
Parallelization of the K-Means++ Clustering Algorithm 

Sara Daoudi*, Chakib Mustapha Anouar Zouaoui, Miloud Chikr El-Mezouar, Nasreddine Taleb 

RCAM Laboratory Dept of Electronics, Djillali Liabès University, Sidi Bel Abbes 22000, Algeria 

Corresponding Author Email: sara.daoudi@univ-sba.dz 

https://doi.org/10.18280/isi.260106 ABSTRACT 

Received: 18 November 2020 

Accepted: 27 January 2021 

K-means++ is the clustering algorithm that is created to improve the process of getting

initial clusters in the K-means algorithm. The k-means++ algorithm selects initial k-

centroids arbitrarily dependent on a probability that is proportional to each data-point

distance to the existing centroids. The most noteworthy problem of this algorithm is when

running happens in sequential mode, as this reduces the speed of clustering. In this paper,

we develop a new parallel k-means++ algorithm using the graphics processing units (GPU)

where the Open Computing Language (OpenCL) platform is used as the programming

environment to perform the data assignment phase in parallel while the Streaming SIMD

Extension (SSE) technology is used to perform the initialization step to select the initial

centroids in parallel on CPU. The focus is on optimizations directly targeted to this

architecture to exploit the most of the available computing capabilities. Our objective is to

minimize runtime while keeping the quality of the serial implementation. Our outcomes

demonstrate that the implementation of targeting hybrid parallel architectures (CPU &

GPU) is the most appropriate for large data. We have been able to achieve a 152 times

higher throughput than that of the sequential implementation of k-means ++.

Keywords: 

clustering, K-means clustering, K-means++, 

GPGPU, OpenCL, parallel K-means++, 

streaming SIMD extension (SSE) 

1. INTRODUCTION

Clustering is one of the fundamental descriptive data mining 

tasks. Clustering is the unsupervised learning procedure of 

grouping a set of objects into the same class [1]. Cluster 

analysis depends on the assignment of a set of objects into 

subsets (named clusters) so that objects within a similar cluster 

are identical according to pre-designated criteria [2]. Various 

applications are found in ref. [3, 4]. 

The k-means clustering algorithm developed by McQueen 

in 1967 [5], one of the simplest unsupervised clustering 

algorithms, assigns each point in a cluster whose center 

(centroid) is closest. In general, this algorithm includes three 

stages: initialization, computation, and convergence. 

The center is the mean of all the objects in the cluster; its 

coordinates are the mean for each feature separately from all 

the objects in the cluster, where each cluster is depicted by its 

centroid. However, what is important to note is that the authors 

in ref. [6] have determined that the K-means implementation 

will converge to a local optimum; the selection of the first 

cluster centers has been crucial when implementing the K-

means algorithm. The challenge is to ensure a better 

initialization of the centroids. There are several approaches to 

achieve this goal. In ref. [7], it was proposed to use a smart 

technique to seed the initial centroids for k-means, leading to 

a combined algorithm called k-means++. k-means ++ has 

rapidly proved to be one of the most popular, with 

implementations in areas such as clustering geographic 

information [8], summarizing microblogs [9], social network 

analysis [10], and image compression [11]. The k-means++ 

method chooses the starting centroids arbitrarily based on a 

probabilistic approach that is proportional to each data point 

distance to the existing centroids. To select the k initial 

centroids, K-means++ needs k-iterations, and because of that; 

it might not be an efficient method for the dataset with a large 

number of clusters. Bahmani et al. [12] present another K-

means initialization method, nevertheless, they do not furnish 

time comparisons between their implementation and K-means 

or even K-means++. The most noteworthy problem of this 

algorithm is when running happens in sequential mode, as this 

reduces the speed of clustering. In our work, we choose to 

exploit the Graphics Processing Units (GPUs) since they 

guarantee higher performance. In addition, the GPUs are going 

to be progressively utilized for real-time implementations of 

the k-means algorithm. For a quick overview please refer to 

[13-16]. 

In this paper, we propose a new parallel implementation of 

the k-means ++ algorithm using GPUs. The Open Computing 

Language (OpenCL) [17, 18] platform is used as a 

programming environment in conjunction with the use of the 

Streaming SIMD Extension (SSE) technology [19]. The focus 

is on optimizations directly targeted to this architecture to 

exploit the most of the available computing capabilities. K 

means++ is an iterative algorithm in which each iteration 

includes two phases: data assignment and k-centroids up-date. 

To accelerate the compute-intensive parts of k-means++, the 

initialization step to select the initial k-centroids is performed 

in parallel using SSE instructions while the data assignment 

step is loaded to the GPUs in parallel. Only the K- centroids 

recalculation and the convergence test steps are performed by 

the CPU. 

So our contributions are outlined as follows: 

1. We present a new initialization step algorithm to select

the initial centroids in parallel using the SSE technology, 

because the initialization phase to select the initial centroids 

must be calculated with precision 
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2. We present a new point assignment algorithm for GPUs, 

the OpenCL platform is used while using the Local memory 

and Private memory to compute the distance.  

3. We will show how the parallel K-means++ 

implementation scales to large datasets and we will examine 

its performance compared to that of the sequential k-means++. 

The rest of the paper is organized in various sections. 

Section 2 provides an outline of related works on accelerating 

the k-means++ algorithm. Section 3 will briefly introduce the 

sequential K-Means++ algorithm. Section 4 will present a 

detailed description of our original parallel K-Means++ using 

OpenCL and SSE technology. Section 5 will focus on 

reporting the synthesis results and discussions. Finally, 

Section 6 concludes the paper. 

 

 

2. RELATED WORKS 

 

Cluster analysis has been an important research topic for 

data mining researchers for many years. In the past, under the 

condition of small data size, researchers mainly focused on the 

optimization problem of the k-means algorithm itself. 

And then several methods have been invented to parallelize 

the clustering algorithms [20-22] including k-means [13-16, 

23-25] to further improve the efficiency of them.  

In our previous article reported in ref. [15], we have 

compared three different approaches dealing with a parallel 

implementation of k-means: OpenMP, Pthread, and OpenCL. 

The results have demonstrated that all three parallel techniques 

showed a significant increase in speed, with the best results 

being achieved by OpenMP for smaller datasets and by 

OpenCL for larger datasets.  

There are however few works reported on the parallelization 

of K-means++. The earliest work is a Master thesis by Karch 

[11], and then the work of Maliheh et al. [26]. In [11], the 

thesis examines the parallelization of both k means++ and k 

means over GPU utilizing CUDA. They only parallelized the 

computation of distances of data points to each seed and none 

of the other portions of the k-means++ implementation. They 

have used a GPU Nvidia GeForce 9600M GT card obtaining a 

maximum speed-up that is 5 times faster than that of the CPU 

implementation. In ref. [26], the authors aim to parallelize the 

most time-consuming steps of the k-means++ method, the 

initialization step is offloaded to the GPUs in parallel using 

CUDA. The initial centers are picked consecutively by a 

probability that is proportional to the distance to the nearest 

center using the GPU GeForce GTX 1070 card. Utilizing this 

approach, they were able to obtain a speed-up that is 36 times 

faster than that of the CPU implementation. In our present 

work, we have parallelized the data assignment phase on GPU 

using OpenCL while the initialization step to select the initial 

centroids has been performed in parallel using SSE 

instructions in the CPU because the initialization phase to 

select the initial centroids must be calculated with precision, 

so it is an excellent choice to make optimizations using SSE 

technology. The K-centroids recalculation and the 

convergence tests phases have been performed by the CPU 

because these steps do not consume a lot of time compared to 

the other phases.  

To sum up, we have adapted in this work our Kmeans++ 

parallelization strategy to handle large datasets. To perform 

this implementation, we have been using the OpenCL platform 

and the SSE technology. Finally, we have compared this 

parallel Kmeans++ implementation with the sequential 

Kmeans++ one. 

 

 

3. PROPOSED METHOD 

 

3.1 K-means ++ 

 

The K-means algorithm [5] picks the first centers randomly. 

Since they depend on pure luck, they can be chosen really 

badly. The K-means++ algorithm [12] tries to solve this issue, 

by spreading the first centers evenly. The serial 

implementation of K-means++ is shown in pseudocode 

Algorithm 1. 

 

Algorithm 1: The Serial k-means++ Algorithm 

 Input: X;Setof data points (N), number_of_clusters(k), 

k>0 

Output: A data pointsN partitioned into k clusters 

 

  1: Select centroids c1, c2, …, c: 

     1-a. Choose one center ci uniformly at random from 

among the data points X. 

     1-b. Take a new center ci, for every data-point x, 

calculate D(x), the distance among x, and the nearest 

center that has just been picked. choosing x € X with 

probability 
𝐃(𝐱)𝟐

∑ 𝐃𝐱∈𝐗 (𝐱)𝟐 . 

      1-c. Repeat Steps 1-b until k centers have been 

chosen. 

          O(#N x D x K)  

  2: Iterate until a convergence condition is satisfied 

  3:   For each data point xi, i=1..N: 

  4:    For each data cluster cj, j=1..K: 

  5:      Compute the distance to cj, given all D dimensions 

  6: Assign the membership of data-point xi to nearest 

cluster j 

  7: For each data cluster cj, j=1..K: 

  8: Compute the centroid: cj =the mean of all data-points 

whose membership is J 

         O(N x D x Kx #iterations )  

We appeal the weighting utilized in step 1-b <D2 

weighting>. 

 

Algorithm 1 shows that, after the selection of each centre, 

the distance of each point to the nearest cluster is updated. It 

is detailed as follows: 

1-a Choose one center uniformly at random from among the 

data points. 

1-b For every data-point x, calculate D(x), the distance 

among x and the nearest center that has just been picked. The 

Euclidean distance is commonly used as a measure of cluster 

scatter for K-means++ clustering. This metric is preferred 

because it minimizes the mean distance between points and the 

centroids [27]. In this article, the Euclidean distance is applied.  

 What's more, pick one new data-point at arbitrary as a new 

center utilizing a weighted probability distribution where a 

point x is picked with probability proportional to D(x)2 (see 

formula (1)). k-means++ uses distance D(x)2 weighting 

method to cull the next opportune centre. This algorithm 

reduces the instability effect occurring in K-Means and 

provide better stable clustering results [28].  

 

Probability p(x)= 
𝐷(𝑥)2

∑ 𝐷𝑥∈𝑋 (𝑥)2 (1) 
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1-c Repeat Steps 1-b until k centers have been chosen. 

2- K-Means++ is an amendment to the K-Means algorithm 

in order to surmount the arbitrary selection of initial cluster 

centre. We can continue with the standard K-Means algorithm 

after initializing the centroids. Using K-Means++ to initialize 

the centroids tends to improve the clusters. Although it is 

computationally costly relative to random initialization, 

subsequent K-Means often converge more rapidly. For every 

iteration, the k-means clustering executes two phases; firstly, 

the data assignment phase, which associates every data-point 

with its nearest centroid relying on a distance metric (here the 

Euclidean distance metric is used). The result of the data 

assignment phase is a membership vector indicating the new 

cluster center for every data-point. Secondly, after the data 

assignment phase, k-means execute another phase which is 

updating the centroids. This phase calculates the new centroids 

by computing the average of all the data-points belonging to 

the same cluster. Assuming that the number of objects (points) 

in cluster i is defined as si the formula for the cluster update 

step is shown here: 

 

ci =
1

si 
∑  Xj

s

j=1

 (2) 

 

In the initialization step, to select the initial K-centers, k-

means++ has to make a full pass through the data for every 

cluster center sampled. This leads to the maximum 

computational complexity of (N*K*D), where N is the number 

of data-points, D the dimensionality of the data and K the 

number of cluster. The most computationally-intensive part of 

this implementation is the distance calculation step. After the 

initialization step we proceed to utilize standard k-means. For 

each iteration of the k-means clustering implementation, the 

maximum computational complexity is (D*N*K +N*K + 

N*D). The most computationally part of this implementation 

is the distance computation step. The most computationally-

intensive part of this implementation is the distance 

calculation step that requires one subtraction, one addition, 

and one multiplication to compute the distance partial sum per 

each data point. In general, the number of operations is 

approximately equal to *D*N*K*3 corresponding to the 

number _of iterations. 

 

3.2 The parallel K-means++ implementation 

 

The K-Means++ algorithm is an iterative method. Thereby, 

the computation of a distance between each point and the 

various clusters shows a lot of parallelism within each iteration, 

since the For loops of lines 3 to 6 (Algorithm 1) are time 

consuming for both the smallest and the biggest datasets. 

Therefore, the 3 to 6 steps part of pseudocode Algorithm 1 is 

an excellent candidate to explore parallelization. As we 

previously referenced, we aim to parallelize the most time-

consuming phase of the initialization step to select the initial 

centroids of the K-means++ algorithm, namely the ‘For’ loop 

of line 1-b (Algorithm 1). The distance of all points to the 

chosen center should be determined and afterward, the clusters 

are picked based on a probability formula. These are the most 

testing parts of parallelizing the K-means++. 

A parallel implementation is shown in pseudo code 

Algorithm 2 using OpenCL and The SSE technology. In the 

following, the main stages are described in more details. 

Figure 1 indicates an overview of the proposed approach. 

Initialize center points of K 
cluster using k-means++ In 

Parallel using SSE

Start

Pass sample set from memory 
to GPU

Recalculate the new  centroids 
of each cluster & Calculate 
MSE (Mean squared error)

Convergent  

Get clustered resultats  & 
membership

End

Host Device

Calculate the distance from 
each Sample point to the 

centre points 

Mark the cluster with the 
smallest distance

Y

N

CPU GPU

using SSE OpenCL C++

 
 

Figure 1. Steps of a parallel K-means++ implementation 

 

The initialization phase to select the initial centroids is 

performed in parallel using the SSE instructions (The detailed 

code for optimization is shown in Algorithm 2), then the 

distance of all points to the chosen center should be 

determined, and afterward the clusters are picked based on a 

probability formula (1).  

In addition, the SSE instruction allows us to compute four 

floating-point numbers with precision [19, 29]; we have 

already mentioned previously that the initialization phase to 

select the initial centroids must be calculated with precision, 

so it is an excellent choice to make optimizations using SSE 

technology. 

This work will investigate the possibility of utilizing the 

SSE technology to accelerate the initialization step of 

kmeans++ algorithm to select the initial centroids by executing 

multiple computations with a single instruction. In 1999 with 

Pentium III, Intel introduced SSE to the ‘x86 architecture’ [19]. 

In [19], the authors have given a lot of details on the abilities 

and motivations of SSE. SSE adds eight 128-bit wide registers 

to the architecture [19]. With the arrival of the Pentium 4, Intel 

presented the second generation of SSE, usually known as 

SSE2 [30]. 

The SSE instructions allow in our implementation from the 

initialization phase where we will calculate the distances 

between each pair of data-points and data-clusters requiring 

“N” floating point operations, say in matrix distance, a similar 

number of the distances may be executed in N/4 cycles, instead 

of N cycles. This is because four floating point distances 

should be done in a single cycle. Nevertheless, the 

rearrangement of data in a format that is acceptable for SIMD 

computation is required. This consumes a few clock cycles. 

The OpenCL [31] platform is used as a programming 

environment to calculate the assignment phase of the k-means 

++ algorithm in parallel on GPU (see Algorithm 2). OpenCL 
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is utilized to accelerate different applications in various areas 

like computational chemistry, bioinformatics, and other fields 

of research [31, 32]. 

When using OpenCL, we think about several distinct 

methodologies for parallelization including: 

• Global Memory 

• Local memory  

• Private memory 

The steps to implement parallel K-means++ method 

utilizing OpenCL and SSE (see Figure 1) are shown below: 

Step 1: We choose one cluster uniformly at random from 

among the data. After that, we use The SSE instructions to 

calculate the distance of all points to the chosen center which 

should be determined and afterward, the clusters are picked 

based on a probability formula. Then, we go on and read the 

user load clusters and data, and then set the number of clusters. 

The predefined number of iterations is utilized as a 

convergence criterion. 

Step 2: We copy the user load datasets and the initial K -

clusters from the memory to the GPU. 

 

 
 

Step 3: In this step, we utilize the OpenCL platform to 

calculate the Euclidean distance. The N-threads correspond to 

the N-load data, and the workload of each thread is as 

expressed in formula (3). Thus, each cluster is loaded by its 

workgroup only once into the local memory, then gets shared 

among all the threads in the workgroup. Afterward, each 

thread computes the distance among the point of the dataset 

and cluster. We then save the index of the cluster that is the 

nearest to the point of the dataset. 

 

Thread = Ceil (
Numberofobjects

Threads
 ) (3) 

 

Step 4: The load data are arranged depending on the closest 

center, and then the partial results are copied to the global 

memory of the GPU. 

Step 5: In CPU, we recalculate the new centroid of each 

cluster and calculate the Mean Squared Error (MSE). If the 

maximum iteration number is attained, we will continue to the 

next step, and if not, we will return to the preceding step. 

Step 6: The end of the algorithm, we get the clustered results. 

 

 

4. EXPERIMENTAL RESULT 

 

In this section, we will explain the evaluation part and 

analysis of the performance of the Kmeans++ algorithm in 

both parallel mode (GPU) and serial mode (CPU). Our 

implementation was performed on windows 7 and exploited 

our heterogeneous computing environment, that integrated an 

Intel(R) Xeon(R) X5650 @2.67GHz, 12GB of RAM, a GPU 

Nvidia GeForce GTX 1060 with 6 GB memory, and Nvidia 

OpenCL 1.2 for the GPU code to run K-means++. 

We have used randomly generated datasets for running our 

experiments for random floating-point among data between −1 

and +1 [33]. 

Datasets with variables N (number of Objects) vary from 

2048 to 4194304 data points which are computed with 

different dimensions. Furthermore, these datasets are 

computed for various clusters. 

We have studied the performances of respectively GPU and 

CPU implementations when processing data with various 

cluster sizes K, object sizes N, dimension sizes D, and iteration 

sizes. 

In this work, the number of iterations defined previously is 

utilized as a convergence criterion because this way, it is much 

easier to identify the acceleration factor. For a better 

interpretation, the performances are presented by both the 

throughput in gflops and the execution time in milliseconds. 

We have looked at the performance of the parallel 

implementation of the k-means ++ algorithm using GPU and 

that of the sequential implementation of the k-means ++ on a 

CPU. Then, for both GPU and CPU implementations runs, the 

same datasets were utilized. 

1. We have compared the computation time only in the 

initialization phase to select the initial k-clusters in 

parallel using SSE instructions with the one in the 

initialization phase to select the initial k-clusters in series 

without using SSE of the k-means ++ algorithm, where 

the number of iterations here is the number of k-clusters. 

2. We then compared the clustering time, which is the global 

time for all iterations, which includes the computation and 

communication time between the CPU and the GPU and 

does not include the time obtained for the initialization of 

the k-clusters, where the pre-defined number of iterations 

is used as a convergence criterion. When the number of 

iterations is fixed, it is much easier to identify the 

acceleration factor.
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Figure 2. Execution time for the initialization step with and 

without using SSE instructions of k-means++ with varying 

cluster sizes when dataset=8192 
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Figure 3. Execution time for the initialization step with and 

without using SSE instructions of k-means++ with varying 

cluster sizes when dataset=65536 
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Figure 4. Execution time for the initialization step with and 

without using SSE instructions of k-means++ with varying 

object sizes when K-cluster =4 

 

We have applied SIMD SSE instructions to the initialization 

step (The detailed code for optimization is shown in algorithm 

2) and got the optimization results which are shown in Figures 

2, 3, and 4. 

Figures 2, 3 shows the Execution time for the initialization 

step to select the initial centroids when using SSE and without 

using SSE of the k-means++ algorithm with different cluster 

sizes on CPU when data-points were set to 8192 and 65536, 

respectively. A conclusion might be drawn that whatever the 

number of clusters, the parallel implementation using the SSE 

instructions surpasses the traditional implementation (without 

using the SSE). 

Figure 4 shows the Execution time for the initialization step 

for selects the initial centroids when we used the SSE and 

without used the SSE, of k-means++ algorithm with different 

object sizes. A conclusion might be drawn that whatever the 

number of objects the version parallel using the SSE 

outperforms significantly the one without the use of SSE.  

From these figures, we notice the performance gain when 

using SSE. In Figure 4, we take a scale dataset of 524288 

points with 4 features to calculates the 128 initials centers, the 

performance gain due to our parallel implementation of the 

initialization step using the SSE instructions is up to 50.86% 

compared with no optimization (the traditional 

implementation of the initialization step without using SSE for 

the k-means ++ algorithm). 
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Figure 5. Execution time for k-means++ with varying cluster 

sizes on GPU and CPU when dataset=8192 
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Figure 6. Throughput for k-means++ with varying clusters 

sizes on GPU and CPU when dataset=8192 
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Figure 7. Execution time for k-means++ with varying cluster 

sizes on GPU and CPU when dataset=4194304
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Figure 8. Throughput for k-means++ with varying cluster 

sizes on GPU and CPU when dataset=4194304 
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Figure 9. Execution time for k-means++ with varying object 

sizes on GPU and CPU 
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Figure 10. Throughput for k-means++ with varying object 

sizes on GPU and CPU 

 

1 2 4 8 16 32 64 128 512 1024 --

0

10

20

30

40

Throughput performance of different iterations  sizes

          (D=16,N=2097152,K=64)

G
F

L
O

P
S

iterations

 GPU

 CPU

 
 

Figure 11. Throughput for k-means++ with varying 

iterations sizes on GPU and CPU 
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Figure 12. Execution time for k-means++ with varying 

cluster sizes on GPU and CPU when dataset=4194304 
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Figure 13. Throughput for k-means++ with varying cluster 

sizes on GPU and CPU when dataset=4194304 

 

The throughputs of running different dimensional data with 

different clusters, objects and iteration sizes are shown in 

Figures 6, 8, 10 and 11, 13. 

Figures 5, 7, 9 and 12 show the execution time for k-

means++ implementation with different cluster sizes and with 

varying object sizes on GPU and CPU. More exactly, the CPU 

surpasses the GPU implementation when the data size is small, 

the number of dimensionalities is less than or equal to 2 and 

the number of clusters is less than 4 (k<4 and d2). Moreover, 

the GPU implementation increases the data transmission 

because the datasets are copied from the memory of CPU to 

the GPU and then the partial results are copied from the GPU 

to the memory of CPU.  

The GPU implementation of k-means++ achieves better 

results at large cluster and medium feature sizes, as 

demonstrated in the figures. We will use Local memory and 

Private memory to compute the distance. When the cluster size 

is large and because the clusters are saved in local memory, 

more data could be reutilized enhancing more the efficiency of 

the kernel. 

Some conclusions could be drawn regardless of the number 

of objects, clusters and iterations, in that the GPU outperforms 

the CPU significantly except when the data size is small and 

the number of dimensionalities is less than or equal to 2 and 

the number of clusters is less than 4. The GPU performs 

consistently across any cluster, object or iteration sizes. 

The speedup of the parallel implementation of the k-means 

++ algorithm utilizing GPU over the sequential version of k-

means ++ could reach up to 152 times. 
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Table 1. k-Means++ GPU versus CPU implementation: Peak throughput results 

 

Data size Feature Dimension K-clusters 

Peak Throughput 

GPU 

(GFLOPS) 

Peak Throughput 

CPU 

(GFLOPS) 

Speed-Up 

 

4194304 
2 512 96,0843 0,635007 151,32 

4 256 85,928 0,934129 91,987 

65536 

16 64 26,8435 1,21758 22,047 

32 32 13,7424 1,36585 10,062 

64 16 
7,80336 

 
1,49241 5,2287 

128 4 4,88862 1,53684 3.181 

 

For this GPU implementation, the peak throughput for 

different datasets, dimensions, and k sizes is summarized in 

Table 1. The peak throughput for the GPU implementation is 

consistently high from the two -dimensional feature to the 16-

dimensional one, but starts to decrease after the dimension 

exceeds 16. This is because it is no longer possible to 

completely use the GPU resources (local memory) at big 

dimension sizes. As it is indicated in Table, the maximum 

speedup of 152 times is reached when processing two-

dimensional data. 

 

4.1 Comparison with among the proposed work and the 

literature 

 

In this section, we compare our best performance obtained 

against other best state-of-the-art performances, As shown by 

Table 2, we obtain an acceleration of more than X152 

compared with the Sequential k-means++. we tested a 

maximum of data size of 16.777.216 while the best-published 

result to date is obtained by ref. [26] using CUDA that achieve 

an acceleration of X36 compared with the Sequential k-

means++. They tested a maximum of data size of 10 million. 

 

Table 2. Comparison with among the proposed work and the 

literature 

 
Paper Technology Speed-Up 

[11] GPU Nvidia GeForce 9600M GT 5 

[26] GeForce GTX 1070 36 

Our work GPU NVIDIA GTX 1060 152 

 

 

5. CONCLUSION 

 

In this paper, we provide a comprehensive study over the 

parallelization of the K-means++ algorithm. We propose a 

new parallel implementation of the k-means ++ algorithm 

using the graphics processing unit (GPU). The Open 

Computing Language (OpenCL) platform is used as a 

programming environment with the use of the Streaming 

SIMD Extension (SSE) technology. The focus is on 

optimizations directly targeted to this architecture to exploit 

the most of the available computing capabilities. This 

algorithm includes three stages: Initialization, computation, 

and convergence. K means++ is a compute-intensive iterative 

technique; each iteration includes two phases: data assignment 

and k centroids up-date. To accelerate the compute-intensive 

parts of k-means++, the initialization step is calculated in 

parallel using the SSE technology and the data assignment step 

is loaded to the GPU in parallel. Only the K centroids 

recalculation and the convergence test steps are performed by 

the CPU. Our results show that the implementation of 

targeting hybrid parallel architectures (CPU & GPU) is the 

most appropriate for large data. We have achieved a 152 times 

higher throughput than that of the sequential version of k-

means ++.  
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