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In the contemporary era, technological innovations like cloud computing and Internet of 

Things (IoT) pave way for diversified applications producing multimedia content. 

Especially large volumes of image data, in medical and other domains, are produced. Cloud 

infrastructure is widely used to reap benefits such as scalability and availability. However, 

security and privacy of imagery is in jeopardy when outsourced it to cloud directly. Many 

compression and encryption techniques came into existence to improve performance and 

security. Nevertheless, in the wake of emergence of quantum computing in future, there is 

need for more secure means with multiple transformations of data. Compressive sensing 

(CS) used in existing methods to improve security. However, most of the schemes suffer 

from the problem of inability to perform compression and encryption simultaneously 

besides ending up with large key size. In this paper, we proposed a framework known as 

Cloud Image Security Framework (CISF) leveraging outsourced image security. The 

framework has an underlying algorithm known as Hybrid Image Security Algorithm 

(HISA). It is based on compressive sensing, simultaneous sensing and encryption besides 

random pixel exchange to ensure multiple transformations of input image. The empirical 

study revealed that the CISF is more effective, secure with acceptable compression 

performance over the state of the art methods. 
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1. INTRODUCTION

Compressive Sensing (CS), of late, became an important 

signal processing technique as it efficiently acquires and 

reconstructs a signal. It has got attention of researchers in the 

area of image compression and encryption simultaneously [1]. 

For instance, it is used to securely transfer medical images 

over Internet [2]. Compressive sensing is also used widely for 

applications where secure deduplication takes place [3]. In the 

presence of cloud computing, big data technology innovations, 

there are opportunities and challenges as explored [4]. With 

respect to opportunities, big data has enabled innovative 

science discoveries, promoted spatiotemporal thinking, 

enabled improvements in geospatial sciences besides data 

transformations and availability of big data [5]. An important 

challenge is to have data security for different kinds of data 

objects that come to cloud infrastructure. Another challenge is 

to optimize resource utilization in cloud infrastructure due to 

proliferation of big data applications. There are challenges in 

data representation, data collection and efficient data 

transmission as well [6]. In this context, there is need for 

improving state of the art in terms of data compression and 

secure deduplication in cloud storage [7]. Compressive 

sensing for simultaneous compression and encryption of 

images, thus, attracted researchers significantly [8]. 

The compressive sensing (CS) model provides data 

compression below the Nyquist rate and has been used widely 

for ultrasound (US) compression and sparse recovery as an 

attractive solution in medical imaging. In practise, CS reduces 

the sensing, transfer and storage of data. Compressive sensing 

depends on sparing data; i.e. in the original or transformed 

domain, data should be sparse. A analysis of the literature 

shows that a rich range of algorithms were proposed to retrieve 

data reliably using compressive sensing from much less 

specimens, but with efficiency sacrifices. 

Compressive sensing is an effective way to acquire a limited 

amount of samples for the signals or images, given that in a 

transformed domain the signal is sparse. The Shannon 

sampling theorem follows traditional signal acquisition 

strategy, which involves the sampling of signs at the lowest 

rate two times the maximum rate 

Literature has rich information pertaining to compressive 

sensing and its usage in some important applications that 

leverage data transmission, security and deduplication. 

Compressive sensing based approaches for compression and 

encryption are explored by Karthika et al. [9]. There is 

simultaneous CS and encryption towards secure deduplication 

[10] while CS is used for medical image security and

confidentiality [11]. Cloud-assisted system is built for CS

based data gathering [12] while secure video deduplication

with CS is explored by Yang et al. [13]. Privacy preserving

approach is coupled with CS for outsourcing identity

authentication and image storage [14]. CS is employed to have

image damage monitoring when it is combined with data

fusion approach [15]. Chaotic approaches for efficiency

cryptography are applied in the study [16] with concepts

comprising of CS and encryption for images. From the

literature, it is understood that most of the schemes suffer from
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the problem of inability to perform compression and 

encryption simultaneously besides ending up with large key 

size [17]. Moreover, in the wake of emergence of quantum 

computers in near future, there is need for more effective 

schemes for secure securing multimedia objects that are 

transferred to cloud infrastructure.  

Compressive sensing (CS) is a way of extracting a 

compressed signal from much fewer samples than that 

required by the sample model of Nyquist. The second is an 

incoherence of sensor matrix (al) and transform matrix (al) and 

third is a restricted isometric property, and CS depends on the 

following three basic assumptions: one is the sparse existence 

of original data or a signal in the transform domain (RIP). A 

particular algorithm for reconstruction would rely on the 

number of samples required to accurately reconstruct 

compressed data. Nearly every real-world signal in one field 

or another has a property of sparsity. If the data acquired is not 

sparse for transforming any domain, it is necessary to re-create 

a maximum number of data coefficients. 

This paper focuses on this research gap by proposing a 

framework for leveraging outsourced image security by 

designing a Cloud Image Security Framework (CISF) for 

simultaneous CS and encryption of images Hybrid Image 

Security Algorithm (HISA) is proposed based on compressive 

sensing, simultaneous sensing and encryption besides random 

pixel exchange to ensure multiple transformations of input 

image. 

The remainder of the paper is structured as follows. Section 

2 focuses on review of literature on image security with 

compression and CS for secure outsourcing of the same to 

public cloud. Section 3 provides preliminaries to understand 

the basics of the concepts used in the proposed framework. 

Section 4 describes the proposed framework and design of the 

algorithm. Section 5 presents experimental results and 

discussion. Section 6 gives conclusions and also possible 

scope for future work.  

 

 

2. RELATED WORK 

 

Compression sensing has its significance as found in the 

literature. Wang et al. [2] explored it for securely transferring 

medical images over Internet. Motivated by modern tele-

medicine scenario, their method named tele-medical image 

compression technique is found to be useful for confidential 

information sharing. Hsieh et al. [3] proposed a cloud-assisted 

data gathering mechanism based on compressive sensing. Hu 

et al. [5] investigated on privacy preserving image outsourcing 

to public cloud based on CS technique. It has mechanism to 

reconstruct images without revealing identity. They intended 

to improve it to cater to the needs of other signal processing 

applications. Yu et al. [6] proposed a method for parallel 

encryption and compression based on chaotic measurement 

matrix and sequence generator. Thus they derived 

cryptographic characteristics from chaotic signals in order to 

improve security and transmission efficiency. Usama and 

Zakaria [7] also studied chaos-based approach for parallel 

encryption and compression technique. Their empirical study 

used Hadoop MapReduce model for implementation that 

utilised Tent Map and Piece-wise Linear Chaotic Map 

(PWLM) for infinite real number precision.  

Kandasamy et al. [8] used CS and chaotic system for image 

encryption. Their method was effective in reducing overhead 

in data transmission and storage in cloud. Rahman et al. [11] 

explored the importance of compressive sensing and secure 

deduplication in cloud computing environments. Luo et al. [12] 

explored the concepts of compressive sensing and damage 

monitoring based on data-fusion based structure. Thus it could 

identity damage and take necessary steps while preparing 

images for data transmission. Yang et al. [13] investigated on 

the sensor-cloud communication efficiency using data 

compression and classification. Ajdari et al. [14] studied the 

importance of privacy to image data when it is collected and 

transferred over public networks. Especially, their study 

focused on IoT use cases where the need for privacy protection 

is established. They proposed a privacy protection technique 

based on Slepian-Wolf-coding-based secret sharing (SW-SSS) 

approach.  

Dai et al. [16] proposed a scalable storage system known as 

FIDR (Fine-Grain Inline Data Reduction). It has significant 

contribution towards scalability and data reduction leading to 

efficient memory management and boosted overall throughput. 

Lytvyn et al. [17] a data reduction system named NodeMerge 

that is template based. Based on big data causality analysis, 

they could achieve data reduction system. Wu et al. [18] 

designed a system to be efficient in data storage in cloud based 

infrastructure with deduplication. Mohimani et al. [19] 

exploited data redundancy locality as part of their cloud based 

data deduplication system. From the literature, it is understood 

that most of the schemes suffer from the problem of inability 

to perform compression and encryption simultaneously 

besides ending up with large key size. Moreover, in the wake 

of emergence of quantum computers in near future, there is 

need for more effective schemes for secure securing 

multimedia objects that are transferred to cloud infrastructure. 

This paper focuses on this research gap by proposing a 

framework for leveraging outsourced image security.  

 

 

3. PRELIMIINARIES 

 

This section provides details of important concepts that are 

used in the proposed framework and the underlying algorithm. 

It focuses on compressive sensing, exchanging pixels 

randomly and logistic mapping. Almost the entire digital 

camera records every pixel in an image, which is dropped 

immediately to reduce the storage space for image savings. A 

question of course is why we need this wealth of knowledge 

to be collected, simply to throw away much of it. The principle 

of compressive sensing was initiated by this notation. As an 

alternative to the conventional sampling theory, compressive 

sensing ensures the signal's grate quality without increasing 

reconstruction data. CS is therefore especially important for 

medical signal processing applications. Compressed sensing is 

important to avoid compression and to acquire data in the 

compressed form immediately after acquisition. We should 

know two words, Sparsity and Incoherence, to make this 

possible. According to CS theory, it samples a given signal in 

space domain. In the process, it effectively avoids processing 

redundant data. It is shown in Eq. (1). 

 

∝= 𝑌𝑇𝑋 (1) 

 

where, the signal is denoted by X and Y represents the space 

domain. In the signal processing associated with CS, there is 

need for measurement matrix which is denoted as ∅. When the 

result of Eq. (1) is projected onto a measurement matrix, this 

phenomenon is shown in Eq. (2). 
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𝑦 = ∅𝑥 = ∅𝑌𝛼 = ∅𝛼, (2) 

 

Here a property known as restricted isometry property is 

satisfied. Restricted isometry property (RIP), at least when 

working on sparse vectors, define matrices that are almost 

orthonormal. No known large matrices with small isometry 

constants are known, but many random matrixes have been 

shown to remain bound. It has been shown, in particular, that 

with exponentially high chance the RIP is nearly linear in 

sparsity levels with the random Gaussian, Bernoulli and partial 

Fourier matrices. The property has a condition that is shown 

in Eq. (3). 

 

(1 − 𝛿𝑘)||𝑓||
2
2

≤ (1 + 𝛿𝑘)||𝑓||
2
2

 (3) 

 

This property plays crucial role in the compressive sensing 

mechanism. It makes use of Euclidean distance measure. The 

purpose is to recover signal X with respect to sparse solution 

which is estimated as in Eq. (4). 

 

𝑚𝑖𝑛 ||𝛼||0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 = 𝜃𝛼. (4) 

 

The problem reflected in Eq. (4) needs exhaustive 

combinatorial search which may be so complex when N 

(number of measurements) value is more. In order to 

overcome this problem, a signal reconstruction algorithm 

known as SL0 is used. In the proposed algorithm, exchanging 

pixels randomly after compression and encryption is done for 

another layer of security. It considers two matrices named I1 

and I2. Each matrix has two indices m and n. A random matrix 

denoted as R is considered for intermediary steps. It has values 

such as 0 or 1. While exchanging pixels, it finds new position 

to pixels using Eq. (5). 

 

𝑚, = 𝑓1(𝑚, 𝑛) = 1 + 𝑟𝑜𝑢𝑛𝑑 {
(𝑀 − 1)𝑠𝑖𝑛
[𝜋𝑅(𝑚, 𝑛)]

} 

𝑛, = 𝑓1(𝑚, 𝑛) = 1 + 𝑟𝑜𝑢𝑛𝑑 [(𝑁 − 1)𝑅(𝑚, 𝑛)], 
1 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁 

(5) 

 

where, the sizes of matrix R is denoted as M and N. Each input 

matrix (I1 and I2) have M x N pixels. Rounding is made using 

nearest integer concept. The mean of random matrix is then 

computed as in Eq. (6). 

 

𝑅 =
1

𝑀𝑋𝑁
∑ 𝑅(𝑚, 𝑛)∀𝑚,𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  (6) 

 

The pixels at positions m and n are exchanged in the I1 and 

I2 matrices in order to complete the process of exchanging 

pixels. For further improvement in the process of compression 

and encryption a chaos system in introduced. It is known as 

logistic map as shown in Eq. (7). 

 

𝑥𝑛+1 = 𝜇𝑋𝑛(1 − 𝑥𝑛), 𝑥𝑛𝜖 (0,1). (7) 

 

It makes the system chaotic and that will help in increasing 

security of images when they are outsourced to public cloud.  

 

 

4. CLOUD IMAGE SECURITY FRAMEWORK  

 

We proposed a framework known as Cloud Image Security 

Framework (CISF). It has mechanisms to use compressive 

sensing and simultaneously performing two operations such as 

compression and encryption. It also has conceptual ideas and 

algorithmic design to achieve the desired level of image 

security.  

 

4.1 The framework  

 

The framework designed as shown in Figure 1 provides an 

overview of the work done in order to improve image security 

when it is outsourced to public cloud. With the cloud 

computing technology, multimedia content providers are 

increasingly using cloud infrastructure to outsource their 

multimedia objects and share them to other users. Obviously, 

it needs higher level of security as the cloud is untrusted 

domain. The proposed framework divides the given image into 

four blocks. Then it has process of generating measurements 

and then it considers random pixel exchange prior to 

outsourcing image to public cloud.  

A measurement matrix plays important role in the 

simultaneous compression and encryption process. The matrix 

is controlled by logistic map in order to have optimal 

compression and encryption process to leverage image 

security. After outsourcing image to public cloud, the content 

owner can get the image back with the reverse process. The 

image is taken from public cloud and subjected to inverse 

mechanism of random pixel exchange. Thus it generates 

measures and they are further subjected to signal 

reconstruction algorithm as given to generate the blocks. 

When the blocks are combined, it results in the original image 

given back to the content provider.  

 

 
 

Figure 1. Cloud Image Security Framework (CISF) 
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Figure 2. Overview the proposed algorithm 

 

4.2 Algorithm design  

 

The prosed algorithm known as Hybrid Image Security 

Algorithm (HISA) is based on the mechanisms illustrated in 

Figure 2. The given input image is divided into 4 blocks. First 

two blocks are used by measure 1 and the remaining are taken 

by measure 2. The first measure generates two matrices that 

are subjected to random pixel exchange prior to sending to 

cloud. The second measure also generates two matrices that 

are subjected to random pixel exchange prior to sending to 

cloud. The first measure considers a half part of the image and 

second measure handles the other part of the image. After this, 

the reconstruction of original image has reverse process. First, 

it uses inverse random pixel exchange mechanism in order to 

produce 4 matrices. Then first two and then second two 

matrices are used by the signal reconstruction algorithm for 

generating the 4 blocks originally used. From the blocks, the 

original image is constructed as final output.  

An algorithm is proposed to achieve this mechanism. 

Hybrid Image Security Algorithm (HISA) is defined based on 

the illustration provided in Figure 1. It takes an image as input 

and produces the output image after compression and 

encryption with the mechanisms such as compressive sensing 

for concurrent compression and encryption besides using 

chaotic maps and exchanging pixels in encrypted blocks 

randomly for additional layer of security.  

 

Algorithm 1: Hybrid Image Security Algorithm 

 

Algorithm: Hybrid Image Security Algorithm 

Input: ImageX 

Output: compressed and encrypted image with 

compressive sensingX’ 

1. Start 

2. Divide X into b1, b2, b3, b4 (blocks) 

3. Construct two measurement matrices m1, m2 with 

keys 

4. Measure b1 and b3 with m1 

5. Measure b2 and b4 with m2 

6. Step 4 generates C1 and C3 (measurements) 

7. Step 5 generates C2 and C4 

8. Map b1, b2, b3, b4 measurements to R2, R1, R2 

and R1 

9. Use R1 and R2 to exchange pixels randomly with 

adjacent blocks 

10. Exchange occurs between b1 and b4 

11. Exchange occurs between b2 and b3 

12. Assign outcome to X’ 

13. Return X’ 

14. End 

 

 

As presented in Algorithm 1, the input image is converted 

into an encrypted image after multiple transformations. In the 

process, the logistic map is used. It is actually constructed by 

generating a sequence and using it with an iterative process 

shown in Eq. (8). 

 
∅(𝑖, 1) = 𝜆 ∅(𝑖 − 1, 𝑁)

∅(𝑖, 2: 𝑁) = 𝜆 ∅(𝑖 − 1,1: 𝑁 − 1)
 (8) 

 

The algorithm considers an image with equal height and 

width as input that is N x N. Divide the image into 4 blocks in 

such a way that each block is of (N/2 x N/2) size. Then two 

measurement matrices are generated to handle two blocks each 

for compression and encryption. Before actually sending the 

image to cloud, the encrypted image blocks are subjected to 

random pixel exchange between two adjacent blocks (b1 and 

b4; b2 and b3). The image reconstruction process by taking 

outsourced image from cloud is the exact reverse process. 

However, in order to overcome the problem mentioned in 

Section 3, we used the SL0 algorithm for reconstruction 

process.  
 

4.3 Evaluation  

 

Different evaluation metrics are used to know the 

performance of the proposed framework. Correlation is an 

important metric used. Correlation of two adjacent pixels in a 

good quality image is close to 1 while that of encrypted image 

should be close to 0. Therefore, correlation coefficient reveals 

the performance of the proposed method. It is computed as in 

Eq. (9). 

 

𝐶 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑁

𝑖=1

√(∑ (𝑥𝑖 − �̅�)2) (∑ (𝑦𝑖 − �̅�)2)𝑁
𝑖=1

𝑁
𝑖=1

 (9) 
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There are three directions used for correlation coefficient 

computation. They are known as horizontal, vertical and 

diagonal. An encryption algorithm is actually sensitive to keys. 

It does mean that a small change in key leads to great impact 

on the encrypted image. This is measured with mean square 

error (MSE) as in Eq. (10). 

 

𝑀𝑆𝐸 =
1

𝐿 × 𝐻
∑[𝐼(𝑥, 𝑦) − 𝐷(𝑥, 𝑦)]2,

𝑥𝑦

 (10) 

 

where, the image pixels (total number) are denoted as L x H. 

The input and output images are denoted s I(x,y) and D(x,y) 

respectively. Another performance metric used in this paper is 

PSNR which is widely used for knowing compression 

performance. It is shown in Eq. (11).  

 

𝑃𝑆𝑁𝑅

= 10𝑙𝑜𝑔
2552

(1/𝑁2) ∑ = 1 ∑ = 1[𝑅(𝑖, 𝑗) − 1(𝑖, 𝑗)]2𝑁
𝑗

𝑁
𝑖

 
(11) 

 

It is used to find quality of decrypted images with various 

compression ratios. By measuring PSNR the quality of the 

proposed encryption technique can be estimated.  

 

 

5. RESULTS AND DISCUSSION 

 

The proposed algorithm named Hybrid Image Security 

Algorithm (HISA) is evaluated with a prototype application 

developed in Python data science platform. As presented in 

Figure 3, Lena is the input image in grey scale with 256x256 

resolution. Lena image served as input image (plain image) 

and each block is of 128x128 size. Compression and 

encryption results are shown besides decrypted Lena image. 

The compression ratio used in 4/3 and the key length 

considered is 2. However, MxN is the key length if the keys 

are made up of whole measurement matrices which, for 

example, 192 x 256 leading to large key space. Therefore, in 

this paper, it is greatly reduced. The parameters used in the 

empirical study are as follows. M is taken as 96 that is (3/4 x 

N/2) such that it satisfies 1 ≤ 𝑀, 1 ≤ 𝑛 ≤ 𝑁, 𝜆 value is 2, 𝜇 

value is 3.99 and x01 and x02 values are 0.11 and 0.23 

respectively.  

 

 
 

Figure 3. Experimental results with Lena image, (a) original 

image, (b) compressed image, (c) encrypted image, (d) 

decrypted image 

 

The compressed Lena image is shown in Figure 3 (b) while 

Figure 3 (c) shows encrypted image and Figure 3 (d) the 

decrypted image. The proposed algorithm needed less 

computational operations. Float number addition, 

multiplication and shift operations are made 512, 704 and 192 

times respectively which is very less when compared to the 

state of the art. The proposed algorithm needed swap 

operations 256 x 256 times and comparison operations in the 

random pixel exchange needed 256 x 256 times. The 

computational complexity of the HISA is significantly less.  

Histogram of Lena image is presented in Figure 4 to analyse 

image encryption performance. When histogram of encrypted 

image shows values in uniform distribution, it reflects good 

performance. Figure 4 (a) and Figure 4 (b) show histogram of 

Lena and its encrypted image respectively. It is found from 

empirical study that histograms of different input images are 

similar in order to confuse attackers. 

As presented in Figure 5, the correlation distribution of 

pixels in Lena image and its encrypted counterpart are shown. 

Correlation shown relation between two adjacent pixels and 1 

indicates higher level of correlation and 0 indicates least 

correlation. Eq. (9) is used in order to perform correlation 

measure by using 16000 randomly selected adjacent pixels 

from both images. Least correlation between adjacent pixels 

shown in Figure 5 (b) reflects performance of the proposed 

method.  

 

 
 

Figure 4. Histogram of original Lena image (a) and 

encrypted Lena image (b) 

 

 
 

Figure 5. Correlation distribution of original Lena image (a) 

and encrypted image (b) 

 

Table 1. Correlation values for original Lena and encrypted 

Lena 

 
Input 

Images used 

for 

Correlation 

Horizontal 

Pixel 

Correlation 

Vertical 

Pixel 

Correlation 

Diagonal 

Pixel 

Correlation 

Lena Image 0.959959 0.922622 0.908007 

Encrypted 

Lena Image 0.084592 0.058294 0.093091 
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Figure 6. MSE curve for two decrypted samples 

 

Table 1 shows correlation statistics.The correlation of 

encrypted Lena is close towards 0 while the correlation of 

Lena original image is close towards 1 reflecting higher level 

of performance of the proposed algorithm as it destroys close 

relationships between adjacent pixels to ensure increased 

security to media objects. The correlation analysis results also 

reveal that attackers cannot gain any useful information with 

attacks based on statistical analysis. 

As presented in Figure 6, there are MSE curves for two 

decrypted images. It is used to analyse key sensitivity which 

has relation with distortion of decrypted images. Image 

encryption algorithms are sensitive to keys therefore; this 

analysis assumes significance. Eq. (10) is used for MSE 

computations. Great distortion shown in the decrypted images 

as in Figure 6 (a) and Figure (b) reflect the efficiency of the 

proposed algorithm which is sensitive to keys and the key 

space is reduced in this experiment to reap its benefits. 

As presented in Figure 7, PSNR measure (as per Eq. (11)) 

is used to know compression performance of the proposed 

algorithm that is capable of compressing and encrypting 

simultaneously. Higher PSNR indicates good performance. 

From the results it revealed that with all given compression 

ratio, the HISA has shown better performance in terms of 

quality of decrypted images.  

In addition to safety concern, it is also important to be able 

to survive on these attacks for the image encryption framework 

in the light of the variable tolerance of image processing 

operations such as noise addition or cutting, image 

compression, etc. This paper is used to analyse the visual 

output of the decrypted image I' in contrast to the single image 

I by PSNR (Peak Signal-to-Noise Ratio. 

The hybrid approach has provided performance 

improvement. It is also verified against noise attacks. When 

Gaussian noise is added to encrypted image, the proposed 

algorithm is still able to provide acceptable performance in 

terms of quality of decrypted image. When compared with 

state of the art where whole measurement matrix is used as key, 

the proposed methods reduces key space greatly and that has 

influence on performance enhancement. Security is further 

enhanced by using random pixel exchange employed as the 

process of the HISA. The experimental results revealed that 

HISA achieves improved performance in terms of 

compression and security to digital objects.  

 

 
 

Figure 7. PSNR for Lena decrypted image with different compression ratios 

 

 

6. CONCLUSION AND FUTURE WORK 

 

In this paper, we proposed a framework known as Cloud 

Image Security Framework (CISF) leveraging outsourced 

image security. The framework has an underlying algorithm 

named Hybrid Image Security Algorithm (HISA). It is based 

on compressive sensing, simultaneous sensing and encryption 

besides random pixel exchange to ensure multiple 

transformations of input image. The given image is 

compressed and encrypted before outsourcing it to cloud. It 

has multiple transformations in order to ensure high level of 

protection. In the process compressive sensing and random 

pixel exchange are used. Randomly exchanging pixels after 

performing encryption adds another layer of security to the 
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compressed and encrypted image. Another important 

contribution of this paper is reduction of key size which has 

significance in many real time applications in distributed 

environments. Empirical study is made with a prototype made 

using Python data science platform. The experimental results 

revealed that the proposed framework is useful and can help 

data owners or multimedia content providers to securely 

outsource their intellectual property to public cloud. With high 

level of security and increased compression performance, the 

results have given impetus to further investigations. In future 

we enhance our framework to consider requirements 

pertaining to secure deduplication.  
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