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 The paper deals with the analysis of nonhomogeneous inner coatings for a homogeneous 

pipe with respect of heat loss from the outer pipe surface. Two kinds of the coatings in the 

form of ring layers are considered: (1º) with the thermal properties changing continuously 

along the coating thickness (called the coating A), (2º) multilayered coatings with 

piecewise continuous thermal properties (called the coatings B). The analysis is connected 

with the stationary heat conduction problems. Some special cases of the coatings A and B 

are investigated. The obtained analytical results and the comparison of the coatings are 

presented.  
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1. INTRODUCTION 

 

Modern engineering structures require the use of materials 

with appropriate thermomechanical properties. This creates 

materials with very complex structure. Such materials include 

composites with functionally changing thermomechanical 

properties, they are so-called gradient materials. The 

production of such materials requires the use of advanced 

technologies during their production [1]. Due to the high costs 

of obtaining the coatings and the functionality that should be 

met by such materials, they require the development of some 

accurate modeling methods, both numerical and analytical, 

allowing forecasting of temperature, heat flux, displacement 

and stress distribution with the expected accuracy of 

calculations [2].  

The main purpose of materials with functional gradation of 

properties is their use as thermal barriers Matysiak and 

Perkowski [3] or as layers reducing of wear at elevated 

temperatures [4]. 

Many works on the analysis of thermal stresses for various 

type of constructions made of functionally graded materials 

can be found in the literature, for example: in paper Ootao and 

Ishihara [5] for empty cylinders, for plates in ref. [6], and for 

empty balls in ref. [7]. For the analysis of thermal stresses in 

nonhomogeneous thermoelastic bodies with functionally 

graded properties, the knowledge of temperature and heat flux 

distributions is needed. 

The analysis of heat flow in materials with functionally 

graded properties can be found in ref. [8-10], where the heat 

conductivity coefficient is described in the exponential or 

power form depending on the radial coordinate. In Hosseini et 

al. [11], the heat flow in a heterogeneous cylinder was 

considered, which was divided into sub-cylinders along the 

wall thickness of the cylinder. Whereas in Ootao [7] the heat 

transfer analysis for the sphere is presented, where the heat 

conductivity coefficient is described by a power function, here 

also the approach of dividing the sphere into sub-layers, within 

which the thermal properties of the material are constant, was 

applied. The approaches presented above rely on the 

description of a heterogeneous medium with functional 

gradation of properties by means of a packet of layers within 

which the thermal properties are constant. However, this 

requires the solution of an appropriate system of equations 

resulting meeting the conditions of heat flux continuity and 

temperature on the interfaces. Another approach is the analysis 

of heat flow using appropriate averaged methods, namely the 

homogenized model with microlocal parameters Matysiak 

[12], and Matysiak and Woźniak [13] or tolerance description 

[14]. In the case of approach based on homogenization with 

microlocal parameters, as shown in Matysiak et al. [15] and 

Perkowski et al. [16] it can be used for composites with a 

micro-periodic structure. The model homogenized with 

microlocal parameters has been widely applied to solve a 

number of issues in solid thermomechanics [17-19]. 

In the literature, a very widely developed method to 

modeling media with functional gradation of properties is the 

approach using direct numerical methods, including the finite 

element method, for instance [20], non-mesh methods [9, 21], 

boundary-volume method [22]. 

In this article, the problem of heat conduction for an 

infinitely long heterogeneous pipe used to the transport of 

heated fluid is considered. The pipe is assumed to be 

composed of a homogenous foundation and a 

nonhomogeneous insulating inner coating. The special 

attention is developed to examine the reduction of heat loss 

from its external surface achieved in the result of using of 

nonhomogeneous coating on the internal pipe interface. 

Two kinds of the coatings in the form of ring layers are 

investigated. The first one is characterized by the thermal 

properties changing continuously along the cover thickness 

and it will be called the coating A. The second one consists of 

multilayered coatings with piecewise continuous thermal 

properties (called the coating B). The coating A is composed 

of two components: a homogeneous insulating part and a 
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gradient part described by the heat conductivity coefficient in 

the form of an arbitrary function dependent on the radius. Two 

cases of choice of this function are considered: the first one is 

based on the one known in literature as Voigt’s rule, the second 

one is Reuss’s rule. The considered problem of heat 

conduction in the pipe is assumed to be stationary and one 

dimensional, so the exact for of solution for the temperature is 

found. The coating B is composed of n homogenous ring 

layers. In this case the conditions of ideal thermal contact 

between the composite components are considered. As a 

special case, the coating with periodic structure is investigated. 

The obtained results for the coatings with respect of their 

applications as thermal barriers are compared and remarks 

resulted from the realized calculations are presented. 

 

 

2. FORMULATION OF THE PROBLEM 

 

Consider the problem of heat conduction for an infinitely 

long nonhomogeneous pipe with the outer radius R0 and the 

inner radius R1. The inner surface of pipe is kept at a constant 

temperature different from the temperature of outer medium 

of the value 0. The heat exchange with the outer medium is 

assumed to be realized according to Newton law. The 

considerations will be derived in the dimensionless cylindrical 

coordinates (r, , z) concerned to the radius R0. The 

distribution of temperature is assumed to be axially 

symmetrical and does not depend on the coordinate z (in the 

axial direction). The nonhomogeneous pipe in its cross-section 

is composed of the homogeneous foundation with the 

coefficient of thermal conductivity K0 and located at the region 

r2 < r < 1, where r2 = R2/R0, as well as of the nonhomogeneous 

coating with the thickness H = R2 – R1 (Figure 1). The coating 

takes up the region r1 < r < r2, where r1 = R1/R0.  

 

 
 

Figure 1. Scheme of considered problem 

 

Two kinds of coatings will be considered. The coating 

called coating A (Figure. 1a) is composed of two components. 

The first component is a homogeneous insulating coating with 

the thermal conductivity coefficient Kis, which contains the 

inner surface of pipe and it is located at the region r1 < r < r3, 

where r3 = R3/R0. The second one is a gradient coating with the 

thermal conductivity coefficient described by the function 

K(r)/K0 = K*(r), r3 < r < r2. It will be assumed, that K*(r3+0) = 

Kis/K0, K*(r2–0) = 1. The coating called coating B is assumed 

to be composed of homogeneous components with the thermal 

conductivity coefficients K(i), i = 1, 2, ..., n, which occupy the 

regions r(i) < r < r(i+1), r(1) = r2, r(n+1) = r1, (Figure 1b). Moreover, 

it will be assumed that in the both cases of coatings (coating A 

and B) the thermal contact between the components of pipe is 

ideal. 

 

3. MATHEMATICAL MODELS AND METHODS OF 

SOLUTIONS 

 

Coating A 

The temperature field in the coating A will be obtained from 

the solution of following boundary-value problem: 

a) the equation: 

 

( ) ( ) ( ) ( )1 3 3 2 20, , , ,1
d dT

rK r r r r r r r
dr dr

 
=    

 
 (1) 

 

b) the boundary conditions: 

• on the inner surface of pipe: 

 

( )1 0T r = ; (2a) 

 

• the thermal exchange on the outer surface of pipe: 

 

0, 1T BiT r + = = ; (2b) 

 

• the ideal thermal contact between the components of 

pipe: 

 

( ) ( ) ( ) ( )0 0 , 0 0 , 2,3i i i iT r T r T r T r i − = + − = + = . (2c) 

 

In the Eqns. (1)-(2) the following notations are introduced: 

T is the function described the temperature deviation in the 

points of pipe from the temperature of outer medium, T is the 

derivative of function T; Bi = R0/K0, where  is the 

coefficient of heat exchange between the outer surface of pipe 

and the outer medium, 

 

( ) ( )
is 0 1 3

*

3 2

2

, ,

, ,

1, 1.

K K r r r

K r K r r r r

r r

 


=  


 

 (3) 

 

Integrating twice the Eq. (1) we obtain: 

 

( )
( )

1

1 2 1, 1
r

dx
T r C C r r

xK x
= +   . (4) 

 

It is easy to prove, that for the arbitrary piecewise 

continuous function 𝐾(𝑟) determined in the interval (r1,1), the 

Eq. (4) satisfies the conditions of ideal thermal contact (2c). 

The unknown parameters C1 and C2 are calculated using the 

boundary conditions (2a) and (2b): 

 

( )
1

1
1

1

0

1
r

C dx
Bi Bi

xK x

−

 
= + 

 
 

 , (5a) 

 

( )
1

1
1

2

0

1
r

C dx
Bi

xK x

−

 
= + 
 
 

 . (5b) 

 

Introducing Eqns. (5a) and (5b) into Eq. (4), the relation 

determined the temperature distribution in the considered pipe 

can be written in the form: 
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( )

( ) ( )
1

1
1 1

1

0

1 1 , 1.
r r

T r dx dx
Bi Bi r r

xK x xK x

−

   
= + +       

  
   (6) 

 

It can be emphasized that the obtained solution applying the 

conditions of ideal thermal contact between the components of 

pipe also in the case, when the function 𝐾(𝑟)  is a piece-

continuous function in the region (r1, 1). 

The gradient part of the coating A, (r3 < r < r2) is assumed 

to be of two-components composite. The first of component is 

the foundation material, the second one is insulating material 

with the heat conductivity coefficient Kis. In the aim for the 

elimination of jump changes of thermal properties on the 

interfaces, the voluminal contribution of the insulator in the 

representative composite cell Vis is changed along the coating 

thickness. So, the function Vis(r) is assumed to be the linear 

function: 

 

( ) 2

is 3 2

2 3

,
r r

V r r r r
r r

−
=  

−
. (7) 

 

For the determination of K*(r) in the literature the Voigt rule 

is often taken into calculations [23] 

 

( ) ( )( ) ( )*

0 0 is is is 3 21 ,K K r K V r K V r r r r= − +   , (8a) 

 

Another choice is the Reuss rule [24] 
 

( )

( ) ( )is is

3 2*

0 is0

11
,

V r V r
r r r

K KK K r

−
= +   . (8b) 

 

In the case of Voigt’s model K*(r) is linear: 
 

( ) ( )

( ) ( )

*

3 2

0 is 0 3 is 2

0 2 3 0 2 3

, , ,

, .

A B

A B

K r K r K r r r

K K K r K r
K K

K r r K r r

= − 

− −
= =

− −

 (9a) 

 

whereas in the Reuss’s model, K*(r) is the hyperbolic function: 

 

( ) ( )

( ) ( )

*

3 2

0 is 0 2 is 3

is 2 3 is 2 3

1
, , ,

, .

B A

A B

K r r r r
K K r

K K K r K r
K K

K r r K r r

= 
−

− −
= =

− −

 (9b) 

 

Substituting Eqns. (9a), (9b) into (6) it follows that 

 

( )

( ) ( )( )( )
( )( )

( )( )

0

1 1

0 is 3 3 1 3

1

3 2

1

2

1 ln , ,

1 , ,

1 ln , 1,

D C

D C

D

T r

T Bi K K r r T r r r r

T BiT r r r r

T Bi r r r



− −

−

−

=

 + +  



= +  


−  

 (10) 

 

where 
 

( )
( )

( )
( )21

2

2

ln ln
A B

C B

A B

r K r K
T r K r

r K r K

−
−

= −
−

, (the Voigt’s 

model); 

(11a) 

or 

 

( ) ( ) ( ) ( )2 2 2ln lnC B AT r K r r K r r r= − − − , (the 

Reuss’s model) 
(11b) 

 

and 

 

( ) ( )( )1

0 is 3 1 31 lnD CT Bi K K r r T r−= + + . (12) 

 

Taking into considerations in Eqns. (10)-(12) that r3 = r1, 

the relations for the coating with the heat conductivity 

coefficient changing along the all thickness of A coating are 

obtained (the coating A'): 

 

( ) ( )( )

( )( )

1

1 2

1
0 2

1 , ,

1 ln , 1.

D C

D

T BiT r r r rT r

T Bi r r r

−

−

 +  
= 

−  

 (13) 

 

Passing in the equation (6) to the limit r3 → r2, the 

temperature in the case of homogeneous coating is given 

(coating A): 

 

( ) ( ) ( )( )( )
( )( )

1 1

0 is 2 2 1 2

1
0 2

1 ln ln , ,

1 ln , 1.

D

D

T Bi K K r r r r r rT r

T Bi r r r

− −

−

 + −  
= 

−  

 (14) 

 

where 

 

( ) ( )( )1

0 is 2 1 21 ln lnDT Bi K K r r r−= + − . (15) 

 

The intensity of heat loss will be estimated using the 

dimensionless parameter Q calculated on the basis of the heat 

flux q flowing through the outer pipe surface: 

 

( )0

0 0 0

1

D

TR q Bi
Q

K T 


= = − = . (16a) 

 

The values of parameter Q will be compared with the values 

of parameter Q0, which describes the heat loss on the outer 

surface of the homogeneous pipe made from the material of 

foundation. Taking in the Eqns. (14), (15) that Kis = K0 it 

follows what 

 

( )
0

11 ln

Bi
Q

Bi r
=

−
. (16b) 

 

Coating B 

For the coating B being multilayered coating composed of 

n homogeneous annulus layers, the distribution of temperature 

will be determined from the equations: 

 

( ) ( )( )1
0, , , 0,1,...,

i iidTd
r r r r i n

dr dr

+ 
=  = 

 
; (17) 

 

the boundary conditions: 

• on the inner surface of pipe: 

 
( )( )1

0

n

nT r 
+

= ; (18) 
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• the heat exchange on the outer pipe surface: 

 
( )0

0 0 0,T BiT r r+ = = ; (19) 

 

and conditions of ideal thermal contact between the pipe 

components: 

 
( )( ) ( )( )

( ) ( )( ) ( ) ( )( )

1

1

1

0 0 ,

0 0 , 1,2,..., .

i i

i i

i i i i

i i

T r T r

K T r K T r i n

−

−

−

− = +

 − = + =

 
(20) 

 

In the Eqns. (17)-(20) the index i = 0 determines parameters 

and state quantities in the homogeneous foundation, the 

indexes i = 1, …, n are connected with the particular ring layers 

of coating, the numbers of the ring layers are introduced as in 

Figure 1b: r(0) = 1; K(0) = K0. Integrating the Eq. (17), the 

temperature function in i-th component of pipe, i = 0, 1, ..., n, 

can be written in the form: 

 

( ) ( )( )
( ) ( )

0 2 1 2

1

ln ,

, 0,1,..., .

i

i i i

i i

T r t t r r

r r r i n

 −

+

= +

  =

 (21) 

 

The unknown parameters ti, i = -1, 0, 1, ..., 2n, in the Eq. 

(21) can be calculated by applying the boundary conditions 

(18)-(20). It gives the following system of equations: 

 
1

1 0 0t Bi t−

− + = , (22a) 

 
( ) ( )( )1

2 3 2 2 2 1ln 0, 1,2,...,
i i

i i it t r r t i n
−

− − −+ − = = , (22b) 

 
( ) ( )1

2 2 2 0, 1,2,...,
i i

i iK t K t i n
−

− − = = , (22c) 

 
( ) ( )( )1

2 1 2 ln 1
n n

n nt t r r
+

− + = . (22d) 

 

The heat loss from the outer surface of pipe with the 

multilayer coating B is equal to Q = t0. 

Next, three kinds of multilayered coatings will be 

considered. The first one called the coating Bʹ is assumed to 

be composed of n = m + 1 components. The component with 

the number of m + 1 is insulating coating with the heat 

conductivity coefficient Kis. The remaining components (i = 1, 

2, ..., m) are chosen with the aim for an elimination of the 

influence of jump changes of the thermal properties along the 

coating thickness. The model B’ is an alternative to the coating 

A with mathematical indirect gradient coating. Taking into 

account, that  

 

( )

( ) ( )
( )

( )

( )

1

1 *

0 1

1
i

i

r
i

i i

r

K K K x dx
r r +

−

+
=

−
 , (23) 

 

the influence of the coating Bʹ can be compared with the 

adequately chosen coating A. If the coating A is described by 

the Voigt’s model it follows that 

 
( ) ( ) ( )( )11

02 2
i i i

A BK K K r r K
+− = + − , (24a) 

 

The adequate equation for the Reuss’s model has the form: 

 

( )

( ) ( )( )

( )

( )

1

1

0 1

1
ln

i

i B A

ii i

B AA

K K r
K K

K K rK r r

+

−

+

 −
=   −−  

. (24b) 

 

The second kind of coating B, which will be investigated, is 

the coating with the periodic structure (called as the coating 

B*). The periodicity cell with the dimensionless thickness  = 

(r2 – r1)/m (m is a number of periodicity cell), is composed of 

two ring layers with the heat conductivity coefficients Kis and 

K0, and the thicknesses 1 =  i 2 = (1 – ), where the 

parameter   (0, 1) is constant along the coating thickness. It 

can be emphasized, that the volume fraction of insulator in the 

periodicity cell Vis equals to the parameter  only in the case 

of m → . 

The solution for the coating B* will be compared with the 

solution of problem, in which the nonhomogeneous coating B* 

is replaced by the homogenized coating Bhom with the thermal 

properties determined by using the homogenization method 

with microlocal parameters [25]. The boundary value problem 

for the replacement coating Bhom has the following form: 

 

( ) ( )1 2 20, , ,1
d dT

r r r r r
dr dr

 
=   

 
, (25) 

 

the boundary conditions:  

a) on the inner surface of pipe is the condition (2a),  

b) on the outer surface of pipe is the condition (2b), 

c) the conditions of ideal thermal contact between the 

foundation and the coating: 

 

( ) ( ) ( ) ( )2 2 hom 2 0 20 0 , 0 0T r T r K T r K T r − = + − = + , (26) 

 

where 

 

( )
0 is

hom

0 is1

K K
K

K K 
=

+ −
 (27) 

 

According to the homogenized model with microlocal 

petameters, the function T(r), r  (r1, r2) describes the 

macrotemperature in the points of coating, so T(r) is the 

averaging temperature with respect of the periodicity cell. The 

solution of the above problem is given in Eqns. (14) and (15), 

in which the parameter Kis is replaced by the parameter Khom. 

The third kind of the coating B is the coating denoted by 

B, which is composed of n = 2m + 1 components. The last 

(2m + 1)-th component like the last component in the model 

Bʹ is the insulating material with the heat conductivity 

coefficient Kis and it is located in the region r1 < r < r3. The 

remaining components form a quasi-periodic structure 

composed of m cells with the same dimensionless thickness  

= (r2 – r3)/m. These cells are located in the regions (r(2i+1), r(2i-

1)), where r(2i-1) = r2 – (i–1), i = 1, 2, ..., m+1. Every cell is 

composed of two ring layers with the heat conductivity 

coefficients Kis and K0. The coating B is introduced with the 

aim of modeling of the insulating material and the foundation 

with the smoothly passing from the thermal properties of 

foundation to the thermal properties of insulator. For this 

reason the volume participation of insulator with the heat 

conductivity coefficient Kis in i-th representative cell 𝑉𝑖𝑠
∗,(𝑖)

, i = 

1, 2, ..., m increases together with the increase of its number 

from the value near 0 to the value near 1. To compare the 
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influence of the coating B with the influence of the coating A 

it is assumed, that the parameter 𝑉𝑖𝑠
∗,(𝑖)

 is equal to the mean 

value of function Vis(r) described in Eq. (7) in the region (r(2i+1), 

r(2i-1)), so: 
 

( )

( ) ( )
( )

( )

( )

( ) ( )

( )

2 1

2 1

*,

is is2 1 2 1

2 1 2 1

2

2 3

1

2 2 1
, 1,2,..., .

2 2

i

i

r
i

i i

r

i i

V V x dx
r r

r r r i
i m

r r m

−

+

− +

+ −

= =
−

− − −
= = =

−


 (28) 

 

If the insulating ring layer is the first layer of representative 

cell then: 
 

( )( ) ( )( ) ( )( )
2 2 2

2 2 1 2 12 1 2 2 1
,

2 2

1,2,..., .

i i im i i
r r r

m m

i m

− ++ − −
= +

=

 (29a) 

 

Instead, when it is the second layer of representative cell 

then 
 

( )( ) ( )( ) ( )( )
2 2 2

2 2 1 2 12 1 2 1 2
,

2 2

1,2,..., .

i i ii m i
r r r

m m

i m

− +− + −
= +

=

 (29b) 

 

 

4. ANALYSIS OF THE RESULTS 
 

The analysis of obtained relations shows, that the solution 

of the problem in the case of coating A depends on the function 

K*(r) and five dimensionless parameters: three ratios between 

the radiuses od surfaces of the component regions: R1/R0, R2/R0 

and R3/R0; the ratio between the heat conductivity coefficient 

of insulator and foundation Kis/K0, and the parameter Bi 

described the level of heat exchange between the pipe and the 

outer medium. The solutions of the considered kinds of the 

coating B depends also on the number n ring layers in the 

coating, as well as on the parameters  in the case of 

multilayered coating with periodic structure B*. In the aim of 

decreasing of the number of analysed parameters and the range 

of its values, the following assumptions are taken into 

considerations: 

10) the ratio between the pipe thickness and its radius is 0.1, 

so R1/R0 = 0.9; 

20) the thickness of insulating homogeneous coating is the 

same as the thickness of gradient coating, so 2R3 = R1+ R2; 

30) the thickness of coating is smaller than the half of pipe 

thickness; 

40) the parameter Bi  1. 

The distributions of temperature along the pipe thickness 

are shown in Figure 2a, and the relations between the intensity 

of thermal loss from the outer pipe surface and the parameter 

Bi are presented in Figure 2b, which are obtained for two 

alternative mathematical models of coatings, namely for the 

coating A and B’. The continuous lines in these figures 

describe the influence of coating A, the rhombuses describe 

the influence of coating B. The black lines are obtained for the 

case of averaging heat conductivity coefficient given by 

Reuss’s relation (Eq. (8a)), the grey lines for the Voigt’s 

relation (Eq. (8b)). The broken lines in Figure 2b and some 

next figures show the limit case 𝐵𝑖 → ∞, which is adequate to 

the assumption, that the temperature on the outer pipe surface 

is equal to the temperature of outer medium.  

 

 
 

Figure 2. (a) The temperature distribution along the pipe 

thickness, (b) The influence intensity of heat loss from the 

outer pipe surface for coating A and B’ (n=11); the 

continuous lines for the coating A; rhombuses for the coating 

B’; the black lines and rhombuses for Reuss’s model; the 

gray lines and rhombuses for Voigt’s model; the broken lines 

for Bi →; R1/R0=0.9; R2/R0=0.94; R3/R0=0.92 

 

The temperature on the outer pipe surface decreases 

together with an increase of the parameter Bi; the heat loss 

from the outer pipe surface increases together with increase of 

the parameter Bi and decreases together with decrease of the 

heat conductivity coefficient of insulator. The solutions of the 

considered problems, together with an increase of the 

parameters Bi tend asymptotically to the limit value obtained 

under assumption that the temperature on the outer pipe 

surface is equal to the temperature of outer medium. The 

differences between the solutions obtained on the basis of 

Reuss’s and Voigt’s relations increase together with a decrease 

of the parameter Kis/K0. The calculations also show that 

between the solutions obtained for two different manners of 

averaging of the thermal properties there are full convergence 

qualitative and quantitative. Even for a relatively small 

number of ring layers (m=10), on which the gradient coating 

was divided, the deviation for the calculations of the intensity 

heat loss from the outer pipe surface is not greater than 0.25%. 

It is shown that small differences between the distributions of 

heat conductivity coefficient along the coating, which appears 

in the coatings A and B’, have an insignificant influence on the 

problem solutions and they can be omitted during an analysis 

of the problems. 

The comparison of relations between the parameter Q and 

the parameter Bi in the problem connected with coating A with 

averaging thermal properties and the problem for the 

multilayered coating B’’, which modelled bedding of the 
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insulator ring layers in the indirect gradient coating. The black 

and grey lines in the figure are described as in the Figure 2b. 

The rhombuses present the influence of coating B’’.  

 

 

 
 

Figure 3. The dependence of heat loss intensity from the 

outer pipe surface with respect on the parameter Bi in the 

problems of coating A or coating B’’ (n = 21); the continuous 

lines are adequate for the coating A, the rhombuses for the 

coating B’’; the black lines for Reuss’s model, the grey lines 

for Voigt’s model; the broken lines for Bi → ; R1/R0 = 0.9; 

R2/R0 = 0.94; R3/R0 = 0.92; line 1 – Kis/K0 = 0.4; line 2 – 

Kis/K0 = 0.2; 3 –Kis/K0=0.1 

 

On the basis of Figure 3a it can be inferred, that averaging 

of thermal properties using the Reuss model, the obtained 

results are complete according with the results for the structure 

of coating B’’. Whereas, completely analogous to using of 

Voigt’s model for calculations of heat loss gives great results 

since 3 to 20% in dependences of values of heat conductivity 

coefficient of the insulator (it is assumed that 0.1K0  Kis  

0.4K0). It seems worthy emphasizing, that the solution of the 

problem for the coating with averaging thermal properties is 

independent for the sequence of layer arrangement in the 

representative cell of the indirect gradient coating. If the 

coating is taken into account (coating B’’) this difference is 

observed. However, the difference is such small, that is not 

visible in Figure 3a. For this reason, the some fragment of the 

Figure 3a (the fragment of curve 3) is shown in increasing in 

Figure 3b. The grey rhombuses in Figure 3b are adequate to 

the structure of coating B”, in which the insulating in layer is 

the first in the representative cell, so one of the insulating layer 

is located on the interface between the coating and the 

foundation. Whereas, the black rhombuses describe the 

coating structure B’’, in which the insulating layer is the 

second in the representative cell. The relative difference 

between the grey and black rhombuses in Figure 3b is not 

greater than 0.04%. As it is seen form Figure 3b, the value of 

parameter Q in the coating A is located between the values of 

parameters Q in the coating B’’ calculated for different manner 

of layers localization in the representative cell. 

 

 

 

 
 

Figure 4. The distribution of temperature along the pipe 

thickness; (Figure 4a) and the relation of heat loss intensity 

with respect on the parameter Bi; (Figure 4b and 4c) in the 

problems of multilayered coating with the periodic structure 

B* (n = 10) and adequate replacing coating Bhom: the 

continuous lines are for the coating Bhom; rhombuses for B*; 

the broken lines for the case of Bi → ; R1/R0 = 0.9; R2/R0 = 

0.94;  = 0.5; in Figure 4a: Kis/K0 = 0.1; the curve 1 for Bi = 

1; the curve 2 for Bi = 5; 3 for Bi = 25; in Figure 4b: the 

curve 1 for Kis/K0 = 0.4; the curve 2 for Kis/K0 = 0.2; the 

curve 3 for Kis/K0 = 0.1; in Figure 4c for Kis/K0 = 0.1 
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Figure 5. The relations of heat loss with respect on the 

parameter Bi for the coating A: the black lines for Reuss’s 

model; the grey lines for Voigt’s model; the broken lines for 

Bi → ; R1/R0 = 0.9; 2R3 = R1+ R2; Figure 5a: for Kis/K0 = 

0.2; Figure 5b: for Kis/K0 = 0.1; the curve 1 for R2/R0 = 0.91; 

the curve 2 for R2/R0 = 0.93; the curve 3 for R2/R0 = 0.95 

 

The construction ally simpler kind of coating in the 

comparison with the coating B’’, is the multilayered coating 

B* with periodic structure. In this coating, the representative 

cell is not changed along the thickness of coating, so it is the 

periodicity cell. The properties of solution for the coating B* 

and the solution the problem, in which the coating B* is 

replaced by the coating Bhom are presented in Figure 4. Figure 

4a shows the temperature distribution along the coating 

thickness; Figures 4b and 4c present the dependence of the 

parameter Q with respect to the parameter Bi. The continuous 

lines describe the results for the coating Bhom. This solution is 

independent of the sequences of ring layers in the periodicity 

cell. Whereas, the solution of the problem for coating B*, 

similarly as in the case of coating B’’, describes such 

dependence. Similarly as in Figure 3b, the grey rhombuses 

present the case, when the ring insulator layer is the first layer 

in the periodicity cell and the black rhombuses, when it is the 

second layer. The influence of the sequence of ring layers in 

the case of calculations of temperature in the foundation as 

well as the parameter Q is such small, that the black and grey 

rhombuses in Figures 4a and 4b covers. For this reason, 

similarly as in Figure 3, the fragment of Figure 4b, (namely 

the fragment of curve 3) in increase in shown in Figure 4c. The 

relative difference between the grey and black rhombuses 

given in Figure 4c is near 0.25%.  

From Figures 4 it follows that the calculated values for the 

coating Bhom are located between the adequate values obtained 

for the nonhomogeneous coating B* and calculated for two 

different sequences of bedding of the insulator ring layer in the 

periodicity cell.  

The calculation of temperature in the foundation and the 

parameter Q can be replaced by the coating number Bhom even 

for small number of cells (m=5). The largest differences 

between the temperature distributions obtained within the 

framework of both coating are seen in the coating. The 

calculations show that the double increase of layer number in 

the coating caused the double decrease of these differences. 

 

 

 
 

Figure 6. The relation of heat loss with respect on the 

parameter Bi for the coating Bhom: the broken lines for Bi → 

; R1/R0 = 0.9;  = 0.75; Figure 6a: for Kis/K0 = 0.2; Figure 

6b: for Kis/K0 = 0.1; the curve 1 for R2/R0 = 0.91; the curve 2 

for R2/R0 = 0.93; the curve 3 for R2/R0 = 0.95 

 

Figures 5 and 6 describe the reduction of heat loss from the 

outer pipe surface, which is obtained by the nonhomogeneous 

insulating coatings on its inner interface considered in this 

paper. The calculations were performed for three coating 

thickness, two values of heat conductivity coefficient and 

several values of the parameters Bi. As it was expected, 

together with an increase of coating thickness or a decrease of 

the coefficient Kis/K0 the level of heat loss reduction increases. 

This level increases also together with an increase of the 

parameter Bi. Calculating in the coating A the heat 

conductivity coefficient according with the Voigt’s method, 

the values are smaller from the adequate values obtained by 

using the Reuss’s method. The difference is equal from 5% to 

15% in dependences on the parameters Bi, Kis/K0 and R2/R0. 

Calculating the parameter (Q0-Q)/Q0, the coating B* was 

replaced by the coating Bhom. For the purpose of the heat loss 
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reductions, which rises by using the coating A and Bhom, the 

parameter η is chosen (η=0.75) in such manner, that the 

volume content of insulator in the both coating is the same. 

From Figures 5 and 6 it follows, that the heat reduction caused 

by the coating B* is comparable to the heat reduction in the 

case of coating A, in which the heat conductivity coefficient 

was calculated according with Reuss’s method. 

 

 

5. CONCLUSIONS 

 

In the paper the methods of mathematical description of 

nonhomogeneous insulating coating on the inner pipe interface, 

which are applied in the aim of heat reduction from its outer 

surface, are presented. The mathematical models connected 

with the coating A and B’ correspond to two alternative 

approaches of averaging of thermal properties of the 

representative cell. In both cases an information about the 

physical structure of cell is unknown. Partly it covers up in the 

manner of definition of the function K*(r). The calculations 

showed, that local differences in the description of thermal 

properties of the coatings A and B’ do not contribute 

substantial differences in the temperature or heat flux 

distributions. It permits to suggest that both the mathematical 

model A and the mathematical model B’ adequate by describe 

the nonhomogeneous insulating coating. The choice of model 

depends on efficient of mathematical method applied to 

solving of adequate problem. The model A is particularly 

effective, when an analytical solution of considered problem 

can be obtained. However, during solving more complicate 

problems, differential equations with functional coefficients, 

which are specific for the coating A, can make the algorism of 

solution difficult. In this case, more effective approach can be 

the mathematical model of the coating B’. 

In the coating A, as well as in the coating B’ the 

fundamental significance has an approach to constructing of 

the form of function K*(r). This function should reflect the 

structure of representative cell of nonhomogeneous gradient 

coating. In this paper the multilayered coating B” is considered, 

in which one of the simplest manner of insulator composition, 

in the gradient indirect coating, which assures transition from 

the thermal properties of foundation to the thermal properties 

of insulator. The calculations proved, that this coating can be 

replaced by the coating A, in which the heat conductivity 

coefficient in the direction normal to the layering is calculated 

by using Reuss’s relation. 

In the paper the multilayered coating with periodic structure, 

which the representative cell did not change along the coating 

thickness, so it is the periodicity cell. It is known, that in the 

case when the coating is composed of sufficiently large 

number of cells, this coating can be replaced by a homogenous 

coating, which the thermal properties are determined by using 

of homogenization method. In the paper it is shown, that the 

homogenization method with microlocal parameters [25] is 

very effective during calculations of temperature in the 

foundation and the heat loss from the outer pipe surface even 

in the case of small number (for n=5) of repeating periodicity 

cells. It should be emphasized that the equation to calculation 

of the heat conductivity coefficient in the normal direction to 

the layering for replacement homogenous coating given by 

equation (27) is consistent with the Reuss’s relation given in 

equation (8b), which is effective in the description of the 

gradient coating B”. It allows to suggest, that for the 

determination of function described the properties of gradient 

coating can be applied adequate relations for replacement 

homogenous coating obtained using the homogenization 

method.  
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NOMENCLATURE 

T 
temperature deviation in the points of pipe 

form the temperature of outer medium, K 

T the derivative of function T, 

Bi = R0/K0 Biota number, 

thermal conductivity, W.m-1. K-1 

outer radius of pipe, m 

inner radius of pipe, m 

Greek symbols 

 
the coefficient of heat exchange between the 

outer surface of pipe and the outer medium 

value of temperature of outer medium, K 

dimensionless thickness of cells 

Subscripts 

i indices related to sublayer numbering 

( )K r

0R

1R

0


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