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ABSTRACT. Considering the advantages of the partcile swarm optimization (PSO), this paper 

probes deep into the improvement of the traditional PSO algorithm and its application in 

leather workshop scheduling. Firstly, the online scheduling of no-wait supply chain was 

described in details, while improving the PSO algorithm. On this basis, the author proposed an 

online no-wait scheduling algorithm based on the improved PSO for leather workshop supply 

chain. After that, the proposed algorithm was used to schedule an example leather workshop. 

The results show that our algorithm can find the optimal processing plan with a small swarm 

and through a limited number of iterations, despite the huge amount of orders.. 

RÉSUMÉ. Etant donné que les avantages de l'optimisation par essaims particulaires (PSO, le 

sigle de « partcile swarm optimization » en anglais), cet article approfondit l'amélioration de 

l'algorithme de PSO traditionnel et son application dans la planification des ateliers de 

maroquinerie. Tout d'abord, la planification en ligne de la chaîne d'approvisionnement sans 

attente a été décrite en détail, tout en améliorant l'algorithme de PSO. Dans ce contexte, 

l'auteur a proposé un algorithme de planification en ligne sans attente basé sur l'amélioration 

de PSO de la chaîne d'approvisionnement pour les ateliers de maroquinerie. Après cela, 

l'algorithme proposé a été utilisé pour programmer un exemple d'atelier de maroquinerie. Les 

résultats montrent que notre algorithme peut trouver le plan de traitement optimal avec un petit 

essaim et par un nombre limité d'itérations malgré le nombre considérable de commandes. 
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1. Introduction 

The leather workshop supply chain is the core of the entire leather manufacturing 

system. The quality and efficiency of leather products are inconceivable without the 

effective scheduling of the supply chain. However, the scheduling of leather workshop 

supply chain is a non-deterministic polynomial-time (NP) hard problem, which is 

difficult to solve with traditional optimization methods, not to mention that most of 

these methods are purely theoretical. 

Recent years has seen the application of swarm intelligence algorithms in supply 

chain scheduling. Inspired by the swarm behavior of gregarious creatures like ants, 

wild geese and fish, the swarm intelligence is a new evolutionary computing 

technology mimicking the bio-social system, which simulates the incalculable group 

behavior using the local information. The swarm intelligence provides a new way to 

find the complex solutions to distributed problems, eliminating the need for 

centralized control or the global model (Zheng and Wu, 2001). Despite the late start, 

the research on swarm intelligence has yielded fruitful results, including two popular 

swarm intelligence algorithms: the ant colony optimization (ACO) and the particle 

swarm optimization (PSO). 

The PSO, as an optimization algorithm, has its root in the swarm intelligence 

theory of Kennedy and Eberhart (Kennedy and Eberhart, 1995; Eberhart and Kennedy, 

1995). Taking the candidate solutions in a population as particles with no volume or 

mass, the algorithm moves these particles around in the search space according to 

simple mathematical formulae over the particle’s position and velocity. The 

movement of each particle is affected by its best-known local position and also guided 

toward the best-known global position, which are updated as better positions are found 

by other particles. In this way, the swarm is guided toward the optimal solutions. The 

PSO not only preserves the swarm intelligence of traditional evolutionary algorithms, 

but also boasts excellent optimization features. As a result, the PSO algorithm has 

been widely adopted for multi-objective optimization, biological system modeling, 

artificial neural networks, signal processing, decision support and data classification 

(Gu et al., 2005).  

Over the years, the PSO algorithm has been directly adopted or modified for 

continuous optimization problems. For example, Gu et al. (2005) proposes a PSO 

algorithm for flexible job-shop scheduling, and proves that the algorithm outperforms 

the genetic algorithm through experiments; in this algorithm, the dimension of each 

particle is twice the total number of processes, while the process sequence and the 

machine number of each process are expressed as two sequences of natural numbers. 

Scholars design the heuristic rule of the smallest position value (SPV) for particle 

encoding, and introduces the rule to the PSO scheduling of continuous optimization 

problems (Tasgetiren et al., 2004; Tasgetiren et al., 2004; Tasgetiren et al., 2007). 

Leticia et al. (2004) put forward an evolutionary algorithm to solve the random key 

coding in scheduling, which relies on a dynamic mutation operator to ensure the 

swarm diversity, and minimized the total delay of a single-machine scheduling 

problem with 40 or 50 jobs using the proposed algorithm. Xia et al. (2004) encoded 

particles as integers, modified the particle position and velocity by the rounding 

https://en.wikipedia.org/wiki/Formula


Online no-wait scheduling of leather workshop supply chain     155 

method and performed local search through simulated annealing; this integrated 

strategy achieved better results than the genetic algorithm and the tabu search in 

various job-shop scheduling problems. Liao et al. (2007) provides an improved 

discrete algorithm for flow shop scheduling, which redefines the particle velocity and 

its update rule, and verifies that the algorithm outshines the continuous algorithm and 

two genetic algorithms. Pan et al. (2005; 2007) created a discrete position-update PSO 

algorithm for no-wait flow shop scheduling with the minimal makespan, and 

improved its performance in view of the features of the problem. 

In recent years, the no-wait scheduling problem has arisen in many industries, such 

as the hot metal roiling industry, chemical industry, pharmaceutical industry, food 

processing industry and leather processing industry. As a result, more and more 

scholars have turned their attention to the no-wait scheduling problem. For instance, 

Mascis et al. (2003) implemented no-wait scheduling of a flow shop using a selective 

graph formula and through heuristics and branch procedures. Schuster et al. (2007) 

proposed two local search algorithms after decomposing the no-wait flow shop 

scheduling. In general, the existing studies on no-wait scheduling mainly concentrate 

on flow shops, failing to address job-shops or online scheduling problems. 

In light of the above, this paper probes deep into the improvement of the traditional 

PSO algorithm and its application in leather workshop scheduling. Firstly, the online 

scheduling of no-wait supply chain was described in details, while improving the PSO 

algorithm. On this basis, the author proposed an online no-wait scheduling algorithm 

based on the improved PSO for leather workshop supply chain. After that, the 

proposed algorithm was used to schedule an example leather workshop. The results 

show that our algorithm can find the optimal processing plan with a small swarm and 

through a limited number of iterations, despite the huge amount of orders. 

2. Leather workshop supply chain scheduling problem 

The leather workshop supply chain scheduling problem, a typical NP-hard 

problem, aims to minimize the make span of leather workpieces on a given number 

of machines, provided that all workpieces are processed on the machines in the same 

order, the processing sequence of the workpieces is set in advance, and the processing 

time of each workpiece on each machine is already known. The traditional solutions 

to this problem include exhaustive method, integer programming method as well as 

branch and bound method. However, these methods are only applicable to small-scale 

leather workshops. In recent years, many heuristic algorithms and swarm intelligence 

methods have emerged, ranging from simulate annealing, tabu search, genetic 

algorithm to the PSO algorithm. 

Supply chain scheduling is fundamental to leather workshop management, 

especially in the era of online commerce. Nowadays, the customer can place an order 

at any time online. Upon receiving the order, the manufacturer has to arrange the 

production according to the order urgency and deliver the final product to the 

customer as quickly as possible. The arrangement should not only optimize the 

workpiece processing sequence, but also satisfy the customer’s needs in the online 
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orders. Before the workpieces enter the production system, the arrival time, 

processing time and number of workpieces are all unknown. The real-time feature, 

coupled with the fuzzy information, adds to the difficulty of the scheduling task. 

In our research, the leather workshop supply chain requires real-time scheduling 

of the online orders. It should be noted that the leather should be processed in a 

specified time interval. Otherwise, the product will not have the required hardness, 

color or elasticity. The leather workshop supply chain scheduling problem differs 

from the traditional job-shop scheduling problem in the following aspects. Firstly, the 

time to transfer workpieces from one machine to another is negligible because the 

transfer is completed by robot; secondly, each workpiece must be processed in a 

specified time interval; thirdly, new workpieces may enter the production system at 

any time, requiring real-time scheduling of the entire production sequence; fourthly, 

there is the “no-wait” constraint: a workpiece should be transferred to the next 

machine immediately after completing the process on the current machine, unless it 

is being transferred between two machines. 

It can be seen that no rescheduling is allowed for any workpiece that has been 

already scheduled. In other words, the scheduling of new workpieces should not affect 

the processing of the scheduled jobs. Therefore, this research needs to find a way to 

arrange the processing sequence of the current workpieces reasonably, and insert the 

new workpieces into the sequence without changing the schedule of the existing 

workpieces, such that all workpieces could be processed in time. If there is only one 

new workpiece, the insertion and adjustment can be determined directly by the 

traditional algorithm. However, the direct method is no longer feasible when there are 

many new workpieces. Therefore, this paper resorts to the PSO algorithm to solve the 

insertion of numerous new workpieces in a short time. 

3. Improved PSO algorithm 

The mathematical description of the PSO algorithm is given as follows. For N 

particles in a given n-dimensional search space, let Xi = (Xi1, Xi2 , … , Xin) and Vi =
(Vi1, Vi2, … , Vin)  be the position and velocity of each particle, respectively, Pi =
(Pi1, Pi2, … , Pin) and   Pg = (Pg1, Pg2, … , Pgn) be the set of known positions of particle 

i and all the particles in the swarm, respectively, and Fiti be the fitness of each particle 

relative to the optimal value of the objective function. Then, the best-known position 

of particle i and that of the swarm can be selected from the respective position set and 

denoted as Pbest  and Gbest , respectively. Then, the velocity and position of each 

particle can be updated in each iteration by the following equations: 

𝑉𝑖𝑑(𝑡 + 1) = 𝑊𝑉𝑖𝑑(𝑡) + 𝑐1𝑟1(𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + 𝑐2𝑟2 (𝑃𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡))       (1) 

𝑋𝑖𝑑(𝑡 + 1) = 𝑋𝑖𝑑(𝑡) + 𝑉𝑖𝑑(𝑡 + 1)                                     (2) 

where d  is the dimension of the particle; w is the inertia weight;  c1 and c2  are 

acceleration coefficients that adjust the maximum step size towards the Pibest  and 



Online no-wait scheduling of leather workshop supply chain     157 

Pgbest, respectively; V𝑖 is the velocity of particle i. Note that the particle dimension 

should not be too large or too small; otherwise, the particle may collide into or fly 

over the target area. The two acceleration coefficients are positive constants, whose 

values should be selected properly to prevent slow convergence or local optimum trap. 

The particle velocity is a random number in the interval [0, 1] and should fall below 

the maximum velocity Vmax, which determines the maximum movement distance of 

particles per cycle. 

There are three parts on the right side of equation (1): the inertia part, the cognition 

part and the social part. The inertia part refers to the inertia of the previous behavior 

of the particle, i.e. the velocity before the update; the cognition part; the cognition part 

describes how the information of the particle itself affects the next movement; the 

social part reflects how the information sharing and cooperation between particles 

affect the next movement of the particle. The latter two parts jointly affect the velocity 

update. Equation (2) shows that the particle position update is the combined result of 

the current position vector and the updated velocity vector.  

In our research, the original PSO algorithm must be improved considering the real-

time scheduling demand and the fuzzy information of online orders. Let L be the 

number of workpieces to be processed. Then, an L-dimensional vector was generated 

to represent a particle in the search space, with each element being one of the L 

workpieces. Thus, the dimensions of the particle equal the number of workpieces. 

Then, the workpieces were arranged by the size of their corresponding vector elements. 

The smaller the vector element, the earlier the corresponding workpiece in the 

processing sequence. If a machining system contains 6 workpieces, then a 6-

dimensional vector will be generated randomly as (2.40, 1.71, -0.89, 3.10, -2.34, -

1.20). The workpiece corresponding to the smallest element (-2.34) should be 

processed earlier than the other workpieces. Similarly, the processing sequence can 

be derived as (5 6 3 2 1 4). 

The search ability of the improved PSO directly depends on the inertia weight W. 

Since the value of W decreases linearly, the algorithm does better in global search at 

the beginning and in local search at the end. The inertia weight can be expressed as 

W = Wmax −
Wmax−Wmin

Nmax
N, with Wmax and Wmin being the initial and final values of 

the inertia weight, respectively, Nmax being the maximum number of iterations, and 

N being the current number of iterations. Here, the initial and final values of the inertia 

weight are set to 1.2 and 0.4, respectively. In addition, the initial particles in the 

improved PSO were randomly generated by 

𝑥0 = 𝑥𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ∗ 𝑟1 and 𝑣0 = 𝑣𝑚𝑖𝑛 + (𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛) ∗ 𝑟2, 

xmin = 0, xmax = 4, vmin = −4 and vmax = 4. 

4. Online no-wait scheduling based on improved PSO 

As mentioned before, the leather workshop supply chain scheduling problem does 

not allow the rescheduling of the current workpieces when new ones are inserted into 
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the processing sequence. Moreover, our problem is subjected to the no-wait constraint: 

a workpiece should be transferred to the next machine immediately after completing 

the process on the current machine, unless it is being transferred between two 

machines, and the transfer time is negligible. In addition, each workpiece must be 

processed in a specified time interval. To solve the problem, this section attempts to 

develop an online no-wait scheduling plan for the leather workshop supply chain 

based on the improved PSO. 

4.1. Problem description 

Let m be the number of the types of rubber used to process the leather workpieces, 

each of which is stored in  ni containers, where i = 1, 2⋯ ,m, a ij
k and b ij

k
 be the 

start time and the end time of the k-th allowable processing interval for the container 

j containing rubber i, respectively, and xi and xm+1 be the start time and end time of 

a leather workpiece being processed by rubber i. 

Then, the containers containing the same rubber were allocated into the same class. 

Meanwhile, the allowable processing intervals were ranked in ascending order of a ij
k. 

The intervals with the same start time a ij
k were sorted by the value of b ij

k
. In this 

way, a processing time sequence was obtained as  Si = {(αiri  , βiri)} , with  ri =

1,2⋯ , qi. Note that qi is the total number of containers containing rubber i.   

Thus, the goals of the online no-wait scheduling problem can be described as 

finding the x1, x2, ⋯ , xm, xm+1 such that the value of xm+1 is minimized and in line 

with the following inequalities: 

𝜃𝑖 ≤ 𝑥𝑖+1 − 𝑥𝑖 ≤ 𝜃𝑖 + 𝛿𝑖, 𝑖 = 1,2,⋯ ,𝑚  

𝑥𝑖 ≥ 𝛼𝑖𝑟𝑖  

𝑥𝑖+1 ≥ 𝛽𝑖𝑟𝑖   

Based on the improved PSO, a real-time algorithm was designed for the online no-

wait scheduling problem, with the aim to minimize the makespan under the given 

processing sequence. With the growing number of new workpieces, the processing 

sequence of these workpieces can be determined through iterations in the PSO module. 

4.2. Real-time scheduling algorithm 

The PSO-based real-time algorithm for the online no-wait scheduling of leather 

workshop supply chain was designed in the following steps: 

(1) Configure the population size and the maximum number of iterations, 

considering the problem features. 

(2) Assuming there are N workpieces, initialize the particle swarm through random 

generation of the position and velocity of each particle, and import some of the 

workpieces to the processing system according to the initial processing sequence. 
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(3) For each type of rubber, the sequence of allowable processing intervals can be 

described as Si = {(αiri  , βiri)}, ri = 1,2⋯ , qi, i = 1,2,⋯ ,m. 

(4) For each i = 1,2,⋯ ,m, ri = 1. 

(5) Construct a time sequence using the following equation: 

X = {x1, x2, ⋯ , xm+1}. 

t1 = αir1  

ti = max(αiri  , ti−1 + θi−1)  i = 1,2,⋯ ,m   

tm+1 = tm + θm  

xm+1 = tm+1  

xi = max(ti, xi+1 − θi − δi)  i = m,m − 1,⋯ ,1  

(6) If xi+1 ≤ βiri  for all i, go to Step (8); otherwise, go to Step (7). 

(7) For all i satisfying xi+1 > βiri  , let ri = ri + 1 and return to Step (5). 

(8) Update the sequence of allowable processing intervals; rearrange the available 

processing intervals of the container according to the proposed method, yielding the 

updated processing interval sequence Si = {(αiri  , βiri)} ,  ri = 1,2⋯ , qi ,  i =

1,2,⋯ ,m. 

(9) According to the processing sequence of the workpieces, select the next 

workpiece entering the processing system and go to Step (4). After all workpieces 

have been processed, go to Step (10). 

(10) Obtain the values of the following parameters: the makespan of each particle, 

the value of the objective function, the local optimal solution pbest and the global 

optimal solution gbest. 

(11) By the improved PSO, calculate the position and velocity of each particle in 

the new generation swarm, and update the local and global optimal solutions. 

(12) When the maximum number of iterations is satisfied, output the optimal value 

of the fitness function and terminate the iteration. Otherwise, return to Step (3). From 

Step (5) of the algorithm, the makespan xm+1 of the last process of each workpiece 

can be obtained. The time sequence X = {x1, x2, ⋯ , xm, xm+1}  is the shortest 

makespan for each process.  

Therefore, the shortest makespan of all workpieces can be determined by the 

above algorithm after determining the workpiece processing sequence. 
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5. Experimental verification 

This section verifies the effectiveness of the proposed PSO-based real-time 

algorithm for the online no-wait scheduling of leather workshop supply chain through 

four examples. 

5.1. Example 1 

In this example, three leather workpieces need to be soaked in three kinds of 

chemical solutions. The first chemical solution are stored in four throughs, the second 

in three throughs and the third in three throughs. The allowable processing intervals 

for these throughs are as follows. 

The first chemical solution: 

Trough 1:[0,4]; [6,9]; [10,17]; [29, +∞) 

Trough 2:[0,5]; [7,12]; [20,27]; [40, +∞) 

Trough 3:[3,6]; [8,9]; [15,19]; [30, +∞) 

Trough 4:[2,5]; [7,9]; [23, +∞) 

The second chemical solution: 

Trough 1:[1,7]; [9,18]; [24, +∞) 

Trough 2:[3,6]; [9,12]; [20,24]; [30, +∞) 

Trough 3:[2,5]; [8,10]; [35, +∞) 

The third chemical solution: 

Trough 1:[5,9]; [11,15]; [28, +∞) 

Trough 2:[3,10]; [12,17]; [32, +∞) 

Trough 3:[4,8]; [9,15]; [18,29]; [35, +∞) 

The allowable processing intervals for each chemical solution were ranked in 

ascending order as below. 

Chemical solution 1: 

S1 ={[0,4]; [0,5]; [2,5]; [3,6]; [6,9]; [7,9]; [7,12]; [8,9]; [10,17]; [15,19]; [20,27]; 

[23,+∞); [29, +∞); [30, +∞);[40, +∞)}. 

Chemical solution 2: 

S2 = {[1,7]; [2,5]; [3,6]; [8,10]; [9,12]; [9,18]; [20,24]; [24,  +∞) ; 

[30, +∞);[35, +∞)}. 

Chemical solution 3: 

S3 ={[3,10]; [4,8]; [5,9]; [9,15]; [12,17]; [18,29]; [28, +∞);[32, +∞);[35, +∞)}. 
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Then, the three leather workpieces should be processed through three intervals, 

respectively. 

Workpiece 1: [4,5]; [3,4]; [4,6] 

Workpiece 2: [2,4]; [3,4]; [6,7] 

Workpiece 3: [3,4]; [5,7]; [2,4] 

Next, computer simulations were performed on this example using the proposed 

real-time scheduling algorithm. The initial swarm size was set according to the size 

of the problem, that is, the number of particles was selected in light of the size of the 

workpieces. For Problem 1, the swarm size and the number of iterations were set to 

10 and 32, respectively. The computer simulations show that the makespan was 

shortened to 32 through 10 iterations of 10 initial particles, indicating the good 

computing ability and convergence of the proposed algorithm in online scheduling 

problems. The Gantt chart of the optimal scheduling plan for the three workpieces is 

shown in Figure 1 below. 

 

Figure 1. Optimal scheduling plan for the three workpieces 

5.2. Example 2 

This example was cited to verify how the proposed algrotihm schedules leather 

workshop supply chain on a greater scale than that in Example 2. In this example, 

there are 10 leather workpieces, each of which needs to be treated by 8 kinds of 

chemical solutions. Each chemical solution is stored in more than one trough. Then, 

the allowable processing intervals of each chemical solution can be expressed as: 

S1 ={[0,3]; [0,5]; [2,5]; [6,9]; [7,13]; [8,10]; [10,16]; [15,19]; [17,25]; [21,28]; 

[30,37]; [40, +∞); [42, +∞);[47, +∞);[54, +∞);[60, +∞)} 

S2 ={[1,6]; [2,5]; [4,6]; [7,10]; [9,12]; [9,18]; [15,19]; [20,26]; [27,30]; [32,37]; 

[42,49]; [53, +∞); [55, +∞); [62, +∞); [71, +∞); [77, +∞)} 

S3 ={[4,10]; [5,8]; [5,11]; [9,14]; [11,16]; [12,17]; [18,26]; [32, +∞); [40, +∞); 
[46, +∞); [57, +∞)} 



162     JESA. Volume 51 – n° 1-3/2018 

 

S4 ={[3,6]; [4,7]; [7,11]; [8,12]; [9,18]; [15,19]; [20,26]; [29,36]; [32,39]; [42,49]; 

[55, +∞); [60, +∞);[65, +∞); [71, +∞); [74, +∞)} 

S5 ={[2,4]; [4,8]; [4,9]; [7,14]; [9,12]; [9,16]; [13,19]; [18,26]; [21,32]; [31,35]; 

[40,47]; [49, +∞);[50, +∞); [53, +∞); [57, +∞); [60, +∞)} 

S6 ={[7,9]; [[7,13]; [8,12]; [9,15]; [13,19]; [15,19]; [21,27]; [24,30]; [30,37]; 

[32,40]; [43,67]; [53, +∞); [55, +∞);[61, +∞);[64, +∞);[69, +∞)} 

S7 ={[9,16]; [13,18]; [15,18]; [20,27]; [28,35]; [35,39]; [42,49]; [48,57]; [59,65]; 

[70,87]; [72, +∞); [77, +∞); [80, +∞); [88, +∞)} 

S8 ={[10,16]; [12,15]; [14,18]; [17,22]; [19,28]; [19,29]; [24,31]; [28,39]; [37,50]; 

[48,57]; [53,60]; [68,76]; [74,90]; [78, +∞);[80, +∞);[82, +∞);[86, +∞);[91, +∞)} 

The allowable processing intervals of each workpiece are listed in Table 1 below. 

Table 1. The allowable processing intervals of each workpiece  

 O1 O2 O3 O4 O5 O6 O7 O8 

J1 [2, 3] [3, 5] [3, 4] [2, 4] [4, 6] [3, 5] [2, 3] [3, 4] 

J2 [1, 2] [3, 4] [2, 4] [1, 3] [3, 5] [4, 5] [3, 4] [2, 4] 

J3 [3, 4] [3, 5] [2, 4] [1, 3] [3, 5] [2, 3] [2, 4] [1, 2] 

J4 [4, 5]                    [2, 3] [1, 2] [1, 3] [2, 4] [3, 4] [2, 4] [1, 2] 

J5 [3, 5]                    [2, 3] [1, 3] [2, 3] [3, 4] [2, 4] [2, 4] [3, 4] 

J6 [2, 3]                    [3, 4] [3, 4] [2, 3] [5, 6] [2, 3] [2, 3] [4, 4] 

J7 [3, 5]                    [3, 4] [2, 3] [1, 2] [2, 4] [2, 3] [1, 3] [1, 2] 

J8 [2, 4]                    [3, 5] [2, 3] [2, 3] [3, 4] [2, 4] [2, 3] [1, 2] 

J9 [3, 4]                    [2, 3] [1, 3] [2, 4] [3, 4] [2, 3] [4, 5] [2, 3] 

J10 [3, 5]                    [2, 4] [1, 2] [3, 4] [2, 3] [3, 5] [4, 5] [2, 3] 

The swarm size and the number of iterations were set to 20 and 10, respectively. 

The optimal makepsan was 76 through computer simulations using the proposed real-

time scheduling algorithm. This means the proposed algorithm still shows good 

computing ability and convergence despite the growth in the scale of the problem. 

5.3. Example 3 

This example was cited to verify how the proposed algorithm schedules leather 

workshop supply chain under different process requirements. In this example, each of 

the four workpieces need to be soaked in three kinds of chemical solutions. Each kind 

of chemical solution is stored in separate troughs. There are three troughs for the first 
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solution, four troughs for the second solution, and three troughs for the third solution. 

The allowable processing intervals for these troughs are as follows. 

The first chemical solution: 

Trough 1: [0,6]; [8,16]; [18, +∞) 

Trough 2: [3,7]; [9,16]; [17,27]; [30, +∞) 

Trough 3: [2,8]; [9,14]; [16,20]; [25, +∞) 

The second chemical solution: 

Trough 1: [1,7]; [9,17]; [21, +∞) 

Trough 2: [0,6]; [8,16]; [18,27]; [30, +∞) 

Trough 3: [1,5]; [7,13]; [25, +∞) 

Trough 4: [5,9]; [15, +∞) 

The third chemical solution: 

Trough 1: [4,12]; [14,19]; [20, +∞) 

Trough 2: [5,9]; [12,27]; [35, +∞) 

Trough 3: [3,8]; [9,15]; [17,29]; [30, +∞) 

For each chemical solution, the allowable processing intervals were sorted in 

ascending order as below. 

The first chemical solution: 

S1 = {[0,6]; [2,8]; [3,7]; [8,16]; [9,14]; [9,16]; [16,20]; [17,27]; [18,  +∞) ; 

[25, +∞); [30, +∞)} 

The second chemical solution: 

S2 ={[0,6]; [1,5]; [1,7]; [5,9]; [7,13]; [8,16]; [9,17]; [15, +∞);[18,27]; [21, +∞); 
[25, +∞); [30, +∞)} 

The third chemical solution: 

S3 ={[3,8]; [4,12]; [5,9]; [9,15]; [12,27]; [14,19]; [17,29]; [20, +∞); [30, +∞); 
[35, +∞)} 

The swarm size and the number of iterations were both set to 10. The optimal 

makepsan was 29 through computer simulations using the proposed real-time 

scheduling algorithm, revealing that each particle can reach the optimal solution after 

10 iterations. The optimal scheduling sequence of the workpieces was determined as 

(3 4 1 2). In addition, workpiece 1 should be soaked in the three throughs in intervals 

of [5, 9], [9,14] and [14,17], workpiece 2 in [10,17], [17,23] and [23,27], workpiece 

3 in [3, 8], [8, 16] and [16, 23] and workpiece 4 in [9, 15], [15,21] and [21,29]. 
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5.4. Example 4 

This example was cited to verify how the proposed algorithm schedules leather 

workshop supply chains of different scales. In these supply chains, the number of 

leather workpieces is 2, 3,  , 10, respectively. Each workpiece needs to be soaked 

in 6 kinds of chemical solutions. The allowable processing intervals of each kind of 

chemical solution are given below. 

S1 ={[0,6]; [2,8]; [4,10]; [7,13]; [8,15]; [10,20]; [13,19]; [15,25]; [21,39]; [25,37]; 

[39, +∞); [42, +∞);[50, +∞);[53, +∞);[59, +∞)} 

S2 ={[2,8]; [3,9]; [5,13]; [11,20]; [12,19]; [15,25]; [20,26]; [27,40]; [ [32,47]; 

[43, +∞); [46, +∞); [48, +∞); [52, +∞); [60, +∞)} 

S3 ={[3,10]; [5,9]; [6,13]; [7,19]; [10,18]; [12,27]; [18,29]; [30, +∞); [38, +∞); 
[47, +∞); [49, +∞); [55, +∞)} 

S4 ={[3,8]; [5,12]; [6,17]; [7,16]; [10,18]; [12,19]; [20,36]; [29,40]; [32,39]; 

[42,49]; [43, +∞); [49, +∞);[55, +∞); [60, +∞); [61, +∞)} 

S5 ={[2,8]; [5,14]; [7,24]; [9,22]; [10,16]; [13,29]; [15,26]; [20,39]; [30,47]; 

[38, +∞);[43, +∞); [49, +∞); [52, +∞); [55, +∞)} 

S6 ={[7,19]; [8,15]; [9,18]; [13,19]; [21,28]; [24,35]; [30,37]; [32,40]; [43,57]; 

[47, +∞); [53, +∞);[59, +∞);[65, +∞);[78, +∞)} 

The allowable processing intervals for each workpiece are listed in Table 2 below. 

Table 2. The allowable processing intervals for each workpiece  

 O1 O2 O3 O4 O5 O6 

J1 [3, 4] [5, 7] [3, 5] [6, 8] [7, 8] [4, 5] 

J2 [2, 3] [4, 5] [4, 6] [6, 7] [4, 5] [4, 6] 

J3 [3, 4] [4, 5] [6, 7] [5, 7] [3, 5] [5, 6] 

J4 [4, 5] [3, 4] [6, 8] [7, 8] [5, 6] [3, 5] 

J5 [4, 5] [3, 4] [5, 6] [3, 4] [4, 5] [6, 7] 

J6 [5, 6] [4, 5] [3, 5] [3, 4] [4, 6] [3, 4] 

J7 [4, 5] [3, 5] [5, 6] [5, 7] [7, 8] [4, 5] 

J8 [4, 5] [3, 4] [4, 6] [3, 4] [4, 5] [5, 7] 

J9 [6, 8] [4, 5] [3, 4] [5, 7] [4, 5] [6, 8] 

J10 [5, 6] [7, 9] [6, 8] [4, 5] [8, 9] [3, 5] 

 

The nine scheduling problems were simulated on the same computer with the 
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swarm size of 40 and the number of iterations of 10. The minimum makespan for each 

of the problem is recorded in Table 3. 

Table 3. The shortest makespan of the 9 scheduling problems 

Scale 
2
× 6 

3
× 6 

4
× 6 

5
× 6 

6
× 6 

7
× 6 

8
× 6 

9
× 6 

10
× 6 

Optimal 

solution 
35 35 35 39 39 45 45 56 58 

 

The scheduling results of one of the 9 problems are detailed below. For this 

problem, the swarm size and the number of iterations were set to 20 and 10, 

respectively. After ten simulations, the minimium makespan was obtained as 45, and 

the optimal processing sequence is (6 4 2 8 7 3 1 5). The initial immersion time of 

each workpiece in each trough can be written as the following matrix: 

𝐴 =

{
 
 
 

 
 
 

3    8  12  15  18  22  25
3    8  12  20  27  32  35
2    4  10  12  18  22  26
11  16  20  24  27  31  36
  15  20  24  29  34  41  45  
5    8    13  20  26  31  36
  8   12  19  24  32  39  43  
8   13  17  23  27  31  37 }

 
 
 

 
 
 

  

The last column of the matrix is the makespan of each workpiece. The first six 

elements in the first row (3 8 12 15 18 22) means the start time of workpiece 6 in 

troughs 3, 6, 1, 4, 2 and 5, respectively, while the last element 25 means the end time 

of the last process of workpiece 6. Similary, the first six elements in the second row 

(3 8 12 15 20 27 32) means the start time of workpiece 4 in troughs 1, 6, 3, 4, 5 and 

2, respectively, while the last element 35 means the end time of the last process of 

workpiece 4. The meanings of the elements in the other rows can be determined in 

analogy according to the optimal processing sequence. 

6. Conclusions 

After introducing the online scheduling problem of no-wait leather workshop 

supply chain, this paper improves the PSO algorithm, a desirable tool for continuous 

scheduling problems, and applies it to schedule several leather workshop supply 

chains.  The application results show that our algorithm can minimize the makepsan 

of each workpiece and determine the optimal processing sequence with a small swarm 

and through a limited number of iterations, despite the huge amount of orders. The 

research findings shed new light on the management of actual leather workshop 

supply chains. 
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