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ABSTRACT 

 This paper presents a new neural network single sensor maximum power point tracking algorithm controlling the DC-DC boost converter to 
guarantee the transfer of the proton exchange membrane fuel cell maximum generated power to the load. The implemented neural network 
single sensor controller has been developed and trained firstly in offline mode using single sensor maximum power point tracking data 
obtained previously; and secondly used in online mode to track the maximum output power of the fuel cell power system. Comparative 
simulation results prove the superiority of the proposed neural network single sensor maximum power point compared to the single sensor 
one especially in transit response reducing by the way the overshoot and the tracking time which leads to an overall energy losses reduction. 
In addition, the implemented neural network single sensor MPPT employs only one sensor which will reduce the complexity and the cost of 
PEM fuel cell power system. To our knowledge, this study is a pioneering work using a neural network single sensor controller as PEM fuel 
cell MPPT. 
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NOMENCLATURE  
V Voltage, V 
i Current, A 
T Temperature, K 
P Pressure, bar 
R Resistance, Ω 
A Active area, cm2 
Greek symbols  
ξi (i = 1 to 4) Parametric coefficients 
Subscripts  
FC Fuel Cell 
Nernst Nernst voltage 
act Activation losses 
ohmic Ohmic losses 
conc Concentration losses 
H2 Hydrogen 
O2 Oxygen 
C Contact 
M Membrane 
 
 
1. INTRODUCTION 
 

In the last decades, the demand for clean, green and 
sustainable energy sources has become a strong requirement 
and driving force in the continuity of economic development 
and therefore in the enhancement of human living conditions. 
Consequently, fuel cells and hydrogen energy in general have 
been acknowledged as one of keystones of clean energy 
technologies due to their high energy density, high efficiency, 
and low/zero emissions. Lately, diverse energy sectors like 
transportation, stationary and portable power, and micro-
power have experiencing an explosive growth of applications 
using fuel cells requiring by the way a basic science and 

technology knowledge as well as advanced fuel cell design 
and analysis techniques [1]. 

A fuel cell is an electrochemical device converting 
continuously the chemical energy content of the fuel into 
electrical energy, water, and heat as long via reverse 
electrochemical reactions. Among various types of fuel cells, 
the high temperature solid oxide fuel cell (SOFC) and the 
low temperature proton exchange membrane fuel cell 
(PEMFC) have been identified as the expected fuel cell 
categories that will dominate the market in the near future. 
The PEMFC uses a solid membrane that transports protons. It 
can operate from about 0°C to 80°C with the output power 
ranging from a few watts to several hundred kilowatts[2]. 

One of most relevant issue in fuel cell usage is it's stability 
related to its non regulated output power due especially to the 
heavily influence of changes in electric current, temperature, 
membrane water content, stoichiometry, partial gas pressures, 
gas speed and reactants humidity level on its voltage. As a 
result, the fuel cell maximum power extraction is crucial for 
its economical and optimum usage. Conversely, due to the 
varying load current requirements and the varying operating 
conditions, the extraction of the maximum available power 
varies dynamically during the fuel cell operation making it as 
a challenging task[3]. 

The last decade has observed a vast implementation of fuel 
cell maximum power point tracking (MPPT) controllers [4-5], 
among them: perturb and observe[6], incremental 
conductance[7], sliding mode approach[8], fractional order 
filter strategy[9], hysteresis method[10], extremum seeking 
control[11], fuzzy logic controller[12-13], particle swarm 
optimization controller[14], water cycle algorithm[15], 
unified tracker algorithm [16], eagle strategy method [17], 
neural network approach[18-19], etc. 

This paper presents a new neural network single sensor 
maximum power point tracking algorithm controlling the 
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DC-DC boost converter to guarantee the transfer of the 
proton exchange membrane fuel cell maximum generated 
power to the load. The implemented neural network single 
sensor controller has been developed and trained firstly in 
offline mode using single sensor maximum power point 
tracking data obtained previously; and secondly used in 
online mode to track the maximum output power of the fuel 
cell power system. Comparative simulation results prove the 
superiority of the proposed neural network single sensor 
maximum power point compared to the single sensor one 
especially in transit response reducing by the way the 
overshoot and the tracking time which leads to an overall 
energy losses reduction. In addition, the implemented neural 
network single sensor MPPT employs only one sensor which 
will reduce the complexity and the cost of PEM fuel cell 
power system. The rest of this paper is structured as follows. 
the PEM fuel cell modelling is described in Section 2. 
Section 3 presents the neural network single sensor MPPT 
controller. Simulation results and discussions are presented in 
Section 4; while Section 5 concludes this study. 

 
2. PEM FUEL CELL MODELING 
 

A fuel cell is a simple electrochemical device that 
produces electricity along with water and heat using the 
chemical energy present in hydrogen and oxygen. More 
specifically, hydrogen is fed into the anode, where it is 
separated d into electrons and protons with the help of a 
catalyst. The electrons as they pass through the external 
circuit to reach the cathode provide the electrical current. The 
protons pass through the proton-conducting membrane and 
crossover into the cathode to recombine with the electrons as 
well as the oxygen (which is fed into the cathode) to generate 
water (Fig. 1) [20]. 
 

 
 

Figure 1. PEM fuel cell. 
 

Oxidation of hydrogen reaction at anode: 
 
H2 → 2H+ + 2e− (1) 
 
Reduction of oxygen reaction at a cathode: 
 
O2 + 4e− → 2O−2 (2) 
 
The overall hydrogen reaction is: 
 
 H2 + 1

2
O2 → H2O + electricalenergy + heat (3) 

 

Each cell voltage can be defined by the well known 
expression given by [21]: 
 
VFC = Ener𝐧𝐧st − Vact − Vohmic − Vconc (4) 
 
The reversible open circuit voltage Enernst is approximated by 
[22]: 
 
Enernst = 1.229 − (8.5 × 10−4)(T − 298.15) +
(4.385 × 10−5T[ln (PH2) + 0.5ln(PO2)]  (5) 
 
where T, PO2 and PH2 are the temperature, the oxygen 
pressure and the hydrogen pressure, respectively. 
The activation voltage drop Vact is approximated by [23]: 
 
Vact = ξ1 + ξ2 ∙ T + ξ3 ∙ T ∙ ln(C𝐎𝐎𝐎𝐎) + ξ4 ∙ T ∙ ln(iFC) (6) 
 
where ξi (i = 1 to 4), iFC and CO2 are the parametric coefficients 
for each cell, the cell current and the oxygen’s concentration, 
respectively. 
 
The ohmic linear voltage drop Vohmic is proportional to 
electric current approximated by [24]: 
 
Vohmic = (Rc + Rm). iFC (7) 
 
where iFC, Rc and Rm are the cell current, the contact 
resistance Rc and the membrane resistance, respectively. 
The concentration voltage drop Vconc is approximated by 
[25]: 
 

Vconc = −b ∙ ln (1 −
iFC

A�

Imax
) (8) 

 
where b, iFC, A and Imax are the concentration loss constant, 

the cell current, the cell active area and the maximum current 
density, respectively. 

 
3. PROPOSED NEURAL NETWORK SINGLE 
SENSOR MPPT ALGORITHM 
 
3.1 Methodology 
 

The proposed neural network single sensor adjustable step 
MPPT is developed and trained, initially in offline mode 
required to fix the optimal neural network setting and 
architecture, used finally in online mode to track the PEM 
fuel cell power source maximum output power.  

The developed controller uses the PEM fuel cell current as 
well as the old PWM ratio as inputs to compute the new 
PWM ratio, used as output. Figure 2 shows the proposed 
neural network architecture. 
 

 
 

Figure 2. Proposed neural network controller architecture. 
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3.2 Neural Network training 
 

In this study, the mean squared errors (MSE) algorithm has 
been used to train the neural network controller by 
minimizing the overall error measure between the data 
generated previously using the conventional single sensor 
MPPT[26] and the neural networks output. Figure 3 shows 
the MSE evolution. 

 
 
3.3 Validation and Testing 
 

Once trained, the optimized neural network controller has 
been used to track the maximum available power under 
different operating conditions considering temperature and 
hydrogen pressure changing. Figure 4 shows the validation 
process. 

 

 
 

Figure 3. Mean squared errors 
 
 

 
 

Figure 4. Neural network controller validation. 

4. RESULTS AND DISCUSSION 
 

The Matlab/Simulink neural network single sensor 
maximum power point tracking algorithm implemented 
model controlling the DC-DC boost converter to ensure the 
transfer of the 7kW PEM fuel cell maximum generated 
power to a 50Ω resistive load is shown in Figure 5.  
 

 
 

Figure 5. Developed Matlab/Simulink model 
 

The parameters of the DC-DC boost converter are given in 
Table 1; while the 7kW PEM fuel cell parameters are given 
in Table 2. 
 
 

Table 1. DC-DC boost converter parameters 
 

Parameter Value 
C (µF) 1000 
L (mH) 5 
Resistive Load R (Ω) 50 
Switching frequency Fs (kHz) 10 

 
 

Table 2. 7kW PEM fuel cell parameters 
 

Parameter Value 
Maximum Power at MPP PMPP (W) 7000 
Cell open circuit voltage VOC (V) 1.229 
Cell active surface A (cm2) 200 
Number of cells N 50 
Oxygen partial pressure PO2 (bar) 0.3 
Hydrogen partial pressure PH2 (bar) 2.6 
Nominal voltage Vg (V) 47 

 
 

The performance of the implemented neural network 
single sensor MPPT Matlab/Simulink model has been 
compared to the performance of the single sensor MPPT 
studied previously[26] considering two test cases: 
• Case 1: Fast temperature (T) changing; 
• Case 2: Fast hydrogen pressure (PH2) changing.  

 
The two considered test cases have been used to evaluate 

the efficiency and the capability tracking of the proposed 
MPPT controller by using a fast stepped pattern considered 
as strained testing cases. 
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4.1 Fast temperature (T) changing 
 
In this case, we assess the tracking rapidity of the proposed 

neural network single sensor MPPT considering the fast 
temperature changing as shown in Figure 6. 

 

 
Figure 6. Fast temperature changing profile. 

 
Figure 7 shows the corresponding output power. 
 

 
 

Figure 7. Output power in case of fast temperature changing. 
 

Figures 8 and 9 show the zoom-in of point 1 representing a 
decrease of the temperature from 353K to 323K at 0.6s and 
point 2 representing an increase of the temperature from 
323K to 343K at 1.2s; while Fig. 10 gives the corresponding 
P-I characteristics. 
 

 
 

Figure 8. Overshoot in case of fast temperature decrease 
from 353K to 323K (Point 1). 

 
 

Figure 9. Overshoot in case of fast temperature increase 
from 323K to 343K (Point 2). 

 
 

 
 

Figure 10. P-I curves in case of fast temperature changing. 
 
 
From Figures 8 and 9, the proposed neural network single 

sensor performs better compared to the single sensor one 
especially in case of fast temperature changing providing an 
overshoot reduction (3W for the point 1 and 2W for the 
point2). In addition, the proposed MPPT track effectively the 
maximum output power providing the shortest path reducing 
by the way the tracking time as well as oscillation around the 
maximum power point as shown in Figure 10. 

 
 

4.2 Fast hydrogen pressure (PH2) changing 
 
 

This case serve to evaluate the tracking efficiency of the 
proposed neural network single sensor MPPT in case of fast 
hydrogen pressure changing as shown in Figure 11. 

Figure 12 shows the corresponding output power. While 
Figures 13 and 14 show the zoom-in of point A representing 
a decrease of the hydrogen pressure from 2.6bar to 2.1bar at 
0.6s and point B representing an increase of the hydrogen 
pressure from 2.1bar to 2.6bar at 1.2s; while Figure 15 shows 
the corresponding P-I characteristics according to the 
considered pressure variation. 
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Figure 11. Fast hydrogen pressure changing profile. 
 

From Figures 12 and 13, the neural network single sensor 
provides an overshoot reduction around 3W for the points A 
and B representing a fast hydrogen pressure changing. 
Moreover, as shown in Fig. 14, the neural network single 
sensor MPPT tracks faster the available maximum power 
point by traversing the shortest path which reduces the 
convergence time and consequently reduces power losses. 

From Figures 7 to 10 and 12 to 15, we can conclude that 
the performance of proposed neural network single sensor 
MPPT are superior to those of the single sensor MPPT 
regarding fast changing of temperature or hydrogen pressure 
leading to an overall energy losses reduction. 

 
 

 
 

Figure 12. Out power in case of fast hydrogen pressure 
changing. 

 

 
 

Figure 13. Overshoot in case of fast hydrogen pressure 
decrease from 2.6bar to 2.1bar (Point A). 

 
 

Figure 14. Overshoot in case of fast hydrogen pressure 
increase from 2.1bar to 2.6bar (Point B). 

 

 
 

Figure 15. P-I curves in case of fast hydrogen pressure 
changing. 

 
 

5. CONCLUSIONS 
 

This paper addresses the implementation of a novel neural 
network single sensor MPPT controlling the DC-DC boost 
converter to guarantee the transfer of a 7kW PEM fuel cell 
maximum generated power to a 50Ω resistive load. 
Comparative simulation results obtained using Matlab-
Simulink software prove the superiority of the neural 
network single sensor maximum power point compared to 
the single sensor one especially in transit response reducing 
by the way the overshoot and the tracking time which leads 
to an overall energy losses reduction.In addition, the 
implemented neural network single sensor MPPT employs 
only one sensor which will reduce the complexity and the 
cost of PEM fuel cell power system. As future work, we 
work currently on the experimental validation of the 
developed neural network single sensor MPPT in the 
hardware in the loop mode using the STM32F4 board. 
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