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ABSTRACT. The quasi-periodic solutions of nonlinear Hamiltonian system are important tools to
enhance our understanding of dynamic behaviours. Therefore, this paper probes into a popular,
completely resonant nonlinear beam equation. In the equation model, there is a nonlinear term
periodic in the space variable and quasi-periodic in the time variable. The external frequency
vector is 2-dimensional. Using the Kolmogorov-Arnold-Moser (KAM) method and the normal
form, the author proved the existence of quasi-periodic solutions with two frequencies and gave
the analytical expression. The solutions are small amplitude and linearly stable. The research
findings shed new light on measurement estimation and normal form technique, provide new
insights into the dynamics of beam equation, and promote the application of the KAM method.

RESUME. Les solutions quasi pé&iodiques du systéne hamiltonien nonlin&ire sont des outils
importants pour ame@iorer notre compréhension des comportements dynamiques. Par
conséjuent, cet article explore une éjuation de faisceau non lin&ire tré populaire et
compléement ré&sonante. Dans le modée d'ejuation, il existe un terme nonlinéire pé&iodique
dans la variable d'espace et quasi pé&iodique dans la variable de temps. Le vecteur de
fréguence externe est bidimensionnel. En utilisant la mé&hode de Kolmogorov-Arnold-Moser
(KAM) et la forme normale, I'auteur a prouvél'existence de solutions quasi-p€&iodiques adeux
fré&uences et a donné I'expression analytique. Les solutions sont de faible amplitude et
linéairement stables. Les résultats de la recherche jéte un nouvel éclairage sur l’estimation des
mesures et la technique de la forme normale, donne une nouvelle perception de la dynamique
de [’équation du faisceau et promouvoir [’application de la méthode KAM.

KEYWORDS: kolmogorov-arnold-moser (KAM) method, hamiltonian, beam equation, quasi-
periodic solution, normal form.

MOTS-CLES: mthode de kolmogorov-arnold-moser (KAM), hamiltonien, éjuation du faisceau,
solution quasi periodique, forme normale.

DOI:10.3166/JESA.51.259-271 © 2018 Lavoisier

Journal européen des systémes automatisés — n<4-6/2018, 259-271



260 JESA. Volume 51 — n=4-6/2018

1. Introduction

This paper discusses the existence of quasi-periodic solutions for a beam equation
Upr + Uypnx + f(08,x,u) = 0,x € [0,7] (1.1)

under the hinged boundary conditions
u(t,0) = Uy, (t,0) = u(t,m) = uy (t, ™) =0, (1.2)

where w = (wq, w,) € [n,2n]? is a frequency vector with n > 0; f(wt, x,u) is a
quasi-periodic nonlinear term in the time variable, and f(wt, x,u) = f(IJ,x,u) (¥ €
T?:=R?/2n7Z*) isa real analytic function in 9 and x.

The purpose of the discussion is to verify whether the small amplitude quasi-
periodic solutions of u;; + U, = 0 can persist under perturbation, whether the
finite-dimensional tori is linearly stable, and whether quasi-periodic solutions have
zero Lyapunov exponents.

For non-autonomous Hamiltonian systems like Equation (1.1), their quasi-
periodic solutions are mainly investigated by the Lyapunov-Schmidt decomposition.
However, the quasi-periodic solutions thus obtained tend to be global, failing to
provide dynamical information around equilibrium points. Here, the Kolmogorov-
Arnold-Moser (KAM) method is adopted to solve the problem.

The KAM theory, named after its proposer Kolmogorov, Arnold, and Moser, is
one of the most important mathematical achievements in the 20th century. Later,
Wayne, Kuksin, and P&chel developed the infinite-dimensional KAM theory, which
produces quasi-periodic solutions with dynamic properties like linear stability (Chen,
2017; Chen et al., 2017; Cao and Yuan, 2017; Si and Si, 2017; Si and Si, 2018) and
vanishing Lyapunov exponents.

The KAM method can be applied to examine the Hamiltonian partial differential
equations (PDEs) in the following manner: transforming nonlinear equations into
infinite-dimensional Hamiltonian systems; constructing canonical transformations
that can change the Hamiltonians to suitable Birkhoff normal forms; looking for
quasi-periodic solutions though KAM iterations, that is, setting up a KAM theorem.

Much research has been done on the quasi-periodic solutions of nonlinear beam
equations (Eliasson et al., 2016; Geng and You, 2003; Geng and You, 2006; Geng
and Zhou, 2018; Liang and Geng, 2006; Procesi, 2010). However, there is only a few
reports on those of complete resonant equations. Geng and You (2006) tackle a
complete resonant beam equation with a nonlinear term u3. Tuo and Si (2015) probe
into a beam equation with nonlinearity ¢ (t)u® (Gao and Liu, 2017; Ge and Geng,
2018).

In this paper, it is assumed that f in Equation (1.1) has a special nonlinear
formf (t, x,u) = Sy (wt, x)u3, where & is a small positive parameter and v is quasi-
periodic in t and periodic in x. This model is very difficult to solve because of the
dependence of nonlinearity on time and space variables, but it is widely applicable.
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Equation (1.1) is a perturbation of the linear beam equation u;; + Uy =0
whose solution can be written as u(t, x) = Y jcsq; (0)¢;(x), q;(t) = [; cos(j%t +

@)). Here, for j € Z*, ¢;(x) = \/%sinjx; J is any subset of Z*:={1,2,--};

amplitudes I; = 0 and <p}) are initial phases. The solutions travel on a rotational torus,
which is finite- or infinite-dimensional. Every torus is linearly stable. The Lyapunov
exponents of all solutions are zero. Unfortunately, not all the invariant manifolds will
be preserved under the perturbation of f, owing to the numerous resonances and the
strong perturbation of f on solutions of large amplitude.

This paper innovatively transforms the Hamiltonian into its Birkhoff normal form,
despite falling short of the zero-momentum conditions. The perturbation was divided
into two parts to overcome the difficulty of small divisor. One part satisfies zero-
momentum conditions while the other part does not. Thus, several conditions were

added in Section 3. Then, it is necessary to estimate the measure of the parameter o,
so as to maximize the number of parameters satisfying these conditions. Fortunately,
the growth of eigenvalues is quartic, which is crucial for measure estimation. The
KAM iterations here are in the standard form (Liu and Yuan, 2014), and are thus
omitted.

The remainder of this paper is organized as follows: Section 2 transforms the
equation into an infinite-dimensional Hamiltonian system; Section 3 obtains the
Birkhoff normal form; Section 4 relies on the normal form to prove the existence of
quasi-periodic solution and give an analytic expression.

2. Hamiltonian setting

Firstly, Equation (1.1) was converted to a Hamiltonian system. Under Equation
4
(1.2), the operator B = % has eigenvalues {; = j* and eigenfunctions ¢;(x)

\/%sinjx, where j € Z*:={1,2,--} . Let D;(0y):={I| ImI]| < 7;}, |¥l2q:
sup [P, x)| for 9 € Di(0y) , Dr(2a):= {x| [Imx| < 2a}, and [YP|g, 24:=

x€Dy(2a)

sup [ (@@, x|

(9,x)ED1(01)%XD2(2a)

It is assumed that <-->is the standard inner product in C?; (-,-)is the scalar
product in L?[0, ], the space of real-valued sequences is

199 =1[R):={q = (91,92 (1qllas)* = Biz1 | @i[*i%°e** <0} (a>

1 .

O,S > E),
o, > 0 and g; has a positive lower bound &;,a is a positive real number, and

“measure ” refers to the Lebesgue measure. For function vy, the following
assumptions were put forward:
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(A1) ¥ has a Fourier expansion (9, x) = Yo + X cr2y Wi () e <KY> with0 =
keZ"\{0}

1!)0 E R-
(A2) ¢ can analytically extend to D; (a1) X D,(2a) with [, 24 < .

(A3) 92k*1(9,0) = 0,Vk € N.
By introducing d,u = v, d,v + Bu = =5 (wt, x)u®, Equation (1.1) can be
changed to a Hamiltonian system H = %(v, v) + é(Bu, u) + %f:w (wt, x)u*dx. If

2,>1"’“) ;00 (6, X) = Lj21 41T 0, (DB, (),

03

Where q = (q1,q2,*) ,p = (P1, D2,
can be transformed to H = A + 6G, and

u(t,x) =

-) and p, q € 1*®., then the Hamiltonian

=251y (a3 +03).G =2 [T (wt,x) z,>1"f)¢,() dx.

Then, the Hamiltonian system can be expressed as:

=GP0 = —5-= /34, — ,-' >1 2.1)

The corresponding symplectic structure is ). d q; A dp; on 1% X [%5. According
to Geng and You (2003), if the solution of Equation (2.1) (p(t), q(t)) is real analytic

for t € I, then for (t,x) €x [0, ],

q;(t) 2.2)

u(t:x) Z]>1 J7¢]()

must be a real analytic classical solution of Equation (1.1), where I is a real interval.
Thus, this paper attempts to find a solution with the form (2.2).

Then, action-angle variables J € R* and ¥ € T? were introduced to obtain an
autonomous system. In this way, the Hamiltonian and the Hamiltonian system can be

transformed into

H=<w,] >+ 3 (@} +pP) +66(q,9) (2.3)
and
. _OH . OH & _ '__B_G__ afo)(dx
qj_apj'pj_ aq]"ﬁ_ ]_ 6619_ (]>1)

The corresponding symplectic structure becomes d9 AdJ + Y d q; Adp;. The
following lemma can be proved by the method for Lemma 2.3 in Wang et al. (2018).



A nonlinear non-autonomous Hamiltonian system 263

Lemma2.1The gradlent— is real analytic and satisfies || ||as = 0((llqllas)?)-

3. Brikhoff normal form

This section transforms the Hamiltonian into a Birkhoff normal form. The
complex coordinates z = (z4,2,,**) , Z = (Z1,22,-~-) and z,z € I*5(C) were
adopted, where z; = q‘\;”‘, z; = %for i € Z*.Then, a real analytic Hamiltonian
can be obtained as:

H=A+6G, (3.1)

where A =< w,] > +3;./3; 2z, G =7 [ % (&%) (zmz 2 ¢,(x)) dx.

The corresponding symplectic structure becomes d9 AdJ +iY,;dz; Adz; .
Moreover, we have

_ 1 611L213L4
G = Ezll,lz,l3,l4EZ+, t1tipti3+14=0 112314 ( ’-1 + Zl1)(zlz + ZlZ)(ZLS + Zl3)(zl4

5 1 Skuipizi ick9>
Zl4) + Rzlklzl,zl,zz,z;;,qefr 1i2l30a e (Zl1 + Zl1)(zlz + le)(zls + Zl3)(zl4 +
z,),

where
L1£2£3L4 1/)0 f ¢11 ¢L2 ¢)L3 ¢)L4dx (32)
and
Gk,L1£2L3L4 = J'O’T l/}k (x)¢£1¢L2¢)L3¢)L4dx' |k| =1 (33)
Itis obvious that G,, ,,,,,, = 0. unless t; + ¢, + ¢35 + ¢, = 0 and
G =Pt 34
l1lplgly — 27.[( + lllz)' ( . )
where §,,,, = 1foriy =1,,and §,,,, = 0 for iy # ;.

Next, an admissible set 4: = {(n,,n;)|n,, n, are odd, n, # 7mod(14), n, >
6n?} was selected, which satisfies the Definition 3.1 in Liang and Geng (2006). Three
sets of vectors (1, 1y, L, 1) € Z5. were defined for each index set 7: the set 4, that
4,13, and ¢, are all in g, the set 4; that 4 — j of 1y, 15,5, and ¢, are in g for j=1,2,
and the set A; that none or only one of 1,13, and ¢, is in 7. Let 7, =
(it u) = (k0 kL)) 61 = 4 N4 and &, = 4, N 4,.

The next step is to construct a Hamiltonian S and use its vector-field X to
transform Equation (3.1) into a fourth-order partial Birkhoff form, so as to study it as
a perturbation of a nonlinear integrable system. However, the divisors have to be
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assumed as nonzero because of the small divisors of the Hamiltonian. Thus, it is
necessary to estimate the measure of parameters which make the divisors zero. For

this purpose, notations A4:= 4,U 4, U 4, and A= (A\&D) U 4, U(4,\é&,) were
introduced.

Lemma 3.1 If (14, 15, 13,14) € 4 and k are not zero and § is sufficiently small, then
there isa set 2 c [1, 2n]? satisfying that, for each w € 2 and+,/¢, + ./, + /¢, +

Va # 0,
VT 1T, £, £ t< ko >| 215 (35)

_ 1
Moreover, meas{ = n? (1 - C26§), where C, is a constant depending on 7, n,
and n,.

Proof Assuming that:

hL1L2L3L4,k =y (Ll ty (Lz t (L3 . (L4+< k,w >,
1
n83
RL1L2L3L4,k = {w €[n, 27]]2: |hL1L2L3L4,k| < W}'

1 _ 2 _
= U|k|21 U(l1.lz.ls.l4)€41 Rlllzlslz;.k ,and Q° = U|k|21 U(l1.lz.13.l4)€4\z Rlllzlsl4.k'

It is evident that 2 = 2° U 2 U N2. For hyperplanes

1
G £l £ T £ Gt < w >= £ 1%
We have

1 1
2n6§<4\/76§ 2

MeasureR, .., x < 2|k|™*V2n

lkl* = kI
ok
Hence, MeasureR, ..., k < C%, where C is an absolute constant. Note that
AkeZ?|kl=1}<2%,lez". (3.6)

Case I. If (14, 15,13, 14) € 4y, then it can be deduced from (3.6) that:
0 "125% 4
MeasureQ” < CZWElW(nZ -+ 1D)*<Cn,—ny +

1 1
1)*n*53 le|k|=ll_5 221.

1
Since 2121% is convergent, Measure2® < Cn?§3, and C is dependent of n,, n,
and 7.
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Case Il. For (15,15, 13,14) € 44, it is assumed that ¢, € 4. The other cases can be
treated by analogy. Then, it can be derived that
| <k,w>=+/0, /0, £/3,] < 2nlk| + 3n3.
If |u] > +/2n|k| + 3nZ% + 1 and § is sufficiently small,

|hL1L2L3L4,k| 2 | i\/ (L4| - | <kw> i\/(tl i\/(lz i\/(l3| > ankl + 371% +
1

L1
1—(2nlk| +3n2) =1> ”lk‘ff.

Thus, it only needs to discuss 1 <1, < /2n|k| + 3n3 + 1. Therefore,

1
253 1
MeasureQ' < CZ|,(|21“'Z|T5|;(712 —ny + 1)3/2nlk| + 3nZ + 1 < Cn?63(n, —
1 1
M1+ 1)° S oz < C1285(np =y +1)° Tipa 2% U5 < €165,
and C is dependent of n,, n, and 7.

Case 1. For (i, ty,13,14) € 45, it is assumed that ¢, and 13 € 4 without loss of
generality.

Case -1, If+,/7 + /7, =0, then |h, il = | <k w>£/0 /3]

Assuming that

0%' = Upgzr U — R
[k|=1 130487, 11,1267, £ [C1at [T =0 l1ipt31g,k

Then, we have

1
253 1
MeasureQ*! < CZ|k|21%(nz -ny +1)2<Cn?83(n, —ny +
1 1 1 1
1)? Zlklzlﬁ < Cn?83(ny — ny + 1)% ¥p5q 2 ls= Cn?ss,
where the constant C depends on n,, n, and 7.

Case I11-2. If £,/7,, + /7, # 0, then i3 — 1, # 0. Without loss of generality, it
is assumed that 13 > 1,. Thus, 13 — t,: = t, = 1. Moreover,

| £ /0 20 28— = (15— 1) (i3 +1a) =t (21 + ty). (3.7)

If 1, >K:=nlk|+nj, it can be derived that | £,/ +./,| =21, + 1ty >
2K + 1. Since

| <k,w>+/0, /0, < 2nlk| +2n} (3.8)
and

|hL1L2L3L4,k| 2 | i ‘\/’Qi ‘\/Cl - | < k'w > i\/z i ‘\/Cl' (3'9)
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1
n%53
[ke|*

M yigiaie] > 2K +1=2n]k| —2ni =1>C

istrue if & is sufficiently small. Hence, it only needs to analyse 1 < ¢, < K. Ift, >
K + 1, it can be deduced from (3.7) that

| £ /3, £0,1 = 2tot, +t§ > 2ty = 2K + 2.

It follows from (3.8) and (3.9) that

M yisiai] = 2K + 2 — 2n]k| — 2n% = 2n|k| + 2n3 + 2 — 2n|k| —2n3 =2 >
n25%
K|+’

as & is sufficiently small. Thus, it is necessary to study the case 1 < t, < K + 1.
Thus, 1 < 13 = 1, + to < 2K + 2. Assuming that

2% = U221 U — R
|k|21 tats€d, 11,1 €T, + N e L1lpt3lg,k

then we have

1
5L
MeasureQ?*?* < CZ|k|zlﬁ(n2 —n, + D2(|k] + n3)2nlk| + 2n3 +2) <
1
Cn?83(ny —ny +1)° Z|k|z1ﬁ(n2 —ny + D?(lk| +n3)(2nlk| +2nf +2) <
1 1
Cn?83(ny, —ny + 1)2 Y5, 221 z% < Cn?853,
where C is dependent of n,, n, and n. Thus, for (i, t,,(3,14) € 4,, there exists a
1
constant C satisfying MeasureQ? < Cn?83.
- - - 1
To sum up, assuming 2 = [n, 2n]*\2, measQ > (1 — C,63)n? is valid, where
the constant C, is dependent of n,, n, and 7.

Proposition 3.1 Concerning the Hamiltonian (3.1), if parameter § is sufficiently
small for each index set ., then there is a subset 2 c [n, 25]? satisfying Measure2 >
0 such that for each w € £, there exists a transformation Y"that changes (3.1) to a
normal form,

HY' = A+ 686G + 6G + §%K,

where
- - 1 -
G(z,2) = 521167 or 1,€7 GL1L2 |ZL1|2|ZL2|2' (3.10)
3Yo
= _ ZHL%L% b F b
Glﬂz - Yo
2,20 Lo,

8mLy L5
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G = Z(tl,LZ,L3,L4)EA3, t1tip i3 +1,=0 ¢L1L2L3L4 (ZL1 + Z_Ll)(zlz + Z_LZ)(ZL?, + Z-l3)(zt4 +
Z,) + Xjpsr K>

Z(Ll,tz,L3,L4)EA3 wk,L1L2L3L4 (ZL1 + Z_Ll)(zlz + Z_Lz)(zl3 + Z-l3)(zl4 + Z_L4)' (3-11)

1
and 83|K| = 0((||z]la5)®). The transformation is real analytic and canonical. Besides,
Y'is well defined in Dl(%) X U, with U < [** being a neighbourhood of the origin.

Proof Let z; = w;, z; = w_; (j = 1) and w, = 0. Then, we have
H=<w]> +Zf21\/ cf Wiw_j + 62!1'12.13&4' |11|i|12|i|13|i|l4|=0¢111213l4wllW12W13WL4
i<k,9>
+6 Z|k|21 le,Lz,Lg,L4 lzbk,L1L2L3L4el WL1 WLZ WL3 Wl4l
where i, t,,13,1, € Z/{0} and

_ Giiipi3ty _ Gkiipt314

T 16|utpt3ta]” l’bk'L1‘2‘3L4'

¢L1‘2‘3‘4' 16|t1tzt314]

Clearly,
Viyipiz, = 0 unless || + [ip] £ i3] £ eg| = 0. 3.12)

Assuming that
S =6S= 5211,12,13'%5

l1l213lg Wl1 le Wl3 Wl4 +

i<k,9
52|k|212£1,12,L3,l4Sk,L112L3L4eL< >WL1W12W13W14
with coefficients
iSl1¢2¢3‘4 =
a4 ] & il £ 1] = 0 and [l [, s, |l € 4,

)
S A

0, otherwise.

and for k # 0,

Y, =
Peuatsts | > 1,4, o), li5], e € dand

{Llr + (LZ, + 613' + ("4’ = O’

iS = Viiq101304 = -
Kigtpt3ts GGG G, s k|l =1, |yl ezl 3], |tsa] € 4,and

{Llf + (LZ' + §L3' + 514' *0,
0,otherwise,

where ;' = sgni - |i|*.

FOr Sy, 1050, the divisor [ <+ ¢ -+ -+, | = 1for all ([i, [j],1d], |I]) € A
according to the definition of admissible set. Lemma 3.1 in Wang et al. (2018) shows
that there exists a subset 2 < [n,2n]? such that, for all 0 # k € Z*, any w € 2
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1

satisfies | < k,w > | > = > and Measure N=01- Claz)n where the constant C,

Ik 1
is an absolute constant. Considering Lemma 3.1, it is assumed that 2 = 2 n Q. Thus,

1
Measure 2 = n%(1 — €43) is valid and Measure £2 > 0 as § sufficiently small. Using
the same proof for Proposition 3.1 in Wang et al. (2018), it can be proved that the

vector-field of Xs is real analytic in some complex neighbourhood 9 € Dl( L) of T’

and a neighbourhood of the origin in [*°. Moreover, ”ﬁ” < —1(||w||,1,s)3 is true.
a,s 53

)

Let Y= X2 be the time-one map of vector field, then Y satisfies the result of this
theorem. Other estimates can be found in Proposition 3.1 in Wang et al. (2018). Q.E.D.

4, Conclusions

Letg; € [0,1]and Z;: = Z*\ 4. Under the complex coordinates

Zn1 = ¢1 + Ile_ielx
Zn, = /2 + Le 2, (4.1)
Zj = W],] S Zl'
the Hamiltonian can be transformed into
H=Y1c0w )i+ Yicjc2 @i i + Tiez, Qwy + P. (4.2)
The corresponding  symplectic  structure  becomes Y.<, d9; AdJ; +
lejszdej /\dlj + izlezldwl A dV_Vl ) Where P = 66 + 66 + 62K, Wlth é =
1 - - ~
Elei,jsz Gninj (Ii + Ci)([j + Cj) + Zlezl, 1<l<2 Glnj (1] + Cj)|Wl|2: o=a+ SAC'
G G
=¢+0Bs, @ = (T, 7, ) ¢ =/Qier, and 4 = <Gn1n1 Gnﬂlz) B =
nanq nyny
Glnz\
GZnZ !

0
\Glnl G_lnz)

3 =
Assuming thatw = w_ + 820, @ € [0,1]%, where w_ € Qis fixed and w € Q:
3 =
{w€N||w—w_| <82}, itisclear that 2 x [0,1]? < 2 % [0,1]?.

Ql Ql

€74

1 1 1
Then, the variables were scaled by setting @ = 62&, ¢ = 8§2¢, w = 8+, W =
1 1_ 1_ ) :
8+w, I = 821, and ] = §z]. The scaled Hamiltonian can be expressed as:
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i = 572H(9, 63,0, 871, 51, 53, 516, 65¢) = Yciey @1 Ji + Sacien &, I, +
Yjez, 2 Wjw; + P,

where @;(®) =6 tw_; + 8@y, Dy (0) =6 tw_y + 8@y, (@) =
(@1(&), 3,(8)),8(5) = 6%a + 62A¢, and A(¢) = 67¢ + §7B¢. It is clear that
w=6&,w=346@,and ) = 5.

Then, some notations were introduced as @; = @;(@), @, = @&,(d) ,
1

@1($),@2(8);0 = (@(@), &()); § = (@,¢) €11; 1 =[B,2p]; and f = §73. Let
go ="t and r =7,, where 0 <7, < 1 and 7, is a constant. Let o = min{?,%},

My =1, Myp = 2200 py = 2000 0 = maxe{ My, + My, My}, 7> 9, 1= 2143,
1 _ ¥$
Yo < T andy = PYCTERTETILE Note that M does not depend on §.

For a function @, the corresponding Hamiltonian vector field can be defined as
Xo = (Q7,—Q9,Q1,—Q0,iQs —iQw)",
and the weighted norm for X, can be defined as:

1 1 1 1
1 Xolr.n = =z 1Qslln + =z 1Q6lln + 11Q1lln + - 1@wllasn + - 1@ llasn

where
5
agl |

6
Taking 6 < (m o 2#*3)2 and using the same proof for Theorem 4.1 in

Wang et al. (2018), it can be derived that there exists a setiT; < I1, a family of torus
embedding @: T* x [Ts — P%S and a map &, = (@,, @,): [Is — R*. that satisfy the
following conditions: for any & € ITs, the map & restricted to T* x {¢} is a real
analytic embedding of a rotational torus, whose frequency vector is &, (&) for H at &;
I is a Cantor set, and @, &, are Whitney smooth; every embedding is real analytic

1 — 1
in [Imd| <> and [Im| <7 ; |® —Ppl; <+ and [|&p — B < 82 hold
uniformly, where @, is the trivial embedding.

1@l = max {SuplQI,sup
éen éen

Returning [T to the subset in 2 x [0,1]%, namely X, there exists a Cantor set
X5 2 x [0,1]? satisfying the result in the following Theorem 4.1. Returning &, to
the frequencies in the system with Hamiltonian (4.2), namely &, the frequency vector
can be estimated. Therefore, the nonlinear equation (1.1) admits a Cantor family of
rotational tori, which are 4-dimensional. Their frequency vectors are &, =
(o1, Wo2, Don,, Don,), Where wo; = wy + 0(8), woz = wy + 0(8), Wop, = Cn, +
0(6), and @y, = {n, + O(5). A big part of the family of tori persists under small
perturbations and is linearly stable. The quasi-periodic solutions have small
amplitudes and zero Lyapunov exponents. In short, the following theorem is valid.
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Theorem 4.1 Assuming that (A1), (A2) and (A3) are valid, for every admissible
index set 7: = {(ny,ny)|ny, ny are odd, n, # 7mod(14), n, > 6n?}, there exits
a 6" which satisfies the following condition: for 0 < § < &7, there exist sets 2 c
[n,2n]* and Zs c X:= 02 x [0,1]* such that for any & = (w1, Wy 6n,,6n,) € Zs,
Equation (1.1) under the conditions (1.2) has a quasi-periodic solution

1
Sny +0(84)

u(t,x) = nil sinny x cos oy, (§)t +

1
2 |Snp +0(8%)

1
~ Sinn, X €0Ss Wop, (§)t + 0(64),
2

where |@; — j?| < ¢6, 2 and X5 have positive Lebesgue measures.

Les diffé&entes sections sont numérotées de 1’introduction jusqu’a la conclusion.
Les remerciements et la bibliographie (ainsi que 1’extended abstract) ne sont pas
nume&otés. Les intertitres sont aligné& agauche sans aliné, comme suit. Les espaces
au-dessus s’annulent quand ils sont pré&élés par un autre inter.
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