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Natural convection fluid flow and heat transfer is considered within a fluid-saturated porous 

enclosure with inclined diathermal partitions at 135˚. The primary objective of the paper is to 

attenuate the heat transfer rate across a differentially heated porous enclosure that is 

encountered in thermal insulations. This suppression is brought about by obstructing the flow 

with diathermal partitions, targeted to isolate two specific regions of the enclosure. The 

temperature distribution in porous enclosure with no partitions reveal that, there exists a high 

temperature gradient in the vicinity of lower half of hot face and upper half of cold face. 

Isolating these regions from the rest of enclosure is the physics behind employing multiple 

inclined partitions. Momentum equations are defined by Darcy model and the governing 

equations are discretized using Finite Difference Method (FDM) and solved by Successive 

Accelerated Replacement (SAR) scheme. Fluid flow and heat transfer analysis is performed 

for following parameters: modified Rayleigh number (Ra*) from 102 to 103, partition ratio 

(PR) from 0 to 1, aspect ratio (AR) as 1. One of the main findings of this study is that, to 

suppress the natural convection effectively, the fluid flow along the lower half of the hot wall 

and upper half of the cold wall must be well obstructed or mechanically isolated as these 

regions bear high temperature gradient. Maximum reduction in average Nusselt number is 

obtained for PR=0.8 irrespective of the value of Ra*.  
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1. INTRODUCTION

Porous media, depending upon the application, may serve 

to enhance or suppress the heat transfer across it. Applications 

like cooling in electronic packages, packed bed reactors are 

examples of heat transfer enhancement while thermal 

insulation, solar energy collection involve attenuating the heat 

transfer. The present study concerns with suppression of 

natural convection heat transfer across a differentially heated 

porous enclosure. A detailed literature based on convection in 

porous media can be found in the works of Bear, Greenkorn 

and Neild and Bejan [1-3]. Natural convection fluid flow and 

heat transfer within a fluid-saturated porous medium having 

internal obstructions, which may be conducting or insulated, 

has been the focus of research since past decade. These 

researches have been driven, predominantly, by the early 

works like those of Bejan and Anderson, Jang and Chen and 

Bejan who showed that internal obstructions within a 

differentially heated porous enclosure, could considerably 

attenuate the rate of heat transfer across it [4-6]. Tasnim et al. 

showed that employing an obstruction in a cavity is 

comparable to reducing Da of the porous medium [7]. Jang 

and Chen, studied the effects of off-center diathermal partition 

and inclination angle of porous enclosure on natural 

convection heat transfer [5]. At lower Ra values partition 

location is found more influential than that at higher Ra values. 

The least value of Nusselt number is obtained at centrally 

positioned partition and at roughly 30̊ inclination angle. 

Vasseur and Wang, studied the effect of a thermal barrier in a 

vertical porous layer separated by N equally spaced partitions 

[8]. The Nusselt number, in the boundary layer regime, has 

been found to vary inversely with (1+ N)4/5 while the greatest 

reduction in heat transfer, in the intermediate regime, has been 

obtained when the partition is located centrally. Varol and 

Oztop and Varol et al. analyzed a 2D solution of natural 

convection in solid adiabatic thin fin connected to fluid-

saturated porous right triangular enclosures [9, 10]. Varol et al. 

illustrated the effects of inclinedly inserted conductive thin 

plate on natural convection flow in a cavity filled with a porous 

medium [11]. They showed that heat transfer and flow field are 

strongly depended on position of the plate and was found to be 

higher for 135̊ inclined plate.  

Studies mentioned hitherto were based on Darcy model. 

Hsiao and Chen considered Brinkman-Forchheimer extended 

Darcy flow model to study a steady natural convection about 

a heated corrugated plate inserted in an enclosed porous 

medium useful in casting engineering [12]. Sathiyamoorthy 

and Narasimman studied the effect of the length and position 

of the fin on modification of the re-circulating cells and 

isotherms within the porous enclosure using the Brinkman–

Forchheimer-extended Darcy model [13]. Tasnim et al. 

considered non-Darcy model without the Forchheimer term to 

study free convection through a porous medium which was 

differentially heated from side with internal flow obstructions 

[7]. Both the aforementioned studies revealed that average 

Nusselt number falls as the length of the fin increases for all 

locations. The overall heat transfer rate can be managed with 

an appropriate selection of the fin position and length. Fewer 

studies related to partitions in porous media are available in 

last five years. Handful among them are the works of Ziad who 
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numerically investigated transient magneto-hydrodynamic 

natural convection in partitioned square enclosure filled with 

a fluid-saturated porous medium with internal heat generation 

[14]. Rees et al. and Rees illustrated convection in a horizontal 

fluid-saturated porous layer heated from below and divided it 

into a number of similar sublayers by impervious and 

infinitesimally thin horizontal diathermal partitions [15, 16]. 

Chordiya and Sharma have reported the effects of several 

kinds of orientations of internal partitions within a 

differentially heated porous enclosure [17].  

A new physics that is being brought out in the present study 

is the way of obstructing the convection current, precisely, by 

orienting the diathermal partition to isolate two specific 

regions on the porous enclosure. The temperature distribution 

in a differentially heated porous enclosure reveal that in the 

vicinity of lower half of hot face and upper half of cold face, 

there exists high temperature gradient which leads to higher 

convection heat transfer, particularly, in these two regions. 

This can also be noticed from the higher values of local 

Nusselt number along these parts of the wall. Thereby, in order 

to suppress the natural convection heat transfer within the 

enclosure as a whole, these two regions must be specifically 

dealt with. The current study introduces a novel way to isolate 

these regions by employing multiple inclined partitions across 

the lower half of hot face and upper half of cold face. Besides, 

to the authors’ best knowledge, such a study is yet to appear in 

the literature. 

The objective of the present study is to suppress the natural 

convection fluid flow and heat transfer across a differentially 

heated square porous enclosure with multiple diathermal 

inclined partitions attached in it. The effect of position of 

partitions is studied and an optimum value of partition ratio 

has been found out that yields lowest average Nusselt number. 

Darcy model is considered with Boussinesq approximation to 

account for density variation. The whole point of such a model 

is sought to contribute in the redesign of a thermal insulations 

to effectively attenuate the convection heat transfer rate across 

it. 

 

 

2. MATHEMATICAL FORMULATION  
 

Figure 1 shows the schematic diagram of the model under 

study with geometric details and coordinate system. The fluid-

saturated square porous enclosure has length L. Left and right 

walls are maintained at temperature Th and Tc respectively, 

such that Th > Tc. The top and bottom wall are insulated. Two 

diathermal partitions inclined at 135˚ are attached on 

southwest and northeast regions of the enclosure. The end 

points of either of the partitions are at distance D from origin 

and from farthest point from origin respectively. The study is 

confined to two-dimensional flow, since in the post-critical 

range of Darcy-modified Rayleigh number (Ra*) the 

convection pattern is expected to be two-dimensional at first, 

Rees [17]. The flow is assumed to be steady, laminar and 

incompressible. The porous medium is assumed to be isotropic, 

homogenous and also that it is in local thermal equilibrium 

with the saturated fluid. Thermophysical properties of air are 

kept constant, except for density ρ. Density is assumed to 

change with temperature T according to Boussinesq 

approximation. A Darcy model is considered without the 

Forchheimer term, since the current study is focused primarily 

on analyzing a natural convection flow in a porous cavity and 

not on convective boundary layer flow over the surface of a 

body in a high porous media, as was discussed in detail by 

Bejan and Poulikakos [18]. 

 

 
 

Figure 1. Schematic diagram of the model 

 

Mindful of these assumptions, the governing equations for 

conservation of mass, momentum and energy for solid and 

porous medium in dimensional form can be written as, 
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These equations are subjected to following boundary 

conditions, 

 

Left wall (x=0, 0 ≤ y ≤ L):     u=v=0, T=Th 

Right wall (x=L, 0 ≤ y ≤ L):    u=v=0, T=Tc                                                                 

Bottom and Top wall (0 ≤ x ≤ L, y=0, L): u=v=0, ∂𝑇 ∂y⁄ = 0

                                         (5) 

 

The matching conditions at diathermal partitions, 

 

Lower Partition (x+y=D):         u=v=0,     ∂𝑇 ∂n⁄ −
= ∂𝑇 ∂n⁄ +

                                            

Upper Partition (x+y=2L – D):  u=v=0,  ∂𝑇 ∂n⁄ −
= ∂𝑇 ∂n⁄ +

                                                                 

                            (6) 

 

Following dimensionless variables are used to non-

dimensionalize above equations and boundary conditions,  

 

𝑋 =  
𝑥

𝐿
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𝑦

𝐿
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𝑢
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Here, effective thermal conductivity is given by, αe= 
kp

(ρcp)
f

  

Following dimensionless parameters are used while non-

dimensionalizing above equations and boundary conditions,  
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𝑅𝑎∗=
Kgβ∆T𝐻

ναe
;  PR=

D

L
                                                                  (8) 

 

Velocities are represented in terms of stream function (ψ). 

The relation is given as, 

 

U=
∂ψ

∂Y
;  V= −

∂ψ

∂X
                                                                         (9) 

 

Using the above relations along with dimensionless 

variables and parameters, Eq. (1)-(6) can be rewritten in non-

dimensional stream function and vorticity formulation as, 
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These equations are subjected to following boundary 

conditions, 

 

Left wall (X=0, 0 ≤ Y ≤ 1):        ψ=0,    θ = 1 

Right wall (X=1, 0 ≤ Y ≤ 1):     ψ=0,    θ = 0                                                                  

Bottom and Top wall (0 ≤ X ≤ 1, Y = 0, 1):        ψ = 0, ∂𝜃 ∂Y⁄ = 0

                                       (12) 

 

The matching conditions at diathermal partitions, 

 

Lower Partition (X+Y=PR):          ψ=0,     ∂𝜃 ∂n⁄ -
=  ∂𝜃 ∂n⁄ +

 

Upper Partition (X+Y=2-PR):       ψ=0,     ∂𝜃 ∂n⁄ -
=  ∂𝜃 ∂n⁄ +

 

 

The above equations are numerically solved and the results 

are analyzed qualitatively as well as quantitatively. Qualitative 

outcomes are visualized using streamlines and isotherms. On 

the other hand, quantitative outcome is analyzed by estimating 

the Nusselt number, local (Nu) as well as average (Nuavg).  

 

Nuh,c = −
∂θ

∂X
|
X=0,1

                                                                       (13) 

 

𝑁𝑢𝑎𝑣𝑔 = ∫ Nuh,c(𝑌)𝑑𝑌
1

0
                                                          (14) 

 

 

3. NUMERICAL METHOD 
 

The coupled differential governing equations are converted 

into algebraic equations using Finite Difference Method 

(FDM) and solved by Successive Accelerated Replacement 

(SAR) scheme. Central differencing with second-order 

accuracy is used to discretise governing equations, while 

second order forward and backward differencing is employed 

at the wall boundaries. The stream function and temperature 

have been solved using SAR scheme for all inner grid points. 

A suitable value of accelerating factor (ω) is chosen based on 

the accuracy obtained with regards to number of iterations 

required to attain convergence. Local Nusselt number along 

hot and cold wall are estimated and average Nusselt number is 

calculated by numerically integrating them using Simpson’s 

1/3rd rule.   

 

3.1 SAR scheme 

 

Sinha and Sharma, Mishra et al. and Chordiya and Sharma 

have illustrated the applicability of the SAR scheme for 

solving system of partial differential equations in the study of 

two-dimensional natural convection fluid flow and heat 

transfer in porous media [19-23]. The basic idea of this scheme 

is to guess the profile for each transport property that satisfies 

the boundary conditions. If λ is a transport property and the 

error in a typical governing equation at a grid point (i,j) at nth 

iteration is λ̃𝑖𝑗
𝑛

. Then, (n+1)th approximation of the variable λ is 

obtained as,  

 

λij
n+1 

=  λij
n − ω

λ̃ij

n

∂λ̃ij

n
∂λij

n⁄
                                                      (15) 

 

The accelerating factor, ω, varies from 0 to 2. The criterion 

set for convergence of stream function at all inner grid points 

is described as below. Value of ε is the error tolerance limit 

with a small positive value. 

 

∑ ∑ |λij
n+1

-λij
n|

jmax-1

j=2
imax-1
i=2

∑ ∑ |λij
n+1|

jmax-1

j=2
imax-1
i=2

< ε                                                   (16) 

 

The important feature of this method is that the corrected 

value of the variable is immediately used upon becoming 

available. A numerical code based on this method is developed 

to solve the governing equations along with prescribed 

boundary conditions. 

 

 

4. RESULTS AND DISCUSSION 

 

A numerical analysis has been performed to access the 

natural convection fluid flow and heat transfer in fluid-

saturated porous enclosure with multiple inclined partitions 

for following parameters: 102≤Ra*≤103; 0≤PR≤1. The 

influence of position of partition within the enclosure is 

evaluated by noticing streamlines and isotherms and 

convection heat transfer is estimated by calculating the value 

of average Nusselt number. An in-house computational code 

is written to solve the current numerical problem. Pertaining 

to the present configuration, the present code has been 

subjected to two validation checks; by comparing it with 

studies of, first, natural convection in plain porous enclosure 

and second, natural convection in porous enclosure with single 

inclined partition by Varol et al. [11]. 

 

4.1 Validation of code for porous enclosure without 

partition 

 

Table 1. Comparison of average Nusselt number with results 

from literature for PR=0 (Porous enclosure) 

 
Authors Ra*:10 100 1000 

Walker and Homsy [24]  3.09 12.9 

Bejan [25]  4.20 15.80 

Manole and Lage [26]  3.11 13.63 

Moya et al. [27] 1.06 2.80  

Baytas and Pop [28] 1.07 3.16 14.06 

Present Study 1.07 3.16 13.09 

 

Firstly, the code is compared against the benchmark 

solutions of Walker and Homsy, Bejan, Manole and Lage, 

Moya et al., Baytas and Pop [22-26]. It is a classical natural 

convection problem in a differentially heated square porous 
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cavity. Table 1 shows the comparison with similar parameters 

and boundary conditions which are: Left wall is hot, right wall 

is cold, top and bottom are insulated. Here, value of PR in code 

is set to 0. 

 

4.2 Validation of code for porous enclosure with 

diathermal partition 

 

Secondly, to authenticate the code against study of Varol et 

al. [11] which is based on natural convection in porous 

enclosure with diagonal partition. It consists of a single 

diagonal partition inclined at 135˚. Table 2 shows the 

comparison of results of present code with that of work in 

literature. Here, value of PR in code is set to 1. 

The numerical comparison between the results obtained 

from present computational code agrees well in accordance 

with the results presented in literature. Thus, the code can be 

endorsed to study the problem stated in the current paper with 

greater assurance.    

 

Table 2. Comparison of results with Varol et al. for PR=1 

[11] 

 
Ra* Varol et al. [11] Present Study 

100 1.601 1.633 

250 2.581 2.552 

500 3.771 3.831 

1000 5.449 5.731 

 

The results predicted in current paper are independent of 

grid size. Uniform structured mesh is generated and results are 

checked for grid size 41 x 41 to 261 x 261. It was found that 

for Ra*<500, grid size of 61 x 61 gave satisfactory results 

while that for values greater than 500, grid size of 241 x 241 

were considered. The grid generation has been a typical 

challenge since it is obligatory that there must exist grid points 

along the inclined partitions. The matching conditions along 

the partition were solved by II-order forward and backward 

FDM. However, the forward and backward difference is with 

respect to normal direction along the partition. The foregoing 

section discusses the streamlines and isotherms for different 

positions of partition viz., PR=0 to 1 and Ra*=100 to 1000.  

 

4.3 Effect of presence of partition on natural convection 

fluid flow and heat transfer 

 

This section discusses the effect of mere presence of 

multiple inclined partitions within a fluid-saturated square 

porous enclosure (Figure 2b, PR=0.5) on fluid flow by 

comparing the streamlines, isotherms, maximum absolute 

stream function value, local and average Nusselt number with 

those of porous enclosures without any partitions (Figure 2a, 

PR=0). The streamlines reveal the flow obstruction, while 

isotherms help to notice the change in temperature gradient, 

particularly, in the two areas under concern i.e., in the vicinity 

of the lower half of hot face and upper half of cold face. The 

negative value of stream function indicate that flow is in anti-

clockwise direction. As seen clearly in Figure 2(a), the 

isotherms are not only concentrated more in the southwest and 

northeast regions of the enclosure but are also very step, 

indicating higher temperature gradient and hence higher heat 

transfer rate. This is because, in the southwest corner (lower 

half of hot face) the colder fluid comes in contact with hot face, 

gets heated and rises upwards; as it rises upwards its 

temperature keeps on increasing thereby decreasing the 

temperature difference between wall and fluid. The maximum 

temperature difference is thus, mostly, in the lower half of the 

hot face. Hence, the temperature gradients are steep in the 

vicinity of lower half of hot face. Next, this warmer fluid 

moves on towards the cold wall via the top face of the 

enclosure. It comes in contact with cold face on the upper half 

part first, gradually cools and move downwards; its 

temperature decreases and thus the temperature difference 

between the cold wall and fluid decreases. Thus, maximum 

temperature difference, in this case, is in the upper half part of 

cold face which can be clearly seen from the isotherm plots of 

Figure 2(a). 

There are two facts worth noticing while comparing Figure 

2(a) and Figure 2(b); first, number of innermost stagnant 

portion of streamlines and second, temperature gradient near 

southwest and northeast corners. There is only one inner 

stagnant portion of streamline in porous enclosure with no 

partition, which suggests that the fluid, as a whole is in motion 

which increases its momentum. However, this big rotund 

stagnant portion is broken up into four different small portions 

in four different parts of the enclosure, thereby distributing the 

share of momentum into four parts. Thus, suppressing the 

natural convection fluid flow effectively. As seen clearly in 

Figure 2(a), the isotherms are very steep in southwest and 

northeast corners on account of the reason mentioned above. 

However, this steepness is seen to considerably decrease in 

Figure 2(b). This is because, the inclined partition near the hot 

wall is also slightly heated up which causes the fluid in the 

complete vicinity to pre-heat before coming in contact with the 

hot wall. Thus, the temperature difference between hot wall 

and fluid is significantly less than in the former case. 

Consequently, the slope of temperature gradient drops. 

 

            

 
(a)                               (b) 

 

Figure 2. Streamlines (up) and isotherms (down) for square 

porous enclosure with: (a) no partition (PR=0); (b) inclined 

partitions (PR=0.5); Ra*=1000  

 

The magnitude of stream function signifies the strength of 

convection fluid flow. The gradient of stream function is 

velocity of fluid. The value of maximum absolute stream 

function for Figure 2(a) and Figure 2(b) is 22.296 and 10.217 
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respectively. The drop in |ψ|max is 54.18 % which is very 

significant, to say the least. Hence, the objective of 

suppressing the natural convection fluid flow is thus served 

very effectively by employing the inclined partition. Figure 3 

shows the variation of local Nusselt number along hot and cold 

face for fluid-saturated porous enclosure with and without 

partitions for Ra*=1000 and PR=0 and 0.5.   

It is evident, yet again, from the Figure 3 that there is a 

substantial drop of about 50% in the value of Nusselt number 

along the lower half of hot wall and upper half of cold wall, in 

the case of porous enclosure with multiple inclined partitions. 

The spike in the curve at Y=0.5 is due to the contact of 

partition since PR=0.5. There is cross-flow of fluid across the 

partition; fluid below the partition is moving downwards as it 

is relatively cooler while fluid above the partition is moving 

upwards as it is relatively warmer. This creates a temperature 

difference across the partition and hence generates the spike in 

the curve at Y=0.5. 

 

 
 

Figure 3. Local Nu on hot & cold wall for enclosure with 

(PR=0.5) and without (PR=0) inclined partitions. (Ra*=1000) 

 

 The discussion hitherto has shown that convective fluid 

flow has been effectively obstructed by the presence of 

inclined partition. The influence of multiple inclined partition 

on convection heat transfer can be manifested by observing the 

values of average Nu which is illustrated in Figure 4. The 

variation of average Nu is shown for values of Darcy-modified 

Rayleigh number from 102 to 103 for porous enclosure with 

(PR=0.5) and without (PR=0) multiple inclined partitions. 

It is clear from Figure 4 that average Nusselt number drops 

to about 50% due to presence of multiple inclined partition. As 

value of Ra* increases, the strength of buoyancy increases 

which aids in the ease of convection flow, hence the value of 

Nusselt number increases in both the cases. It is also noted that 

the drop in Nu values is slightly more for higher values of Ra*. 

 
 

Figure 4. Average Nu for enclosure with (PR = 0.5) and 

without (PR = 0) inclined partitions 

 

The purpose of this section was to access the effect of mere 

presence of the multiple inclined partition on convective fluid 

flow and heat transfer in fluid-saturated porous enclosure, 

which was performed by comparing streamlines, isotherms, 

maximum absolute stream function, local and average Nusselt 

number values with that of porous enclosure without any 

partitions. It is clear from all the aspects that employing the 

multiple inclined partition very substantially suppresses the 

convection fluid flow as well as heat transfer. Now, it becomes 

obligatory to evaluate the effect of position of partitions and to 

estimate the value of partition ratio PR for which least Nusselt 

number is obtained. This is discussed in detail in the 

forthcoming section. 

 

4.4 Effect of position of partition on natural convection 

fluid flow and heat transfer 

 

This section discusses the effect of position of multiple 

inclined partitions within a fluid-saturated square porous 

enclosure on fluid flow as well as heat transfer by noticing the 

streamlines, isotherms, maximum absolute stream function, 

local and average Nusselt number values for partition ratio PR 

from 0 to 1. Value of PR=0 indicates enclosure without any 

partition and PR=1 indicates a single diagonal partition. 

Figure 5 demonstrates streamlines and isotherms for fluid-

saturated square porous enclosure with multiple inclined 

partitions for PR=0.5, 0.8 and 0.9 and Ra*=1000. The range 

of PR is chosen such that the deviations in streamlines and 

isotherms are clearly noticeable. For any further low values of 

PR, the deviations become very ambiguous to notice. However, 

the effect of lower values of PR is demonstrated later in 

discussion of its influence on Nusselt number.  
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                                                      (a) |ψ|max=10.217           (b) |ψ|max=9.0094        (c) |ψ|max=10.0185 

 

Figure 5. Streamlines (up) and isotherms (down) for square porous enclosure with:  

(a) PR=0.5; (b) PR = 0.8; (b) PR=0.9. (Ra*=1000) 

 

The central stagnant portion of streamlines are broken into 

multiple stagnant portions as was seen previously in Figure 2. 

In case (a), there are four small stagnant portions at four 

different locations of enclosure such that those in the middle 

block are comparatively larger in size. The major portion of 

enclosure is acquired by the central block. The variation of 

absolute stream function value in the central block is 

approximately 1≤|ψ|≤10 with maximum absolute stream 

function (|ψ|max) value of 10.217. In case (b), the stagnant 

portions are broken into three equal sized portions at three 

different locations. The enclosure is acquired by all the blocks 

almost equally. The variation of absolute stream function 

value in the central and corner blocks is approximately 1≤|ψ|≤6 

and 1≤|ψ|≤8 respectively with |ψ|max value of 9.009. While that 

in case (c), out of three broken stagnant portions, the ones in 

the corner are comparatively larger in size. The major portion 

of enclosure is acquired by the corner blocks. The variation of 

absolute stream function value in the corner blocks is 

approximately 1≤|ψ|≤9 with |ψ|max value of 10.0185. Thus, for 

PR=0.8 not only the variation in stream function values, but 

also the maximum absolute value of stream function is found 

to be the least of all. Temperature distribution is shown by 

isotherm contours. Here, the contour level of θ=0.5 is 

highlighted for comparison between the three cases. Let this 

contour be termed as contour ‘C0.5’. The end points of C0.5 are 

marked with a pentagram and a diamond shaped marker. As 

seen in case (a), C0.5 starts at (X, Y) co-ordinates of (0.01, 0) 

and ends at (0.98, 1) which is very close to hot and cold wall 

respectively. In the central portion, it can be seen to extend 

horizontally from very near of hot wall to very near of cold 

wall. Also, the temperature gradient is high near the hot wall 

(0.1≤X≤0.3 and 0.1≤Y≤0.5) and near the cold wall as well 

(0.7≤X≤0.9 and 0.5≤Y≤0.9). In case (b), C0.5 starts at (X, Y) co-

ordinates of (0.1, 0) and ends at (0.91, 1) which is 

comparatively farther to hot and cold wall respectively, as 

compared to case (a). In the central portion, it can be seen to 

extend vertically by maintaining equal distance from hot and 

cold wall. Also, the temperature gradient is very low near the 

hot wall (0.1≤X≤0.5 and 0≤Y≤0.1) and near the cold wall as 

well (0.5≤X≤0.9 and 0.9≤Y≤1). In case (c), C0.5 starts at (X, Y) 

co-ordinates of (0.09, 0) and ends at (0.91, 1) which is 

comparatively farther to hot and cold wall respectively, as 

compared to case (a). In the central portion, it can be seen to 

extend vertically with slight inclination towards hot and cold 

wall. Also, the temperature gradient is low near the hot wall 

(0.1≤X ≤0.6 and 0≤Y≤0.2) and near the cold wall as well 

(0.6≤X≤0.9 and 0.8≤Y≤1) which is slightly greater than case 

(b) but lower than case (a). Therefore, the temperature gradient 

near the hot wall and cold wall is found to be the least for 

PR=0.8.  

The above discussion shows that natural convection fluid 

flow is certainly influenced by the position of partition and 

maximum obstruction is obtained for PR=0.8. The effect of 

partition ratio on convective heat transfer can be manifested 

by noticing the local and average Nusselt number. Nusselt 

number signifies the strength of convective heat transfer 

relative to conductive heat transfer. Figure 6 shows the 

variation of local Nusselt number along hot wall (Figure 6a) 

and cold wall (Figure 6b) for fluid-saturated square porous 

enclosure with PR=0.5, 0.8 and 0.9 and Ra*=1000.  

 

 
(a) 

 
                                    (b) 

         

Figure 6. Local Nusselt number on (a) hot and (b) cold wall 

for enclosure with multiple inclined partitions. (Ra*=1000) 

 

The spike in the curves of Figure 6 are due to presence of 

edges of partition at that particular enclosure height. The 

spikes are exactly seen to occur at Y=0.5, 0.8 and 0.9 which 

are the values of PR. It is clear from the graph that lowest value 

of local Nusselt number is obtained for PR=0.8. The difference 

can be noticed over the lower half of hot face and upper half 

of cold face where value of Nusselt number significantly high. 

However, the relative values of Nu are lowest for PR=0.8. The 

reason can be given on the basis of distribution of isotherms 

previously explained. The temperature gradient near hot wall 
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and cold wall for PR=0.8 is relatively lower than that for other 

two cases. Figure 7 depicts the variation for average Nusselt 

number against a wide range of PR* plotted for Ra=100, 250, 

500 and 1000.  

 

 
(a) 

 
(b) 

 

Figure 7. (a)Variation of Nuavg; (b) Percent reduction in 

Nuavg with varying partition ratio for different values of Ra* 

 

A comprehensive summary of above discussions about 

convective fluid flow and heat transfer in fluid-saturated 

square porous enclosure with multiple inclined partitions can 

be viewed in Figure 7. It can be clearly seen from Figure 7(a) 

that average Nusselt number increases with increase in value 

of Ra* for all values of PR. Further, the least value of average 

Nusselt number is obtained for PR=0.8 irrespective of the 

value of Ra*. The percent decrease in convective heat transfer 

is up to 71 % when PR=0.8. This is a significantly high 

reduction in the value of Nuavg.  

 

 

5. CONCLUSIONS 

 

The present numerical study was based on suppressing the 

convective fluid flow and heat transfer in a fluid-saturated 

square porous enclosure with multiple inclined diathermal 

partitions attached to it. The effect of mere presence of 

partitions and its position in the enclosure was studied by 

evaluating streamlines, isotherms, maximum absolute stream 

function, local and average Nusselt number values for Darcy-

modified Rayleigh number (Ra*) 100 to 1000 and partition 

ratio (PR) 0 to 1. Following conclusions may be drawn from 

the analysis performed above, 

1. To suppress the natural convection fluid flow and heat 

transfer, the regions near the vicinity of lower half of hot 

face and upper half of cold face must be well obstructed or 

isolated from the rest of enclosure on account of high 

temperature gradient generating in these regions. 

2. Mere presence of partition brings about substantial 

reduction in values of average Nusselt number. 

3. The reduction in Nusselt number is more pronounced for 

higher values of Darcy-Modified Rayleigh number.  

4. The maximum in Nusselt number is about 70% obtained 

for PR=0.8 for higher values of Darcy-modified Rayleigh 

number.  
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NOMENCLATURE 

 

AR Aspect ratio 

cp specific heat, J. kg-1. K-1 

D Distance of partition from origin, m 

g 

k 

gravitational acceleration, m.s-2 

thermal conductivity, W.m-1. K-1 

K Permeability of porous medium (m2) 
L Length of enclosure, m 

Nu Nusselt number  

PR Partition Ratio 

Ra* Darcy modified Rayleigh number 

T Temperature, K 

U, V Dimensionless x- and y- velocity 

u, v x- and y- direction velocity (m2/s) 

x, y Horizontal and vertical directions (m) 

X, Y Dimensionless horizontal and vertical 

directions  

 

Greek symbols 

 

 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1.s-1 

ν Kinematic viscosity (m2/s) 

ρ Density (kg/m3) 

ψ Dimensionless stream function 
ω Acceleration factor 

 

Subscripts 

 

 

avg average 

c cold 

e effective 

h hot 

max maximum 

p porous 
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