
 

 

 
 
 

 
 

 
1. INTRODUCTION 

If the indoor voice source signals continuously moves, the 

reflection signal generated in the early stage and the 

subsequent original sound signal are superposed in each space 

to generate reverberation and cause interference to the 

subsequent original sound signals. The reverberation is a form 

of convolution noise as well as a kind of echo, which is mainly 

caused by the reflection of objects such as indoor walls, 

ground and ceiling. Since the absorption attenuation of these 

hard reflecting surfaces is smaller, the reflected signal is 

similar in waveform and amplitude to the original sound signal 

but with different phases [1]. 

2. REVERBERATION 

The existing blind source separation algorithm is not very 

effective for indoor mobile voice source separation, especially 

when the indoor impact response is greater, the separation 

effect is even more limited. The concept of reverberation time 

[2] was proposed by acoustician W. C. Sbani in 1900: after the 

speaker stops speaking, the residual acoustic energy is 

reflected repeatedly through hard reflecting surfaces and 

attenuated by absorption of other objects, and the acoustic 

energy density is reduced to one millionth of the original value, 

the time for which is shown in Equation (1). 
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Where, TR is the reverberation time which is independent of 

the indoor measurement position [3], K is a constant, which is 

related to the indoor air temperature, V is the indoor volume, 

�̅�  is the sound absorption coefficient of the indoor related 

surface material, and S is the sum of the indoor surface area. 

The longer the reverberation time is, the greater the impact 

response is. Thus, the reverberation determines the length of 

the selected FIR filter. 

In the blind source separation algorithm of frequency 

domain, the window length T of the short-time Fourier 

windowing is much longer than the length of the impact 

response, P: T>>P [4-5]. The frequency domain BSS is 

selected to study the relationship between them, and the 

learning rule is shown in Equation (2). 
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Where, η is learning step, <·> is mean operator and φ(·) is 

the nonlinear function in the frequency domain, as shown in 

Equation (3). 
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ABSTRACT  

 
The mobile voice sources move freely in the indoor range of several to tens of square meters at a speed of lower 

than 10m/s. The reflection signal and the subsequent original sound signal are superposed in each space to 

generate reverberation and cause serious interference to the original sound signal. Through the comparison of 

three classical algorithms of blind source separation, the online algorithm can constantly update the separation 

system in real time according to the different positions of voice source signals, but it has no advantages in such 

performances as operation speed and convergence speed. The batch algorithm is fast but delayed, while the 

blind source separation algorithm based on independent component analysis of the frequency domain has less 

computation and fast convergence. The improved separation matrix algorithm is used to verify the effectiveness 

of the algorithm. 

 

Keywords: Mobile Voice Sources, Reverberation, Blind Source Separation, Natural Gradient, Independent 

Component Analysis. 

 

179



 

    ( )

1 1

1 exp( )1 exp( )
IR

Y j
YY

  
  

                    (3) 

 

where, Y(R) and Y(I) are the real part and the imaginary part of 

the output signal in frequency domain respectively. 

Under different reverberation time, the algorithm separation 

performance corresponding to different window lengths can be 

evaluated by noise reduction rate (NRR). Figure 1 is a graph 

comparing the separation performance at different 

reverberation time, with the definition of NRR shown in 

Equation (4). 
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where, SNROi and SNRIi are the output and input signal to noise 

ratio respectively. For two source signals, one is used as a 

target signal and the other is used as a noise signal, that’s, i≠j. 

The greater the NRR value is, the better the separation effect 

and the better the performance of the algorithm are [6]. 

 

 

 
 

Figure 1. NRR value of different window lengths under 

different reverberation time 

 

As shown in Figure 1, without reverberation, when T=128, 

NRR can reach the maximum value of 20.8 dB, and the 

reverberation time are 150 ms and 300 ms; when T=512, NRR 

can reach the maximum values of 7.1 dB and 5.8 dB; 

meanwhile, the separation effect of short window length 

(T=128, 512) is better than that of the long window length 

since when the reverberation time is longer, the original 

signals on each frequency point are no longer independent of 

each other and do not conform to the independence assumption 

in the blind source separation algorithm, and thus the above-

mentioned limitation condition of the frequency domain BSS 

is meaningless. 

3 BLIND SOURCE SEPARATION ALGORITHM FOR 

MOBILE SPEECH SIGNALS BASED ON FREQUENCY 

DOMAIN ICA 

3.1 Frequency domain ICA  

For mobile signals, its hybrid system is time-varying. In this 

paper, the frequency domain ICA method based on mutual 

information minimization is used to enhance mobile speech. 

Set N source signals: s(t)=[s1(t), s2(t), …, sN(t)]T, get the 

observed signals through M microphones: x(t)=[x1(t), x2(t), …, 

xM(t)]T, separation signal: y(t)=[y1(t), y2(t), …, yN(t)]T, BSS can 

be represented by Equations (5) and (6).  
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where, hjk is the frequency response of the i source signal to j 

microphone, wij is separation filter and * represents the 

operation of convolution. The short-time Fourier transform is 

performed on Equation (5), and the model is approximated to 

Equation (7). 
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where, f is frequency, n is frame number, x(f, n)=[x1(f, n), x2(f, 

n), …, xM(f, n)]T is the Fourier transform of the n frame at the 

f frequency of the received signal, and H(f) is the mixing 

matrix at the f frequency.  

The separation process of each frequency domain is as 

shown in Equation (8). 
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where, y(f, n)=[ y1(f, n), y2(f, n), …, yN(f, n)]T is the estimated 

signal at the f frequency of the n frame, and W(f) is separation 

matrix. By adopting the idea of mutual information 

minimization, the optimal separation matrix can be obtained 

by the natural gradient iterative method as shown in Equation 

(9). 

 

𝑊𝑖+1(𝑓) = 𝑊𝑖(𝑓) + 𝜇[𝐼−< 𝜑(𝑦(𝑓, 𝑛))𝑦𝐻(𝑓, 𝑛) >]𝑊𝑖(𝑓) 

               (9) 

 

where, i is number of iterations, μ is step parameter, <·> is 

mean operator, I is unit matrix, and φ(·) is nonlinear function, 

with the definitions shown in Equation (10).   

 

𝜑(𝑦(𝑓, 𝑛)) = [𝜑(𝑦1(𝑓, 𝑛)), 𝜑(𝑦2(𝑓, 𝑛)), ⋯ , 𝜑(𝑦𝑁(𝑓, 𝑛)), ]

𝜑(𝑦1(𝑓, 𝑛)) = tanh (𝑅𝑒(𝑦1(𝑓, 𝑛))) + 𝑖 ∙ 𝑡𝑎𝑛ℎ (𝐼𝑚(𝑦1(𝑓, 𝑛)))
 

             (10) 

 

where, Re(·) represents the real part and Im(·) represents the 

imaginary part. 

3.2 On-line algorithm 

On-line algorithm, also called adaptive algorithm, can 

update the separation system according to the different 

positions of source signals, that’s, real-time processing of 

mobile speech with adaptive algorithm [7]. It is an algorithm 

for processing single observation sample. Its advantage is that 

the separation matrix can be adjusted and updated according 
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to the time-varying characteristic of hybrid system. With good 

real-time processing performance, it’s generally applicable to 

the field with relatively high requirements in the real-time 

processing performance.  

There are many on-line algorithms. In this paper, the natural 

gradient descent method is adopted to minimize the objective 

function. 

 

min. J(𝑦(𝑓, 𝑛), 𝑊(𝑓)) = 𝐾𝐿 (𝑝𝑌(𝑦(𝑓, 𝑛))) ∥ (𝑞𝑌(𝑦(𝑓, 𝑛))) 

= −𝐻(𝑦(𝑓, 𝑛)) − ∑ 𝐸 {log (𝑞𝑌(𝑦𝑖(𝑓, 𝑛)))}𝑛
𝑖=1                 (11) 

 

Where, qY(y(f, n)) is marginal probability of yi(f, n), and 

pY(y(f, n)) is joint probability. From y(f, n)=W(f)x(f, n), 

Equation (12) is obtained by the definition of entropy. 
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                  (12) 

 

Equation (13) can be obtained by substituting Equation (12) 

into Equation (11) and simultaneously calculating the 

gradients W(F) of both sides of the equation. 

 

 
(13) 

 

Where, W(f)-T=(W(f, n)-1)T and ϕy(f, n) are activation 

functions, and 

 

               (14) 

 

The online adjustment formula thus obtained is shown in 

Equation (5.15). 

 

∆𝑊(𝑓, 𝑛) = −𝜂
𝜕𝐽(𝑦(𝑓,𝑛),𝑊(𝑓))

𝜕𝑊
− 𝜂(𝑊(𝑓)−𝑇) −

                         𝐸[𝜙(𝑦(𝑓, 𝑛))𝑥(𝑓, 𝑛)𝑇]                                (15) 

 

where, η is step parameter. 

This algorithm has such disadvantages as slow operation 

speed and poor performance, and is not suitable for the 

separation system in which both the source signals and the 

interfering signals are moving, so the batch algorithm is 

introduced to improve its performance. 

3.3 Batch algorithm 

The batch algorithm corresponds to the on-line algorithm, 

and mainly processes with some acquired data and hypotheses, 

instead of by the recursive method. 

To track time-varying hybrid systems, the separation matrix 

should be updated for each block of Bm={t:(m-1)Tb≤t<mTb}, 

where, Tb represents the size of block and m represents block 

exponent with m≥1. 

Koutras et al. have proposed similar methods in the time 

domain [8]. When Tb is equal to the frame length of the short-

time Fourier transform, the method can be considered as an 

on-line algorithm in the frequency domain. The last block 

separation matrix is used as the initial iteration value of a new 

block, i.e., 𝑊𝑚+1
(0) (𝑓) = 𝑊𝑚

(𝑁𝐼)
(𝑓), where NI is the number of 

iterations of Equation (15). 

Batch algorithm has inherent delay, because the calculation 

of W needs to wait for the arrival of next data block, and the 

required calculation time is longer, but if the corresponding 

calculation is completed within Tb, the separation matrix can 

be calculated with Wm-2 to avoid waiting and calculation delay, 

thus it is suitable for delay insensitive situation. 

4. OPTIMIZATION OF ICA BLIND SOURCE 

SEPARATION ALGORITHM 

4.1 Uncertainty of arrangement and amplitude 

In the classical ICA blind source separation algorithm, there 

are generally two kinds of uncertainties: arrangement 

uncertainty and amplitude uncertainty [9]. Assuming that there 

are two source signals and two receivers, the separation matrix 

at f of each frequency is obtained using Equation (8) as shown 

in Equation (16). 

 

 or                          (16) 

 

where, λ1 and λ2 are arbitrary plurals. It can be seen that the 

arrangement order and amplitude scale are uncertain. If the 

estimated signal is not dearranged and descaled, the signal 

after the short-time Fourier transform is still a mixed signal, 

and thus the blind source separation algorithm cannot be 

applied to it. 

(1) Arrangement uncertainty optimization 

In the two uncertainties, the arrangement sequence 

uncertainty has greater effect, and determines the success or 

failure of the blind deconvolution algorithm, because it may 

cause the signals separated at adjacent frequencies to be 

misplaced when they are connected, and may connect two 

different signals together, resulting in erroneous separation 

results. 

Using the method of smoothing the separation matrix in the 

frequency domain, the length of the filter is restricted in the 

time domain, or the average separation matrix is used by the 

adjacent frequency. The arrangement matrix P(f) can be 

obtained, so the separation matrix can be modified with 

Equation (17). 
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(2) Amplitude uncertainty optimization 

The split spectrum method is used to divide each array 

signal into two different performance indicators [10].  

Matsuoka proposes a minimum distortion principle [11], 

and the separation matrix is modified by Equation (18). 
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After solving the amplitude problem by this method, the 

separated signal is obtained as shown in Equation (19). 

 

                     (19) 

 

Equation (19) is a part of the separated signals obtained by 

the split spectrum method, which selects the main path signal 

with a relatively good performance, and also reduces the 

calculation amount. 

5. SIMULATION EXPERIMENT AND ANALYSIS OF 

RESULTS 

In order to verify the effectiveness of the improved 

algorithm as mentioned above, Matlab software is used for 

functional simulation. A general laboratory with 7 computers 

working and no professional sound insulation equipment is 

selected as the indoor environment for inputting speech. Two 

speakers who walk around at will are selected, and two 

receivers respectively receive speech signals. According to the 

measurement and calculation, the reverberation time is 150 ms, 

the sampling frequency of data is 8000Hz, the sampling time 

is 10s, and the number of samples is 10,000. The waveforms 

of the acquired original and aliased speech signals are shown 

in Figures 2 (a) and 2 (b). 

 

 

 
(a) Original signals 

 

 

 
(b) Aliased signals 

 

Figure 2. Waveforms of the original and aliased speech 

signals 

 

After the short-time Fourier transform of the aliasing signals 

in Figure 2, the blind source separation is performed on each 

frequency point, and the modified separation matrix can be 

quickly calculated by using the improved frequency domain 

ICA through the simulation software as follows: 

 

 

The waveform of the blind source separation signal realized 

by using the separation matrix is shown in Figure 3. 

 

 

 
 

Figure 3. Waveform of separated signals 

 

Comparing with Figures 2 (a), 2 (b) and 3, the optimized 

blind source separation algorithm is used to suppress the 

reverberation of the mobile voice source, and the waveform of 

the speech signal separated from the aliased signal is close to 

that of the original speech signal, which verifies that the 

algorithm can achieve higher separation degree through less 

computation and achieves the effect of speech enhancement. 

6. CONCLUSIONS 

For the indoor mobile speech signal enhancement, the 

relationship between reverberation and separation filter in 

practical environment is analyzed, which lays a theoretical 

foundation for realizing blind source separation algorithm, and 

then three classical blind source separation algorithms are 

compared and analyzed. The on-line algorithm can update the 

separation system in real time according to the positions of the 

source signals. However, it doesn’t have advantage in 

performances such as operation speed and convergence speed. 

Batch algorithm has the inherent delay, and longer 

computation time, so it is suitable for the situation where the 

delay is insensitive. The ICA algorithm has a small amount of 

computation and is suitable for processing convolution mixed 

speech signals similar to the actual noise situation, but it has 

uncertainties of inherent arrangement and amplitude. By 

modifying the separation matrix transfer function, the software 

simulation results show that the effectiveness of ICA 

algorithm is improved to a certain extent. 
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