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 In the modern era, deep learning is a powerful technique in the field of wind energy 

forecasting. The deep neural network effectively handles the seasonal variation and 

uncertainty characteristics of wind speed by proper structural design, objective function 

optimization, and feature learning. The present paper focuses on the critical analysis of 

wind energy forecasting using deep learning based Recurrent neural networks (RNN) 

models. It explores RNN and its variants, such as simple RNN, Long Short Term Memory 

(LSTM), Gated Recurrent Unit (GRU), and Bidirectional RNN models. The recurrent 

neural network processes the input time series data sequentially and captures well the 

temporal dependencies exist in the successive input data. This review investigates the RNN 

models of wind energy forecasting, the data sources utilized, and the performance achieved 

in terms of the error measures. The overall review shows that the deep learning based RNN 

improves the performance of wind energy forecasting compared to the conventional 

techniques. 
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1. INTRODUCTION 

 

In the modern era, the wind energy is attracted by many 

companies for power generation. It is more competitive due to 

the economic and cost-effective manner compared to 

traditional power generation. Due to the clean, green, and 

naturally replenished characteristics of renewable energy, it 

acts as a promising alternative to fossil fuels such as natural 

gas, oil, and coal. The reliability and stability of the energy 

systems depend on the proper scheduling of the energy 

generation. However, the uncertain nature of the renewable 

energy imposes issues in reliability and stability of energy 

systems. The wind energy, biomass energy, solar energy, 

geothermal energy, and hydropower are the existing 

renewable energy sources in the world. Among the number of 

renewable energy sources available, the wind energy source 

plays an important role in producing power, and it is the 

rapidly growing wind energy farm. From the data published 

by World Wind Energy Association (WWEA), the total 

installed capacity of all wind turbines reached 650.8 Gigawatt 

globally by the end of 2019. Figure 1 shows the year-wise 

growth of wind energy in terms of total installed capacity. 

The reserve capacity of the wind energy systems may 

increase due to its uncertain characteristics such as 

randomness, volatility, and intermittent. It is an essential 

requirement in electrical power and energy systems for proper 

planning, operation, and management [1]. The wind energy 

forecasting plays an important role in timely power generation 

through accurate forecasting. Based on the time horizon, it is 

mainly categorized into four types of wind energy forecasting, 

namely very-short term, short-term, medium-term, and long-

term forecasting. The very short-term wind energy forecasting 

is utilized to control the wind turbine and monitoring load in 

time ranges from a few seconds to 30 minutes. The time 

horizon of short term wind energy forecasting ranges from 

30min to 6 hours and is utilized for load sharing. The medium-

term wind energy forecasting is utilized for energy trading & 

management of power systems and the time horizon ranges 

from 6 hours to 24 hours. The long-term wind energy 

forecasting is utilized for scheduling the wind turbine 

maintenance and it ranges from 1 day to 7 days [2]. 

 

 
 

Figure 1. Growth of wind energy 

 

The uncertain nature of the wind speed creates a big 

challenge for a few minutes to hours ahead of wind energy 

forecasting. In the literature, several models based on physical, 

statistical, and hybrid approaches were devoted to improving 

wind speed and wind power forecasting. The forecasting using 

physical approaches considers the parameters related to wind 

flow's physical characteristics inside and outside the wind 

farm, such as roughness, farm layout & obstacles, and weather 

forecast data such as humidity, temperature, and pressure. On 

Revue d'Intelligence Artificielle 
Vol. 35, No. 1, February, 2021, pp. 1-10 

 

Journal homepage: http://iieta.org/journals/ria 
 

1

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.350101&domain=pdf


 

the other hand, in the statistical approach, the forecasting is 

performed by utilizing the historical measurement data and 

produces the forecast output by employing the statistical 

models. It does not consider the physical phenomena for the 

forecasting. The popular statistical approaches in use are the 

regression tree [3], Auto Regressive Moving Average (ARMA) 

[4], artificial neural networks [5], fuzzy logic, and support 

vector machine. The statistical approach guarantees good 

forecasting accuracy for the time series forecasting [6]. 

The hybrid models integrate two or more methods to avail 

of the advantages of them. The hybrid models guarantee better 

performance than the individual models in wind energy 

forecasting. The hybrid models include ensemble learning, 

optimization, feature selection, and decomposition techniques. 

The ensemble learning based models construct different 

models and then integrates them to solve problems [7]. The 

heuristics optimization methods improve forecasting 

performance by optimizing the parameters of the model [8]. 

The feature selection and decomposition methods consider the 

series of historical wind speed and wind power data and 

improve the performance of forecasting by reducing the 

forecasting error. The decomposition based models belong to 

the category of hybrid model that decomposes the stationary 

series of data into multiple non-stationary subseries of data and 

then constructs the forecasting models for each subseries of 

data.  

The wavelet transformation is the popular method utilized 

for the time series analysis to perform the transformation in 

time and also frequency domains. In wind energy forecasting, 

the discrete wavelet transform is applied to the discrete form 

of wind speed data. The Empirical Mode Decomposition 

(EMD) is another method for decomposing the time series data 

into a set of Intrinsic Mode Functions (IMFs) where for each 

IMF, different residue and frequency bands are assigned. The 

local properties of the time series data define frequency band 

and residue of the IMF. The empirical mode decomposition 

method has proved its efficiency in a variety of applications 

involving the nonlinear and non-stationary processes [9-13]. 

In general, the forecasting model's performance depends on 

the quality of the input data provided for the training process. 

The feature selection is an important pre-processing method 

for selecting the significant features related to the target 

feature from the list of input features. It identifies the 

significant features by measuring the correlation between the 

features. Hence, it tunes the input given to the forecasting 

model, which leads to improving the performance of the wind 

energy forecasting model [14-17]. The generalization and 

feature extraction capabilities of the artificial intelligence-

based approaches make them outperform the physical and 

statistical approaches in forecasting wind speed and wind 

power. 

This paper focusses on the critical analysis of the recent 

review on wind energy forecasting using RNN models. This 

organization of the paper consists of six sections: Section 1 

discusses the challenges available in the wind energy 

forecasting and types of forecasting. Section 2 presents the 

significance of deep learning and a recurrent neural network. 

Section 3 explains the deep learning approaches such as 

Simple RNN, Bidirectional RNN, LSTM, and GRU. Section 4 

discusses the performance measures utilized for the 

assessment of RNN methodologies in wind energy forecasting. 

Section 5, discusses the development of wind energy 

forecasting models using deep learning based RNN. Finally, 

the conclusion of this study is provided in section 6.  

2. RECURRENT NEURAL NETWORKS FOR DEEP 

LEARNING 

 

The Artificial Neural Network (ANN) is a popular method 

employed by various researchers for forecasting. It applied in 

many applications for the evaluation of nonlinear network 

structure, forecasting, pattern recognition, classification, 

clustering, and optimization techniques. The network is tuned 

to reduce the error by updating the bias and weight values 

during training. The performance of the network is improved 

with the number of samples. It consists of three dominant 

learning paradigms. They are supervised learning, 

unsupervised learning, and reinforcement learning. 

Supervised learning utilizes the training data comprised of the 

input vector along with the target vector. During learning, the 

difference between the actual target vector is compared against 

the forecast vector. The network is adjusted according to the 

difference until the forecast vector matches the actual vector. 

Unsupervised learning utilizes the training data with input 

vector only. During the training, the network learns by using 

the input patterns and forms the clusters. It can find the 

patterns, features, relations, categories, and regularities of 

input over the output. In reinforcement learning, the network 

receives some feedback from the environment. Many experts 

performed research using the ANN technique for improving 

the performance of wind energy prediction and exposed the 

importance of the selection procedure in achieving the goal [18, 

19].  

Li and Shi [20] investigated three different artificial neural 

networks namely radial basis function, adaptive linear element, 

and backpropagation for forecasting the wind speed. Dumitru 

and Gligor [21] proposed the feed-forward neural network 

based model for forecasting the daily average wind power. Liu 

at al. [22] introduced the probabilistic neural network and 

complex-valued recurrent neural networks to predict wind 

power. Wu et al. [23] proposed the neural network model for 

wind power forecasting, where the radial basis function is 

utilized. Monfared et al. [24] developed the fuzzy logic and 

ANN-based model for wind speed forecasting. However, these 

ANN algorithms need a feature extraction from the input data. 

Feature extraction is a difficult task, which requires expert 

knowledge to perform appropriately. 

Features taken from each sample of data are fed into neural 

network algorithms. Such algorithms referred to as "shallow 

model" algorithms because they consist of very few 

composition layers. The shallow models have the neural 

network structure without hidden layers or with only one 

hidden layer. The learning process of shallow models requires 

more knowledge, skill, and challenging to analyze 

theoretically. Subsequently, shallow models can suffer from 

network instability, feature extraction process, weak 

generalization capability, and non-convergence parameters 

because of the uncertain and volatile nature of wind energy 

data. To avoid this difficulty from the shallow model, deep 

learning concepts were introduced. It consists of one or more 

hidden layers. The main aim is to automatically learn the 

feature hierarchy, avoid data overfitting problems, solve 

complex features, and transfer learning. 

The wind energy forecasting with deep learning architecture 

was developed based on these characteristics [1, 25]. RNN 

models are popular approaches that are branches in the field of 

deep learning. Recurrent models follow the sequential 

approach to input data processing and the temporal 

dependency between successive data can be well captured. 
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Nowadays, deep learning has more attractiveness due to its 

dominant features such as feature engineering on its own, 

satisfactory results with unstructured data, strong 

generalization capability, handling the big-data & time-series 

data. It is most suitable for real-world applications. The neural 

network is built by arranging neurons in three layers. They are 

the input layer, hidden, and output layers. The network 

consists of only one input and output layer and one or more 

number of hidden layers in between input and output layers. 

The neurons in subsequent layers are connected through 

weighted links. Each neuron is characterized by its weight, 

bias, and activation function and these are organized into three 

layers. The weight and bias of the neuron are updated based 

on the error value. The main task performed by each neuron in 

the network is to calculate the weighted sum of the input signal 

and then apply the activation function on it. There is one node 

corresponding to each input in the input vector. So, the number 

of neurons forming the input layer depends on the number of 

attributes or features that acts as an input to the neural network. 

The input layer passes the data to the first hidden layer. The 

hidden layers are well connected with the input layer, and they 

integrated with weight the input values to pass into the output 

layers. The output layer performs the summation of the 

weighted information received from the hidden layer neurons 

and produces the final classification or prediction outcome. 

An essential feature of the artificial neural network is the 

activation functions. The information the neuron receives is 

relevant to the information given means activating the neuron. 

Otherwise, it should be ignored. The activation function like 

linear function, step function, sigmoid function, tanh function, 

Rectified Linear Unit (ReLU) function, Softmax function and 

Swish (A Self-Gated) function. The appropriate activation 

function for the fast convergence of the network is selected on 

the nature of the problem. Figure 2 shows the structure of deep 

learning architecture. 

 

 
 

Figure 2. Deep learning architecture 

 

The deep learning architecture greatly expands the neural 

network functionalities in terms of the number of problems 

and the type of problems it can address. The most popular deep 

learning architectures are Multilayer Perceptron (MLP), 

Recurrent Neural Network (RNN), Long Short Term Memory 

(LSTM), Gated Recurrent Unit (GRU), Convolutional Neural 

Networks (CNN), Deep Belief Network (DBN), Deep 

Stacking Networks (DSN), Autoencoders, Generative 

Adversarial Networks (GANs), and Deep Residual Networks. 

In this study, the deep learning based recurrent neural network 

is focused on enhancing the performance of wind energy 

forecasting. Figure 2 shows the deep learning architecture. The 

structure of RNN architecture differs from other artificial 

neural network architectures in representing the data in its 

input and output. The artificial neural network structure passes 

the data linearly in both feed-forward process and 

backpropagation process. 

The RNN follows the recurrence relation during the forward 

pass and uses the backpropagation through time for learning. 

The sequence data has a time dependency among all its 

features. Many real-time applications like speech synthesis, 

natural language processing, music generation, and image 

captioning generate sequence data. The RNN is developed for 

handling these types of data. It handles the sequence data well 

by identifying the short-term and long-term sequence 

dependencies among different data points. From these 

dependencies, the RNN extracts the hidden pattern and utilizes 

this knowledge for the forecast. The RNN processes one input 

vector from the sequence of input vector at a time and retains 

that state information in the network itself. It loops the 

connection and produces the output by considering the 

previous state information and the current input [26]. 

 

 
 

Figure 3. Types of RNN architectures 

 

The primary reason for the RNN to be considered as an 

exciting is that they enable us to operate over long sequences 

of a vector. The predictive performance of the RNN is 

improved by designing its grid in both horizontally and 

vertically. The best approach is the number of elements, which 

are used as inputs and the expected sequence length as the 

output. The deep learning networks synchronize the RNN 

output to get the proper results. Based on the number of inputs 

given and outputs generated, the RNN is classified into four 

types, namely, one-to-one, one-to-many, many-to-one, and 

many-to-many. Figure 3 shows the different types of RNNs 

which differ in the number of inputs given and the number of 

outputs produced.  

The one-to-one type of RNN takes only one fixed size of the 

input and produces only one fixed output. The one-to-many 

type of RNN utilizes only one fixed-sized input as the previous 
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case, but it produces a sequence of outputs. This model is used 

in generating a music and image processing area. Whereas, the 

many to one type of RNN architecture gets multiple sequences 

of inputs and produces a single output. It is mainly used for 

time series analysis, energy forecasting, sentimental analysis, 

and stock market prediction. Finally, the many-to-many type 

of RNN takes multiple inputs and produces multiple outputs. 

It is represented in two ways. The first type is fixed-size input 

and output sequence of data. Another type is input and output 

different size of a sequence of data. It mainly used for machine 

translation models. 

 

 

3. METHODOLOGY  

 

3.1 Simple recurrent neural networks 

 

The RNN is a kind of neural network which can handle the 

large datasets easily by looping back the past information in 

each unit. For each time step, the recurrent neural network 

utilizes the number of activation function units. Each of these 

units contains the hidden state as an internal state of the unit. 

The hidden state represents the past information, which is 

processed earlier by the unit and holds at the specific time step. 

This state information is updated regularly for each time step 

to show the updated knowledge. In RNN, the hidden state is 

updated by using the recurrence relation. At the time ‘t’, a 

single time step is provided as an input. Then, the current state 

is calculated by using the inputs provided to the network and 

the previous state value. Now, the calculated current state ‘ht’ 

will be utilized as a previous state value for the next time step 

at the time ‘t-1’. Thus the current state ‘ht’ at the time ‘t’ 

becomes the previous state ‘ht-1’ at the time period ‘t-1’. The 

output is calculated for all the time steps. Once all the time 

steps are completed, the final current state is calculated. The 

final output of the recurrent network is calculated from the 

final current state [27]. After that, the error value is calculated 

by comparing the calculated output with the actual output. 

Then, this error is backpropagated to the network and the 

weights are updated.  

Let ‘xt’ be the present input, ‘ht’ be the new hidden state, ‘ht-

1’ be the hidden state at ‘t-1’, and ‘fw’ be the fixed function 

with tangible weight. The activation function utilized for 

updating the hidden state is as follows, 

 

ht  = fw(xt, ht−1) (1) 

 

ht = tanh(wxhxt + whhht−1) (2) 

 

where, ‘whh’ represents the weight at recurrence relation and, 

‘wxh’ represents the weight at the input. The output of the 

recurrent network ‘yt’ is calculated as follows 

 

yt = whyht (3) 

 

where ‘why’ represents the weight value at the output layer of 

the recurrent network. The general architecture of the RNN is 

shown in Figure 4. Even though the primary recurrent neural 

network works effectively, it has some limitations due to the 

backpropagation of error in an extensive network. The 

backpropagation leads to two major problems in the recurrent 

network, namely vanishing gradients and exploding gradients. 

The vanishing gradient and exploding gradient problems are 

generated in the network when the backpropagated error is too 

small, nearly zero and when the error becomes too large 

respectively. As a solution to this problem the threshold can 

be set on the gradients when it is passed back in time. But this 

may introduce some efficiency issues in the network. So, to 

provide an optimal solution for overcoming these problems, 

the two variants of RNN are developed, namely LSTM and 

GRU. 

 

 
 

Figure 4. Recurrent Neural Network architecture 

 

3.2 Long Short Term Memory (LSTM) 

 

The LSTM is an extension of the recurrent neural network 

that remembers the hidden state information for a more 

extended period using the vector of internal cell state. The 

short term memory of the simple RNN may create a barrier for 

achieving good accuracy. But the LSTM solves short term 

memory issue by introducing the long term memory. It keeps 

all the required information from past learning and removes 

that information irrelevant from past learning. Figure 5 shows 

the general structure of long short term memory. 

 

 
 

Figure 5. Structure of Long Short Term Memory 

 

It achieves this filtering function with the help of gates. 

There are three different kinds of gates utilized by LSTM cell 

for different purposes: input, forget, and output gates. The 

input gate identifies the information that is required for the 

next process and should be kept in internal cell state whereas, 

the forget gate finds the information that should be removed 

and should not be kept in the internal cell state from the past 

learning and the output gate finds what information should be 

generated as an output from the internal cell state and will be 

utilized as the next hidden state. The following section 

discusses the working of the long short term memory network. 

First, the sigmoid layer identifies the information that 

should be thrown away from the internal cell state. It decides 

to keep the internal state information for the next cell state 
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from the two inputs; one is the previous state information ‘ht-

1’ and another one is the input at the current state ‘xt’. It 

generates 0 or 1 as an output for every information in the cell 

state ‘Ct-1’. The output 1 shows that the particular information 

should be kept in the cell state whereas the output 0 shows that 

the information needs to be removed from the cell state. 

 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 (4) 

 

Second, the new information to be stored in the internal cell 

state is identified by using two layers, namely sigmoid and 

tanh layer. The sigmoid layer called as input gate layer that 

identifies what information must be updated, followed by the 

tanh layer. It generates the new candidate vector ‘Ct’ and add 

it to the internal cell state. Consequently, these two are 

combined to produce the updation in the cell state. 

 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5) 

 

𝐶�̃� = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (6) 

 

Finally, the cell state is updated from ‘Ct-1’ to ‘Ct’. 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� (7) 

 

Third, the output ‘Ot’ of the RNN will be generated by using 

two consecutive layers, sigmoid layer followed by output layer 

as follows 

 

𝑂𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (8) 

 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) (9) 

 

Followed by LSTM other networks such as Depth Gated 

LSTM [28], Multiplicative LSTMs (mLSTMs) [29] and 

Bidirectional LSTMs [30] are also developed for overcoming 

the limitation of the simple RNN. 

 

3.3 Gated Recurrent Unit (GRU) 

 

The extended version of RNN, which is also an alternative 

network model to LSTM for handling the vanishing gradient 

problem of the basic recurrent neural networks, is the gated 

recurrent unit. It also utilizes three gates, namely update gate, 

current memory gate and reset gate. The update gate behaves 

similarly to the output gate and decides what information 

should be passed to the future. The reset gate acts similarly to 

the combined version of input and forget gate of LSTM and 

helps to decide the information to be forgotten. It does not 

maintain any internal state. Instead of this, it incorporates the 

internal state information of the LSTM into the hidden state of 

the GRU. Finally, the collection of this information is passed 

into the next GRU. The current memory gate is incorporated 

into the reset gate and made as a subpart of the input gate. It 

adds some non-linearity with the input and makes the input to 

be a zero-mean. It minimizes the effect of previous knowledge 

on the current information by making the current memory gate 

as a subpart of the reset gate. GRU combines the two gates, 

namely input and forget gate into the update gate and makes 

changes in the combined information of cell state and hidden 

state. Figure 6 shows the general architecture of GRU. 

First, GRU takes the current input and the previous hidden 

state as input vectors. Then, it performs the multiplication on 

element basis and calculates the parameterized current input 

and past hidden state vectors for each gate [31]. The 

appropriate activation function is applied on each gate as 

follows, 

 

𝑧𝑡 = 𝜎(𝑊𝑧 . [ℎ𝑡−1, 𝑥𝑡]) (10) 

 

𝑟𝑡 = 𝜎(𝑊𝑟 . [ℎ𝑡−1, 𝑥𝑡]) (11) 

 

The current memory gate calculates different from others in 

which it performs the Hadmard product of the reset gate with 

the previously hidden state information. After that, this 

information is parameterized and added to the current input 

vector. 

 

ℎ�̃� = 𝑡𝑎𝑛ℎ(𝑊. [𝑟𝑡 ,∗ ℎ𝑡−1, 𝑥𝑡]) (12) 

 

The current hidden state information is calculated as follows: 

 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ�̃� (13) 

 

 
 

Figure 6. Structure of Gated Recurrent Unit 

 

3.4 Bidirectional recurrent neural networks 

 

The bidirectional recurrent neural network is formed by 

combining two independent RNNs in which the information is 

fed into one network in one direction and for another network 

in the reverse direction. At each time step, the output of these 

two networks is combined. So, at any time, the network has 

forward and backward sequence information [32]. The general 

structure of the Bidirectional RNN is shown in Figure 7. The 

bidirectional RNN is suitable for various applications such as 

prediction of the energy forecasting, protein structure, 

machine translation, speech recognition, and handwritten 

recognition. It provides good accuracy compared to the simple 

RNN. 

 

 
 

Figure 7. Structure of bidirectional Recurrent Neural 

Network 
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4. PERFORMANCE ASSESSMENT OF WIND ENERGY 

FORECASTING 
 

The performance of the forecasting methods can be 

evaluated by using the measures such as Mean Absolute Error 

(MAE), Mean Square Error (MSE), Root Mean Square Error 

(RMSE), Mean absolute Percentage Error (MAPE), and Mean 

Bias Error (MBE) etc. In general, the error generated by the 

forecasting methods is measured by calculating the difference 

between the actual and forecast value of the target feature as 

the base [33-35]. The mean absolute error is calculated as the 

average absolute difference between the actual and forecast 

value and is calculated as follows. 
 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙|

𝑁

𝑖=1

 (14) 

 

The mean square error measures the how the estimator is 

qualified. It is always positive. The forecasting method with 

the MSE value closer to zero is better. It is measured as 

average of the squared difference between the actual and 

forecast value. It is calculated as follows 
 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙)

2
𝑁

𝑖=1

 (15) 

 

The root mean square error is calculated as square root of 

MSE, which is directly proportional to the square error. It 

forecasting models with a smaller error are better. It is 

measured as follows 
 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙)

2
𝑁

𝑖=1

 (16) 

 

The mean absolute percentage error is an important measure 

utilized by various researchers in the literature for comparing 

the accuracy of prediction methods. In machine learning, it is 

utilized as a loss function, especially for regression problems. 

It is calculated as follows 
 

𝑀𝐴𝑃𝐸 = (
1

𝑁
∑ |

𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙

𝑋𝑎𝑐𝑡𝑢𝑎𝑙

|

𝑁

𝑖=1

) ∗ 100 (17) 

 

The mean bias error is the primary measure for capturing 

the average bias in the forecasting method. It is calculated as 

follows 
 

𝑀𝐵𝐸 =
1

𝑁
∑(𝑌𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑋𝑎𝑐𝑡𝑢𝑎𝑙)

𝑁

𝑖=1

 (18) 

 

 

5. DEVELOPMENT OF DEEP LEARNING BASED RNN 

IN WIND ENERGY FORECASTING 
 

Shao et al. [36] proposed the deep learning approach for 

predicting short-term wind speed by utilizing the combination 

of recurrent neural network and the infinite feature selection 

(Inf-FS). First, the essential features that contribute to 

improving the accuracy of the wind power forecast are 

identified by using the Inf-FS. Consequently, the non-

stationary components are reduced by using the wavelet 

decomposition. Finally, the deep learning based recurrent 

neural network performs the non-linear mapping and forecast 

short-term wind power. The proposed RNN with Inf-FS model 

outgunned other methodologies. Gangwar et al. [37] presented 

a deep learning based LSTM for forecasting the wind speed. 

The accuracy of the proposed model is tested against the 

Support Vector Machine (SVM). The result shows that the 

proposed LSTM based recurrent neural network provides 

better accuracy than SVM.  

Shi et al. [38] developed the deep learning model for wind 

speed forecasting in which the spatial temporal correlation 

theory is utilized as an essential technique. First, the 

correlation of the adjacent wind turbines with target wind 

turbine are identified as an important factor for the forecasting 

by using continuous wavelet transforms. Then, the Wavelet 

Coherence Transformation analysis is introduced for 

analyzing the wind turbines and the time lag characteristics. 

Finally, the LSTM recurrent neural network is trained and the 

parameters are tuned. The result shows that the LSTM based 

deep learning model produces an improved accuracy than 

other traditional models.  

Sun et al. [39] introduced an RNN based model for 

monitoring the health of the wind turbine. Due to the 

generation of individual faults, Supervisory Control and Data 

Acquisition (SCADA) variables of the wind turbine may 

change continuously. The variance level of each SCADA 

variable is combined with LSTM recurrent neural network and 

monitors the health status of the wind turbine. As a result, the 

proposed model outperformed other models. Cali and Sharma 

[40] proposed a deep learning based wind power forecasting. 

The sensitivity analysis is performed on the Numerical 

Weather Prediction (NWP) data and the relevant features 

(feature selection) are identified. Then, the LSTM based RNN 

is utilized for forecasting a 24 hrs ahead wind power. The 

weather data and wind power have a sequential dependency. 

The short term temporal dependency between these data is 

modelled effectively by using LSTM. The LSTM based RNN 

achieves better accuracy compared to other models. 

Zu and Song [41] introduced the short term wind power 

forecasting model in which a wavelet packet decomposition is 

applied for decomposing the time series wind power 

sequences into a number of sub sequences. An improved GRU 

method with Scaled Exponential Linear Unit (SELU) 

activation function is utilized for predicting the wind power 

for each subsequence. The forecast wind power output is 

reconstructed from each subsequence to obtain complete wind 

power. The proposed model produces an improved accuracy 

of the short term wind power forecasting.  

Liu et al. [42] proposed the short-term wind power 

forecasting model using Discrete Wavelet Transform (DWT) 

and LSTM. First, the DWT is utilized for decomposing the 

wind power into signals. Then, the LSTM is applied to each 

sub-signal for predicting the wind power. Consequently, the 

final prediction result is formed by combining the predicted 

results from each sub-signal. The proposed method produces 

an improved accuracy compared to other methodologies.  

Pradhan and Subudhi [43] developed the Recurrent Wavelet 

Neural Network (RWNN) based wind speed forecasting model. 

The model employs the wavelet technique for decomposing 

the wind speed and then utilizes the recurrent wavelet neural 

network on the decomposed data to forecast wind speed. As a 

result, the proposed RWNN achieves better performance 

compared to conventional RNN.  
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Table 1. Summary of deep learning based RNN in wind energy forecasting 

 

Sl.No Authors 
Forecast 

variable 

Energy 

Data set 

RNN based 

Forecasting 

Methodology 

Comparison 

Forecasting 

methodlogy 

Performance 

measures 
Remarks 

1 
Shao et 

al. [36] 

Wind 

power 
NREL 

Infinite feature 

selection with RNN 
MLP 

RMSE and 

RSD 

Accuracy of wind power 

forecast increased in 

spring, summer, autumn 

and winter. 

2 
Gangwar 

et al. [37] 

Wind 

speed 
Kaggle LSTM SVM RMSE 

LSTM has more 

significance results. 

3 
Shi et al.  

[38] 

Wind 

speed 

Buckley City 

wind farm, 

USA 

Spatial temporal 

correlation with LSTM 

(SC-LSTM) 

BP, Elman, ELM 

and SVM 

RMSE, MAE 

and MAPE 

SC-LSTM are produced 

better results. 

4 
Sun and 

Sun [39] 

SCADA 

variable 

Wind farm in 

Hebei 

province  

Analysis of variance 

level in each SCADA 

variable with LSTM 

ELM and 

ELMAN  

RMSE, MAE 

BIAS and 

SDE 

The performance of the 

SCADA variable with 

LSTM is acceptable. It is 

utilized for assessing the 

health status of wind 

turbine. 

5 

Cali and 

Sharma 

[40] 

Wind 

power 

Sotavento, in 

Spain 

Sensitive analysis and 

LSTM 
- 

nRMSE and 

nMAE 

The LSTM with 

sensitive analysis 

improves the 

performance by the 

positive (temperature) 

and negative (surface 

pressure) effect of the 

features in the forecast. 

6 
Zu and 

Song [41] 

Wind 

power 

Belgian 

electric 

power 

operator Elia 

WPD-GRU-SELU 

(Wavelet Packet 

Decomposition-GRU- 

Scaled Exponential 

Linear Units) 

GRU-SELU,  

WD-GRU-SELU, 

and GRU 

MAPE and 

MAE 

WPD-GRU-SELU 

hybrid model is superior 

than other models 

especially for the wind 

power with large 

fluctuations.  

7 
Liu et al. 

[42] 

Wind 

power 

Wind farms 

in Mongolia, 

Netherlands, 

China 

DWT and LSTM 

BP, RNN, 

LSTM, DWT-BP 

and DWT-RNN 

MAE, MAPE 

and RMSE 

DWT-LSTM method 

provides better 

prediction results 

compared to other 

models. 

 

8 

Pradhan 

and 

Subudhi 

[43] 

Wind 

speed 
NREL 

Maximum overlap 

discrete wavelet 

transform and recurrent 

wavelet neural network 

(RWNN) 

Conventional 

RNN 
MAE 

The RWNN has better 

and fast learning ability 

compared to RNN 

9. 
Liu et al. 

[44] 

Wind 

Speed 

Wind farm, 

China 

VMD-SSA-LSTM-

ELM 

ARIMA,LSTM, 

ELM,VMD-

ELM, 

VMD-LSTM-

ELM, 

EMD-SSA-

LSTM-ELM and 

WPD-LSTM-

ELM 

MAE, MAPE 

and RMSE 

The proposed multistep 

model (VMD-SSA-

LSTM-ELM) extracts 

the trend information 

effectively and perform 

well in forecasting the 

wind speed. 

10 
Zhu et al. 

[45] 

Wind 

speed  

National 

Wind Energy 

Technology 

Center 

The Hybrid model of 

Top-down relevant 

feature search (TDRG) 

with Gaussian Process 

Regression (GPR) and 

LSTM (TGPLSTM) 

MLP and GLM 

RMSE, RSE, 

MAE and 

SSCRPS 

The TGPLSTM hybrid 

method provides good 

accuracy for the interval 

and point forecasting. 

11. 
Fu et al. 

[46] 

Wind 

power 
North China 

LSTM/GRU with wind 

speed correction 

process 

ARIMA and 

SVM 

MAE, 

SMAPE, 

RMSE and 

PSMAPE 

LSTM/GRU forecasting 

model with the input 

correction process 

produces better 

performance. 

12. 
Liu et al. 

[47] 

Wind 

Speed  

Neimenggu, 

Northwest 

China 

Mutual Information 

(MI) +Stacked 

denoising auto-encoder 

(SDAE)+ LSTM 

MLP and LSTM 

RMSE, 

MAPE and 

MAE 

This model outperforms 

other two forecasting 

models. 

13 
Yu et al. 

[48] 

Wind 

Speed 

- 

 

Wavelet-RNN-SVM, 

Wavelet –LSTM-SVM, 

ELM, BPN, 

SVM 

MAE, MAPE 

and RMSE 

WT-LSTM-SVM model 

and WT-GRU-SVM 
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Wavelet-GRU-SVM RNN, LSTM, 

GRU, WT_SVM,  

WT_LSTM and 

WT-GRU 

models produced 

recommended 

performance. 

14 
Ding et 

al. [49] 

Wind 

power 

Sichuan 

Province, 

China 

Bidirectional GRU SVM and ANN 
RMSE and 

MAE 

The bidirectional GRU 

shows better forecasting 

results compared to other 

models. 

 

Liu et al. [44] presented a multistep forecasting model for 

wind speed by using decomposition techniques followed by 

LSTM and ELM. First, it decomposes the original wind speed 

data into a sequence of sublayers by using variational mode 

decomposition. After that, the trend information of all sub-

layers are extracted by using singular spectrum analysis. The 

ELM and LSTM are utilized to forecast the high and low-

frequency sublayers obtained from VMD-SSA respectively. 

The multistep model effectively extracts the trend information 

from the historical wind speed data. Table 1 summarize the 

deep learning based RNN in wind Energy forecasting. Now 

days an effective renewable energy forecasting can be attained 

by analysing large volume of meteorological data. The main 

objective of the big data analytics is to assist the predictive 

modelers, analytics professionals and data scientists in taking 

the right business decisions by analysing the large volume of 

transactional and other forms of data. It is utilized in various 

areas such as energy [50], finance [51], healthcare [52], text 

mining [53] and telecommunication [54], load forecasting [55]. 

Hence, the big data analytics adds much power to wind energy 

forecasting. The forecasting of wind power can also be 

performed by using the big data based prediction framework 

[56]. 

 

 

6. CONCLUSION 

 

The recurrent neural network has a multiple variants of 

network structure. It loops back the previous state information 

to predict the current state along with the current input. The 

RNN has the short term memory, whereas, the variants of 

RNN has the capability of holding the long sequences of 

information by employing different network structure. In this 

paper, the necessity of deep learning in energy forecasting and 

the research efforts employed by the deep neural networks 

such as simple RNN, LSTM, GRU, and bidirectional RNN are 

discussed. The review shows that the accurate prediction of 

wind energy is possible with the deep learning based RNN 

methodologies. The findings from the literature show that the 

RNN providing an improved performance compared to other 

conventional methods in wind energy forecasting. The finding 

from the review specified in this paper would help the 

researchers to choose the right method for satisfying their 

desired tasks and requirements in the wind energy. In future 

the decomposition techniques, ensemble learning techniques 

and the feature selection concepts can be combined with RNN 

and its varients to enhance the performance of the wind energy 

forecasting. 
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NOMENCLATURE 

ANN Artificial Neural Networks 

ARIMA Auto Regressive Integrated Moving Average 

BP Back Propagation 

DWT Discrete Wavelet Transform 

ELM Extreme Learning Machine 

EMD Empirical Mode Decomposition 

GLM Generalized Linear Mode 

GRU Gated Recurrent Unit 

LSTM Long Short Term Memory 

MLP Multilayer Perceptron 

MAE Mean Absolute Error 

MSE Mean Square Error 

RMSE Root Mean Square Error 

MAPE Mean Absolute Percentage Error 

MBE Mean Bias Error 

nMAE Normalized Mean Absolute Error 

nRMSE Normalized Root Mean Square Error 

RNN Recurrent Neural Network 

RSD Relative Standard Deviation 

SCADA Supervisory Control and Data Acquisition 

SSA Singular Spectrum Analysis 

SSCRPS Forecast Skill Score Based on Continuous 

Ranked Probability Score 

SVM Support Vector Machine 

NREL National Renewable Energy Laboratory 

VMD Variational Mode Decomposition 

tanh Hyperbolic Tangent Function 

ReLU Rectified Linear Unit 

WPD Wavelet Packet Decomposition 

WWEA World Wind Energy Association 
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