computational scheme to predict dynamics in IoT

systems by using particle filter. Concurr Comput, 29(11):

4101. https://doi.org/10.1002/cpe.4101

[5] MacQueen, J.B. (1967). Some methods for classification

and analysis of multivariate observations. Proceedings of

5-th Berkeley Symposium on Mathematical Statistics

and Probability. Berkeley, University of California Press,

1: 281-297.

[6] Selim, S.Z., Ismail, M.A. (1984). K-means type

algorithms: A generalized convergence theorem and

characterization of local optimality. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 6(1): 81-

87. https://doi.org/10.1109/TPAMI.1984.4767478

[7] Arthur, D., Sergei, V. (2007). K-means++: The

advantages of careful seeding. Proceedings of the

Eighteenth Annual ACM-SIAM Symposium on Discrete

Algorithms, SODA 2007, New Orleans, Louisiana, USA,

1027-1035. https://doi.org/10.1145/1283383.1283494

[8] Lee, S.S., Won, D., McLeod, D. (2008). Tag-geotag

correlation in social networks. In Proceedings of the

2008 ACM Workshop on Search in Social Media, 59-66.

https://doi.org/10.1145/1458583.1458595

[9] Inouye, D. (2010). Multiple post microblog

summarization. REU Research Final Report, 1: 34-40.

[10] Velardi, P., Navigli, R., Cucchiarelli, A., D'Antonio, F.

65

https://doi.org/10.1145/568574.568575
https://doi.org/10.1002/cpe.4101
https://doi.org/10.1109/TPAMI.1984.4767478
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1145%2F1283383.1283494?_sg%5B0%5D=zvmWFKCo0_iHGZc2OcJ1TPzwxjPK8ULIApnDG65iRWu6lIp5WYaNa_muWDymyrUAgwyucsAhmT_d3SuJ1MisrGB57A.e-mbIMhB--gncMy1sxjpHcxSkoUfQmjgi1ufA9nfe46iKnHgKrLH0dTYGHzwOfMR8oHaXXsIpv4b3BqBJoYvDg

(2008). A new content-based model for social network

analysis. In 2008 IEEE International Conference on

Semantic Computing, pp. 18-25.

https://doi.org/10.1109/ICSC.2008.30

[11] Karch, G. (2010). GPU based acceleration of selected

clustering techniques. Department of Electrical and

Computer Engineering and Computer Sciences, Silesian

University of Technology in Gliwice, Silesia, Poland.

[12] Bahmani, B., Moseley, B., Vattani, A., Kumar, R.,

Vassilvitskii, S. (2012). Scalable k-means++.

Proceedings of the VLDB Endowment, 5(7): 622-633.

[13] Zhang, J., Wu, G., Hu, X., Li, S., Hao, S. (2011).

December. A parallel k-means clustering algorithm with

MPI. In Fourth International Symposium on Parallel

Architectures, Algorithms and Programming, 60-64.

[14] Soua, M., Kachouri, R., Akil, M. (2018). GPU parallel

implementation of the new hybrid binarization based on

Kmeans method (HBK). Journal of Real-Time Image

Processing, 14(2): 363-377.

https://doi.org/10.1007/s11554-014-0458-2

[15] Daoudi, S., Zouaoui, C.M.A., El-Mezouar, M.C., Taleb,

N. (2019). A comparative study of parallel CPU/GPU

implementations of the K-Means Algorithm. In 2019

International Conference on Advanced Electrical

Engineering (ICAEE), pp. 1-5.

https://doi.org/10.1109/ICAEE47123.2019.9014783

[16] Clemens, L., Sebastian, B., Steffen, Z., Volker, M.,

Tilmann, R. (2018). Efficient k-Means on GPUs.

publication rights licensed to the Association for

Computing Machinery. ACM.

[17] Khronos, G. (2017). OpenCL - The open standard for

parallel programming of heterogeneous systems.

https://www.khronos.org/opencl/.

[18] Stone, J.E., Gohara, D., Shi, G. (2010). OpenCL: A

parallel programming standard for heterogeneous

computing systems. Computing in Science &

Engineering, 12(3): 66.

https://doi.org/10.1109/MCSE.2010.69

[19] Thakkur, S., Huff, T. (1999). Internet streaming SIMD

extensions. Computer, 32(12): 26-34.

https://doi.org/10.1109/2.809248

[20] Raymound, N.T., Han, J. (1994). Efficient and Effective

clustering methods for spatial data mining. In

Proceedings of VLDB: 144-155.

[21] Zhang, T., Ramakrishnan, R., Livny, M. (1996). BIRCH:

an efficient data clustering method for very large

databases. ACM Sigmod Record, 25(2): 103-114.

https://doi.org/10.1145/235968.233324

[22] Wang, M., Zhang, W., Ding, W., Dai, D., Zhang, H., Xie,

H., Xie, J. (2014). Parallel clustering algorithm for large-

scale biological data sets. PloS One, 9(4): e91315.

https://doi.org/10.1371/journal.pone.0091315

[23] Tang, Q.Y., Khalid, M.A. (2016). Acceleration of K-

means algorithm using Altera SDK for OpenCL. ACM

Transactions on Reconfigurable Technology and

Systems (TRETS), 10(1): 1-19.

https://doi.org/10.1145/2964910

[24] Cuomo, S., De Angelis, V., Farina, G., Marcellino, L.,

Toraldo, G. (2019). A GPU-accelerated parallel K-means

algorithm. Computers & Electrical Engineering, 75: 262-

274. https://doi.org/10.1016/j.compeleceng.2017.12.002

[25] Li, Y., Zhao, K., Chu, X., Liu, J. (2013). Speeding up k-

means algorithm by GPUS. Journal of Computer and

System Sciences, 79(2): 216-229.

https://doi.org/10.1016/j.jcss.2012.05.004

[26] Maliheh, H.S., Reza, T. (2019). Parallelization of

Kmeans++ using CUDA. (in press).

[27] Singh, A., Yadav, A., Rana, A. (2013). K-means with

Three different Distance Metrics. International Journal of

Computer Applications, 67(10).

[28] Zhang, M., Duan, K.F. (2015). Improved research to k-

means initial cluster centers. In 2015 Ninth International

Conference on Frontier of Computer Science and

Technology, pp. 349-353.

https://doi.org/10.1109/FCST.2015.61

[29] Diefendorff, K. (1999). Pentium iii= pentium ii+ sse.

Microprocessor Report, 13(3): 1-6.

[30] Sager, D. (2001). Desktop platforms group, and intel

corp. The microarchitecture of the Pentium 4 processor.

Intel Technology Journal.

[31] Kussmann, J., Ochsenfeld, C. (2017). Employing

OpenCL to accelerate ab initio calculations on graphics

processing units. Journal of Chemical Theory and

Computation, 13(6): 2712-2716.

https://doi.org/10.1021/acs.jctc.7b00515

[32] Cadenelli, N., Jaksić, Z., Polo, J., Carrera, D. (2019).

Considerations in using OpenCL on GPUs and FPGAs

for throughput-oriented genomics workloads. Future

Generation Computer Systems, 94: 148-159.

https://doi.org/10.1016/j.future.2018.11.028

[33] http://www.cs.virginia.edu/~kw5na/lava/Rodinia/Packa

ges/Current/rodinia_3.0/data/kmeans/.

66

https://doi.org/10.1109/ICSC.2008.30
https://doi.org/10.1109/ICAEE47123.2019.9014783
https://dx.doi.org/10.1109%2FMCSE.2010.69
https://doi.org/10.1145/2964910
https://doi.org/10.1016/j.compeleceng.2017.12.002
https://doi.org/10.1016/j.jcss.2012.05.004
https://doi.org/10.1109/FCST.2015.61

