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In this paper, the free and forced vibration of a functional rectangular plate in contact with 

a turbulent fluid is investigated. Functional plates have been considered due to their high 

thermal resistance to residual stresses. The geometry of the problem is that one side of the 

reservoir in which the fluid is placed is covered with a plate of Functionally Graded 

Material (FGM). In order to approximate the displacement of the plate, assuming the third-

order theory of shear deformation, trigonometric harmonic test functions are used, which 

determine the boundary conditions of the simple and fixed plate support. In the equations 

governing fluid oscillating behavior, the potential velocity of the fluid is obtained by 

determining the boundary conditions of the fluid in the form of February series functions. 

To achieve the natural frequency of the plate in contact with turbulent fluid and the shape 

of the vibrating mode, the Rayleigh-Ritz energy method is used based on the minimum 

potential energy. In order to check the accuracy of the method used, the results of analytical 

solution after solving the equations by coding in Wolfram Mathematica software have been 

compared with numerical solution of Abaqus software and then with accurate results in 

references, which shows the appropriate accuracy of the solution. Finally, the effect of 

volumetric coefficient parameters, volume ratio, length ratio, plate thickness ratio, fluid 

height, reservoir width and boundary conditions on the natural frequency of the plate in 

contact with turbulent fluid has been investigated and analyzed. 
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1. INTRODUCTION

FGM materials are a new type of composite material 

characterized by a gradual change in the microstructure and 

properties of the material. There are materials that have 

different properties in different areas due to the gradual change 

of chemical compounds, distribution and orientation or the 

size of the reinforcing phase in one or more dimensions. FGM 

materials are usually made of two materials, ceramic and metal. 

They are used in cases where the two sides of a piece are in 

completely different conditions, which requires metal 

properties on one side and ceramic properties on the other side. 

Among their manufacturing methods are powder metallurgy, 

vapor deposition method, Centrifugal Method, etc. Figure 1 

shows how to change the properties from one side to the other 

side of the FGM. 

Figure 1. Changing properties in FGM materials 

These materials were first designed as thermal insulators for 

aerospace structures and nuclear reactors and are commonly 

used to extreme temperature changes. And the applications of 

these materials include cutting tools, furnaces, anti-heat 

coatings of turbine blades, etc. [1]. The use of FGM materials 

in engineering structures is increasing due to the high ability 

of these materials to control stress. In many of these 

applications, these materials are in contact with fluid, which 

necessitates the study of this type of loading in the behavior of 

structures shows FGM. The main advantages of FGM are as 

follows [2]: 1) When connecting two different materials, the 

gradient connection layer can eliminate the explicit interface 

and improve the interface Connection strength; 2) instead of 

the traditional uniform coating, reduce the structure of the 

thermal mismatch stress, improve the coating paste strength 

[3]. Functional gradient materials have been widely used in 

engineering structures, so it is particularly necessary to study 

their fracture properties. The FSI is a multifaceted problem in 

a system in which fluid flow leads to a change in solid structure 

and, on the other hand, a change in the solid form, leads to a 

change in the boundary conditions of the fluid problem. For 

instance, the airflow around the wing of the plane leads to 

change the shape of the wing (though partially), which will 

subsequently change the air flow pattern around the wings. 

Due to the many applications in the field of fluid coupling 

vibrations and structure, many studies have been done in this 

field. In 2004, Michler et al. [4] compared the discrete and 

continuous solving methods for numerical simulation of a 
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fluid-structure interaction. The evaluation of the accuracy of 

these methods has shown that their cost and computational 

efficiency are also compared. In a discrete method at any time 

step, only a repetition of the fluid-structure interaction is 

required, resulting in a lower computational cost than the 

continuous method at any time step. In contrast to the discrete 

(component) method, it is a continuous method that appears to 

be uniquely stable and significantly more precise without any 

conditions. It can be used a larger time step than the discrete 

method for the same level with higher precision. But 

computations that take place in a continuous method at any 

time step are more expensive than discrete methods. However, 

for the continuous method, there is still potential for reducing 

computational costs. Chakrabarti in 2005 [5], in a book on 

numerical models of fluid-structure interaction, a wide range 

of numerical computing techniques have been introduced in 

the field of fluid mechanics and numerical calculations for the 

fluid effect on marine structures. In 2012, Hou et al. [6] In their 

study of numerical methods for fluid and structure interaction, 

the interaction between the incompressible fluid flow and the 

immersion structure, have been addressed in a nonlinear multi-

physical phenomenon. The immersion method is an irregular 

mesh method. In the article, they examine the basic 

formulation of the immersion fringe method, immersion 

domain method and other immersion methods. Fluid-structure 

interaction in a turbine blade and it history studied by 

Tashakori et al. [7]. the fluid-structure interaction 

phenomenon and it history are studied by X and Y. they use 

simulation by using structural and fluid flow section of 

ANSYS software. The results show that by increasing the 

speed of inlet flow, the amount of blade tip deviation increases 

and also its impact increases on fluid pressure exerted on the 

rotor. Many studies have been conducted on the vibrations of 

FGM plates and plates in different modes and loads. Iqbal et 

al. [8] studied Vibration characteristics of FGM circular 

cylindrical shells filled with fluid using wave propagation 

approach. The fluid is considered non-viscous and 

incompressible. And the frequency for different modes is 

based on the end of the cylinder. Rahmani and Jafari [9] 

studied modal analysis of the fluid-structure interaction of a 

Rectangular Composite Plate. Using classical laminated plate 

theory, a closed form solution for natural frequencies of FSI is 

extracted. frequency response of plate-fluid system has been 

achieved for harmonic load. Tran et al. [10] studied Free 

vibration analysis of functionally graded doubly curved shell 

panels resting on elastic foundation in thermal environment. 

Burlayenko and Sadowski [11] studied Free vibrations and 

static analysis of functionally graded sandwich plates with 

three-dimensional finite elements. Nonlinear free vibration 

analysis of functionally graded plate resting on elastic 

foundation in thermal environment using higher-order shear 

deformation theory studied by Parida and Mohanty [12]. 

According to the mentioned background, the FSI vibrations of 

the thick FGM plates have not been analyzed analytically and 

usually numerical methods have been used. In the present 

paper, the vibrations of a relatively thick FGM plate are in 

contact with a turbulent fluid in a rigid reservoir whose 

frequencies and mods shape are presented and the effect of the 

geometric parameters of the plate and reservoir on frequency 

changes is investigated. In addition to free vibrations, forced 

vibrations under several different loads have also been 

investigated. The final solution of the equations and answer 

extraction has been done with Wolfram Mathematica 8 

software. 

2. FLOW AND STRUCTURE COUPLINGS  

 

The FSI method used in this paper for numerical validation 

with Abaqus is a combination of CFD and CSM methods [13]. 

Generally solving problems with multiple physics is very 

difficult in analytical form. Therefore, such issues are often 

solved using numerical and experimental methods. Advanced 

numerical methods and popular commercial software 

applications in the CFD and CSM domains that make use of 

these methods, there are two different solutions for solving FSI 

problems using numerical software such as Abaqus, a 

Monolithic approach solution and Partitioned approach 

solving, which are described in each of these strategies. In 

Figure 2, you can see the breakdown of all types of FSI 

solutions [14]. 

 

 
 

Figure 2. Solving procedures in FSI [14] 

 

In this study, partitioned approach and One-way coupling is 

used in Abaqus software, in this way, each of the problems is 

solved individually in the separate solvent, meaning that the 

fluid does not change during a structural solution, and vice 

versa. The fluid and structure equations are solved periodically 

in two solvents, and the information of each solution is 

exchanged at the point of contact of the fluid with the structure. 

You can see the process of this type of problem solving in 

Figure 3 The process of exchanging information at the level 

between the two ranges of solvers is called the solder coupler. 

It has two types of one-way couplings and two-way couplings. 

 

 
 

Figure 3. Partitioned approach [15] 

 

 
 

Figure 4. One-way coupling- flow chart [15] 

 

One-way coupling is a mode that influences the movement 

of the fluid on the structure, But the structure's response to the 

fluid is ignored. As an example, in solving the issue of the 
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propeller of the ship, the problem is considered as a one-way 

coupling. Figure 4 shows a graph of the one-way coupling 

method. 

In solving the problem analytically, using the Wolfram 

Mathematica software, the equations of motion of the system 

are obtained in an integrated way. The equations of solid 

(structural) and fluid systems are solved simultaneously, and 

it is a monolithic solution method (Fully coupled). 

 

 

3. STATEMENT OF THE PROBLEM AND MOTION 

EQUATIONS 

 

The issue under consideration is the vibrations of the FGM 

plate in contact with the Turbulent fluid. Figure 5 shows the 

general geometry and various parameters of the problem 

dimensions. 

 

 
 

Figure 5. General geometry of the problem 

 

In order to approximate the values of displacement from the 

boundary conditions, it has defined the functions that these 

functions must determine the boundary conditions, so they are 

defined as a double February series in the following form: 

 

u(x,y,t)=∑ ∑ 𝑎1 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) cos (

𝑚𝜋

𝑏
𝑦)𝑀

𝑚=1
𝑁𝑁
𝑛=1  

v(x,y,t)=∑ ∑ 𝑎2 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) cos (

𝑚𝜋

𝑏
𝑦)𝑀

𝑚=1
𝑁𝑁
𝑛=1  

w(x,y,t)=∑ ∑ 𝑎3 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) sin (

𝑚𝜋

𝑏
𝑦)𝑀

𝑚=1
𝑁𝑁
𝑛=1  

(x,y,t)=∑ ∑ 𝑎3 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) sin (

𝑚𝜋

𝑏
𝑦)𝑀

𝑚=1
𝑁𝑁
𝑛=1 ∅𝑥 

(x,y,t)=∑ ∑ 𝑎3 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑠𝑖𝑛⁡(

𝑚𝜋

𝑏
𝑦)𝑀

𝑚=1
𝑁𝑁
𝑛=1 ∅𝑦  

(1) 

 

In these relations, t denotes time, and a6 a5 a4 a3 a2 a1 are 

functions whose value is obtained using the Rayleigh-Ritz 

method. M, NN are double displacement February series 

counters. Targeted rectangular plate length L, width a and 

thickness h are considered as Figure 4, which is made of a 

combination of ceramic and metal. Above the surface of the 

plate z=0 is a pure ceramic, and at the bottom of the surface of 

the plate z=-h is pure metal. All formulas here are assumed to 

be the elastic linear behavior of materials and small 

displacements and strains. The elastic properties of the 

material variable according to the thickness of the plates and 

the volume ratio according to the law. The properties of a point 

of width Z are as follows: 

 

𝑉𝑐 + 𝑉𝑚 = 1. 𝑉𝑚 = (
−𝑍

ℎ
)
𝛼

 

𝐸(𝑧) = (𝐸𝑚 − 𝐸𝑐) (
−𝑍

ℎ
)
𝛼

+ 𝐸𝑐  

𝜌(𝑧) = (𝜌𝑚 − 𝜌𝑐) (
−𝑍

ℎ
)
𝛼

+ 𝜌𝑐 

(2) 

The m is the metal density, c is the ceramic density, Em 

is the metal Young's modulus, Ec is the ceramic Young's 

modulus, and Vm is the metal volume ratio and  is the 

exponent volume ratio. In this study, due to the study of thick 

plate of the third order theory, shear deformation has been used 

and in the program, the displacements of W, V, U in the 

direction, x, y, z are defined as follows: 

 

𝑈(𝑥. 𝑦. 𝑧. 𝑡) = 𝑧∅𝑥(𝑥. 𝑦. 𝑡) −
4

3ℎ2
𝑧3(∅𝑥 +

𝜕𝑤

𝜕𝑥
) 

𝑉(𝑥. 𝑦. 𝑧. 𝑡) = 𝑧∅𝑦(𝑥. 𝑦. 𝑡) −
4

3ℎ2
𝑧3(∅𝑦 +

𝜕𝑤

𝜕𝑥
) 

𝑊(𝑥. 𝑦. 𝑧. 𝑡) = 𝑤(𝑥. 𝑦. 𝑡) 

(3) 

 

In this relation, t indicates the time, x, and y of the 

deflection of the plate due to bending in the direction of the x, 

y, w axes, respectively and the displacement of the plate in the 

direction with the z axis. The relations between strain and 

displacement for this theory is as follows 

 

𝜀𝑥𝑥 = 𝑧
𝜕∅𝑥
𝜕𝑥

−
4

3ℎ2
𝑧3 (

𝜕∅𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
) → 𝜀𝑥𝑥

= 𝑧𝑘𝑥 −
4

3ℎ2
𝑧3(𝑄𝑥 + 𝐾𝑥) 

𝜀𝑥𝑦 = 𝑧 (
𝜕∅𝑥
𝜕𝑦

+
𝜕∅𝑦

𝜕𝑥
)

−
4

3ℎ2
𝑧3 (

𝜕∅𝑥
𝜕𝑦

+
𝜕∅𝑦

𝜕𝑥
+ 2

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

→ 𝜀𝑥𝑦

= 𝑧𝑘𝑥 −
4

3ℎ2
𝑧3(𝑄𝑥𝑦 + 𝐾𝑥𝑦) 

𝜀𝑦𝑦 = 𝑧
𝜕∅𝑦

𝜕𝑦
−

4

3ℎ2
𝑧3 (

𝜕∅𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
) → 𝜀𝑥𝑥

= 𝑧𝑘𝑦 −
4

3ℎ2
𝑧3(𝑄𝑦 + 𝐾𝑦) 

𝜀𝑥𝑧 =
𝜕𝑤

𝜕𝑥
+ ∅𝑥 −

4

ℎ2
𝑧2 (

𝜕𝑤

𝜕𝑥
+ ∅𝑥) → 𝜀𝑥𝑧

= (1 −
4𝑧2

ℎ2
) (∅𝑥 +

𝜕𝑤

𝜕𝑥
) 

(4) 

 

k, xy values of the derivatives of the second order of 

transverse displacement of the plate are considered. 

 

𝑄𝑥 =
𝜕2𝑤

𝜕𝑥2
,⁡𝑄𝑦 =

𝜕2𝑤

𝜕𝑦2
, 𝑄𝑥𝑦 = 2

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

𝑅𝑥 = (𝑄𝑥 +
𝜕𝑤

𝜕𝑥
), 𝑅𝑦 = (𝑄𝑦 +

𝜕𝑤

𝜕𝑦
) 

(5) 

 

According to Hooke's law, structural equations for FGM 

rectangular plates for third-order shear theory are shown 

below: 
 

𝜎𝑥 =
𝐸(𝑧)

(1 −
2
)
[𝜀𝑥 +𝜀𝑦] 

𝜎𝑦 =
𝐸(𝑧)

(1 −
2
)
[𝜀𝑦 +𝜀𝑥] 

𝜎𝑥𝑦 =
𝐸(𝑧)

2(1 +)
𝜀𝑥𝑦 . 𝜎𝑥𝑧 =

𝐸(𝑧)

2(1 +)
𝜀𝑥𝑧 

𝜎𝑦𝑧 =
𝐸(𝑧)

2(1+)
𝜀𝑦𝑧, 𝜎𝑧𝑧 = 0 

(6) 

 

So, by placing Eq. (4) in Eq. (6), the following equations 

will be obtained. 

147



 

𝜎𝑥 =
𝐸(𝑧)

(1 −
2
)
[[𝑧𝑘𝑥 −

4

3ℎ2
𝑧3(𝑄𝑥 + 𝐾𝑥)]] 

+ [𝑧𝑘𝑦 −
4

3ℎ2
𝑧3(𝑄𝑦 + 𝐾𝑦)] 

𝜎𝑥 =
𝐸(𝑧)

(1 −
2
)
[[𝑧𝑘𝑦 −

4

3ℎ2
𝑧3(𝑄𝑦 + 𝐾𝑦)]] 

+ [𝑧𝑘𝑥 −
4

3ℎ2
𝑧3(𝑄𝑥 + 𝐾𝑥)] 

𝜎𝑥 =
𝐸(𝑧)

2(1 +)
[𝑧𝑘𝑥𝑦 −

4

3ℎ2
𝑧3(𝑄𝑥𝑦 + 𝐾𝑥𝑦)] 

𝜎𝑥𝑧 =
𝐸(𝑧)

2(1 +)
[(1 −

4𝑧2

ℎ2
)𝑅𝑥] 

𝜎𝑦𝑧 =
𝐸(𝑧)

2(1 +)
[(1 −

4𝑧2

ℎ2
)𝑅𝑦] 

(7) 

 

To obtain energy vibration equations, the potential and the 

target plate motion are required. The potential energy equation 

for the vibrating FGM rectangular plate of the following 

equation can be calculated: 

 

𝑈𝑝 =
1

2
∫∫ ∫[

𝜎𝑥𝑥𝜀𝑥𝑥 + 𝜎𝑦𝑦𝜀𝑦𝑦 + 𝜎𝑥𝑦𝜀𝑥𝑦
+𝜎𝑥𝑧𝜀𝑥𝑧 + 𝜎𝑦𝑧𝜀𝑦𝑧

]

0

−ℎ

𝑏

0

𝑎

0

𝑑𝑧𝑑𝑦𝑑𝑥 (8) 

 

The kinetic energy relation for FGM rectangular plate can 

also be calculated from the following relation: 

 

𝑇𝑃 =
1

2
∫∫ ∫𝜌(𝑧)[�̇�2 + �̇�2 + �̇�2]𝑑𝑧𝑑𝑦𝑑𝑥

0

−ℎ

𝑏

0

𝑎

0

 (9) 

 

Fluid oscillation equations in contact with plates with 

assumptions: Non-viscous, non-compressible and non-

rotating fluid with density F, depth b1 and width rigid 

reservoir c1 are obtained according to Figure 4. The fluid 

velocity potential function is written using superposition 

principle as follows: 

 

∅0 = ∅𝐵 + ∅𝑠 (10) 

 

∅B is the fluid velocity potential due to plate vibration 

behavior and ∅S is the velocity potential due to turbulence 

fluid. Given that the fluid velocity potential must determine 

the Laplace equation, So: 

 

𝛻2∅0 = 𝛻2∅𝐵 + 𝛻2∅𝑠 = 0 (11) 

 

The boundary conditions on the vertical and horizontal 

surfaces of the reservoir are as follows: 

 
𝜕∅𝐵
𝜕𝑥

|𝑥=0 = 0.
𝜕∅𝐵
𝜕𝑥

|𝑥=𝑎 = 0 

𝜕∅𝐵
𝜕𝑦

|𝑦=0 = 0.
𝜕∅𝑆
𝜕𝑥

|𝑥=0 = 0 

𝜕∅𝐵
𝜕𝑧

|𝑧=𝑐1 = 0.
𝜕∅𝑆
𝜕𝑦

|𝑦=0 = 0 

𝜕∅𝑆
𝜕𝑧

|𝑧=𝑐1 = 0.
𝜕∅𝑆
𝜕𝑥

|𝑥=𝑎 = 0 

(12) 

 

For the free surface of the fluid, the boundary conditions 

without turbulence fluid will be as follows: 

 

∅𝐵|𝑦=𝑏1 = 0 (13) 

 

For boundary conditions elastic walls: 

 
𝜕∅𝐵
𝜕𝑧

=
𝜕𝑤(𝑥. 𝑦. 𝑡)

𝜕𝑡
 (14) 

 

Using the method of separating the variables and applying 

the boundary conditions, the answer of Eq. (10) of the fluid 

velocity potentials is calculated and written as follows in the 

code [16]. 

 

∅𝐵(𝑥. 𝑦. 𝑧. 𝑡)

= ∑∑𝐴𝑙.𝑘(𝑡)𝑐𝑜𝑠⁡(
𝑙𝜋𝑥

𝑎
)𝑐𝑜𝑠⁡(

(2𝑘 + 1)𝜋𝑦

2𝑏1

∞

𝑘=0

∞

𝑙=0

) 

(𝑒𝑆1𝑧 + 𝑒𝑆1(2𝑐−𝑧)) 
∅𝑆(𝑥. 𝑦. 𝑧. 𝑡)

= ∑∑𝐵𝑖.𝑗(𝑡)𝑐𝑜𝑠⁡(
𝑖𝜋𝑥

𝑎

∞

𝑗=0

∞

𝑖=0

) 𝑐𝑜𝑠ℎ(𝑆2𝑦) 𝑐𝑜𝑠⁡(
𝑗𝜋𝑧

𝑐
) 

(0 ≤ 𝑥 ≤ 𝑎). (0 ≤ 𝑦 ≤ 𝑏1). (0 ≤ 𝑧 ≤ 𝐶1) 

(15) 

 

In these relations 𝑆1 = 𝜋√(1/𝑎)2 + (
2𝑘+1

2𝑏1
)2    ، 𝑆2 =

𝜋√(𝑖 𝑎⁄ )2 + (𝑗 𝑐1⁄ )2  ، Bi.j the unknown constant is the 

velocity potential function due to turbulence fluid and Al.k(t) is 

the time constant of the velocity potential due to the 

oscillations of the plate and the following relation is obtained 

by applying the boundary condition of Eq. (14). 

 

𝐴𝑙.𝑘(𝑡)

=
𝑐𝑜𝑓𝑓1
𝑎𝑏1

∫∫ �̇�(𝑥. 𝑦. 𝑡)𝑐𝑜𝑠⁡ (
𝑙𝜋𝑥

𝑎
)

𝑏1

0

𝑎

0

× 𝑐𝑜𝑠 (
(2𝑘 + 1)𝜋𝑦

2𝑏1
) 𝑑𝑦𝑑𝑥 (𝑆1(1 − 𝑒2𝑐𝑆1⁄ )) 

𝑐𝑜𝑓𝑓1 =

1⁡⁡⁡⁡⁡𝑖𝑓⁡⁡𝑙 = 𝑘 = 0
2⁡⁡⁡⁡𝑖𝑓⁡𝑙⁡⁡𝑜𝑟⁡⁡𝑘 = 0

4⁡⁡𝑖𝑓⁡⁡𝑙⁡𝑎𝑛𝑑⁡⁡𝑘 ≠ 0
 

(16) 

 

The fluid kinetic energy equations due to the vibration of 

the elastic plate and turbulence fluid according to the 

calculation of the fluid velocity potential are as follows [16]:  

 

𝑇𝑓𝐵 =
1

2
𝜌𝑓∫∫ ∅𝐵|𝑧=0(−

𝜕𝑤

𝜕𝑡

𝑏1

0

)𝑑𝑦𝑑𝑥

𝑎

0

 

𝑇𝑓𝑆 =
1

2
𝜌𝑓∫∫ ∅𝑆|𝑧=0(−

𝜕𝑤

𝜕𝑡

𝑏1

0

)𝑑𝑦𝑑𝑥

𝑎

0

 

(17) 

 

The conditions of turbulence in the free surface of the fluid 

are as follows [17]: 

 

𝜕∅0
𝜕𝑦

|𝑦=𝑏1 =
𝜔2

𝑔
∅𝑠|𝑦=𝑏1  (18) 

 

In this equation,  is the circular frequency of the coupling 

plate with the fluid and g is the acceleration of the Earth's 

gravity. 

As a result, apply of Eq. (18) by (10): 
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𝜕∅𝐵

𝜕𝑦
|𝑦=𝑏1+

𝜕∅𝑆

𝜕𝑦
|𝑦=𝑏1 =

𝜔2

𝑔
∅𝑆|𝑦=𝑏1 (19) 

 

By multiplying the relation (19) in 𝜌f∅𝑆 and integrating on 

the free surface of the fluid: 

 

𝑈∅𝐵 + 𝑈∅𝑆 = 𝜔2𝑇∅𝑆  (20) 

 

𝑈∅𝐵 = 𝜌𝐹∫∫(∅𝑆
𝜕∅𝐵
𝜕𝑦

𝑐

0

𝑎

0

)𝑦=𝑏1𝑑𝑧𝑑𝑥 

𝑇∅𝑆 =
𝜌𝐹

𝑔
∫∫(∅𝑆

2)𝑦=𝑏1𝑑𝑧𝑑𝑥

𝑐

0

𝑎

0

 

𝑈∅𝑆 = 𝜌𝐹∫∫(∅𝑆
𝜕∅𝑆
𝜕𝑦

𝑐

0

𝑎

0

)𝑦=𝑏1𝑑𝑧𝑑𝑥 

(21) 

 

After calculating the values of energy and integrating in line 

with their thickness, now in this part of the code, the 

integration in the direction of x, y is done for all energy values. 

For this purpose, 3 integrals are defined by changing the 

variable and calling them energy values for each one, so that 

the complete energy values are finally integrated and ready to 

apply the Ritz method. In engineering application, the 

minimum principle of potential energy is used in order to 

obtain an approximate solution of problems whose exact 

solution is difficult or impossible. But in the Ritz method, the 

main problem is the correct guess to choose the correct 

displacement function because it leads to a lack of 

convergence or error in the answers. The conjectural functions 

must be in the boundary condition, and the Lagrangian 

function of the fluid plate system is as follows: 

 

= ∑𝑈𝑚𝑎𝑥 −∑𝑇𝑚𝑎𝑥 (22) 
 

Using the Ritz method, a special value equation of Eq. (22) 

is obtained: 
 

𝜕

𝜕𝑞𝑚,𝑛

= 0 (23) 

 

where, q the vector of generalized coordinates includes the 

coefficients of unknown time variables from the conjectural 

functions e.g. 
 

𝑞 = {𝑢𝑚𝑛 . 𝑣𝑚𝑛 . 𝑤𝑚𝑛 . ∅1𝑚𝑛
. ∅2𝑚𝑛

. 𝐵𝑖.𝑗} (24) 

 

After minimization, the equation is obtained as follows 

(Galerkin equation). 
 

(𝑘𝑝 + 𝑘𝑅)𝐶𝑚.𝑛 −𝜔2 [
(𝑀𝑃 +𝑀𝑓𝐵)

𝐶𝑚.𝑛 +𝑀𝑓𝑆𝐵𝑖.𝑗
] = 0 (25) 

 

where: 
 

𝐶𝑚.𝑛 = {𝑢𝑚𝑛. 𝑣𝑚𝑛 . 𝑤𝑚𝑛 . ∅1𝑚𝑛
. ∅2𝑚𝑛

}
𝑇
 (26) 

 

As a result, the Galerkin equation is obtained as follows [18]: 
 

[
𝑘𝑃 + 𝑘𝑅 0
𝑘∅𝐵 𝑘∅𝑆

] {
𝐶𝑚.𝑛

𝐵𝑖.𝑗
} 

−𝜔2 [
𝑀𝑃 +𝑀𝑓𝐵

𝑀𝑓𝑆

0 𝑀∅𝑆

] {
𝐶𝑚.𝑛

𝐵𝑖.𝑗
} = 0 

(27) 

where: 

 

𝑘∅𝑆 =
𝜕2𝑈∅𝑆
𝜕𝑞𝑖𝜕𝑞𝑗

. 𝑀∅𝑆 =
𝜕2𝑇∅𝑆
𝜕𝑞𝑖𝜕𝑞𝑗

. 

𝑘∅𝐵 =
𝜕2𝑈∅𝐵
𝜕𝑞𝑖𝜕𝑞𝑗

 

𝑘𝑃 =
𝜕2𝑈𝑃
𝜕𝑞𝑖𝜕𝑞𝑗

. 𝑘𝑅 =
𝜕2𝑈𝑅
𝜕𝑞𝑖𝜕𝑞𝑗

. 

𝑀𝑃 =
𝜕2𝑇𝑃
𝜕𝑞𝑖𝜕𝑞𝑗

 

𝑀𝑓𝐵 =
𝜕2𝑇𝑓𝐵

𝜕𝑞𝑖𝜕𝑞𝑗
. 𝑀𝑓𝑠 =

𝜕2𝑇𝑓𝑆

𝜕𝑞𝑖𝜕𝑞𝑗
 

(28) 

 

 

4. FORCED VIBRATIONS 

 

By placing a time function in the 𝑊0(𝑥. 𝑦. 𝑡) =
∑ ∑ 𝑊𝑚𝑛(𝑥. 𝑦)𝑇𝑚𝑛(𝑡)∞

𝑛=1
∞
𝑚=1  relationship, the response of 

forced vibration to displacement the sheet is obtained as 

follows. 

 

𝑊0 = ∑ ∑
𝑊𝑚𝑛(𝑥. 𝑦)

𝐾𝐾𝜔𝑚𝑛

∞

𝑛=1

∞

𝑚=1

∫𝑄𝑄𝑚𝑛(𝜏)𝑆𝑖𝑛(𝜔𝑚𝑛

𝑡

0

(𝑡

− 𝜏))𝑑𝜏 

(29) 

 

 

5. RESULTS AND DISCUSSION 

 

To evaluate, the results are compared with the numerical 

solution of Abaqus software and the results of previous 

research. Since the properties of FGM materials are not 

available in the library of numerical analysis software such as 

abacus, to define this type of material in the software, the sheet 

is cross-sectional divided into several parts. For each section, 

the mechanical properties associated with it are defined. 

However, the number of sections in the larger the cross section, 

the closer it is to the target material. In fact, in this study, the 

thickness of the sheet is divided into 64 sections. The element 

used to mesh the 3D element with 20 node, the size of the 

elements is 0.05m, and also the Structural mesh technique is 

used. Multilayer sheet modeling is shown in Figure 6. 

 

 
 

Figure 6. Schematic of FGM sheet modeling in Abaqus 

software 

 

Figure 7 shows a solution to the fluid and structure coupler 

problem in Abaqus. 

The values obtained in this study have been validated with 

different sources and then the effect of sheet and fluid 
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properties on the system frequency has been investigated. 

FGM rectangular sheet made of aluminum and ceramic, 

mechanical properties of these two materials are given in 

Table 1. 

 

 
 

Figure 7. Schematic of FGM sheet modeling in contact with 

fluid in Abacus software 

 

Table 1. FGM mechanical properties [8] 

 
Material  E(GPa) (Kg/m3) 

Al 0.3 70 2702 
Al2O3 0.3 380 3800 

Ti-6Al-4V 0.298 105.7 4429 
Aluminum Oxide 0.26 320.2 3750 

 

Table 2 shows the values of the first 4 vibration frequencies 

for pure ceramic sheet and pure aluminum by analytical 

method using third-order shear deformation theorem and by 

numerical method using Abacus software. The results are 

compared with reputable sources. In this table, the simply 

supported boundary conditions, sheet length and width of 0.4 

m and sheet thickness of 0.005 m are assumed . 

 

Table 2. Comparison of the natural frequencies of a 

rectangular sheet with simply supported boundary conditions 

in terms of Hz 

 
Mode 

number 

metal 

numerical ref [4] analytical 

1 114.90 143.67 144.96 

2 361.96 360.64 360.64 

3 361.96 360.64 360.64 

4 577.89 575.87 575.87 

Mode 

number 

ceramic 

numerical ref [4] analytical 

1 270.95 268.60 271.06 

2 676.86 674.38 677.10 

3 676.86 674.38 677.10 

4 1080.70 1076.80 1082.48 

 

Table 3. Comparison of dimensionless natural frequencies 

for FGM 

 

Results 
 

10 8 5 2 1 0.5 0 

Reference 
[19] 

3.62 3.68 3.78 4.06 4.45 4.92 5.76 

Reference 
[20] 

3.59 3.64 3.72 3.94 4.34 4.82 5.68 

Present 

Work 
3.63 3.68 3.76 4.08 4.41 4.90 5.77 

Now, the analytical results are then evaluated with other 

sources. In the Table 3 of natural frequencies without 

dimension β = (ω𝑙2/ℎ)√
𝜌𝑐

𝐸𝑐
 for FGM rectangular plates 

(Al/Al2O3) for simple boundary conditions with thickness to 

length ratio h/a=0.1 and the ratio of sides a/b=1 compared to 

references.  

In the Table 4, the natural frequencies without dimension 

for the isotropic plate are in contact with the fluid for the 

values b1/b (The ratio of the height of the reservoir to the width 

of the plate) is obtained. Physical properties include 

E=25Gpa,=0.15 and =2400kg/m3 considered and the 

geometric dimensions of the problem c1=100m,  h=0.15m, 

b=a=10m and the boundary conditions are also a simple 

support.  
 

Table 4. Comparison of natural non-dimensional isotropic 

plates 
 

Results b1/b 

1 0.8 0.4 0.3 0.2 

Reference [21] 1.036 1.173 2.196 2.451 3.064 

Present Results 0.860 1.031 2.190 2.401 3.019 

 

After ensuring the accuracy of the results, the effect of 

different parameters on the frequency response of the problem 

is investigated below. Figure 8 shows a diagram of frequency 

changes in the first 10 vibration modes for this problem. 
 

 
 

Figure 8. Frequency change in different modes 
 

Figures 9 and 10 show the shape of the plate modes for the 

non-fluid state and the contact with the water fluid.  

The base frequency changes of the plate are shown in the 

ratio of the sides and simple boundary conditions for the 

contact state of the plate with fluid and air in Figures 9 and 10. 

In this figure, the ratio of thickness to plate length α=0, h/a=0.1 

and boundary conditions is simple. It has been observed that 

the natural frequencies of the plate in contact with the fluid are 

less than the plate in contact with air. Also, according to the 

results of these two shapes of the vibrating modes of the plate 

in contact with the fluid is distorted in relation to the plate in 

contact with the air. However, distortion in the shape of higher 

vibrational modes is more noticeable, which is due to the effect 

of fluid kinetic energies on the oscillations of the elastic plate. 
 

 
 

Figure 9. The first eight modes of vibrating of FGM square 

plate for  =1 in air contact mode 
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Figure 10. The first eight modes of vibration of FGM square 

plate for  =1 in turbulent fluid contact state 
 

 
 

Figure 11. Plate base frequency changes in contact with the 

fluid relative to the sides 
 

 
 

Figure 12. Plate base frequency changes in contact with the 

fluid relative to thickness 
 

Figure 11 shows the frequency changes in the ratio of the 

sides of the plate in contact with the fluid for the coefficient of 

strength of different volumetric ratios and the ratio of 

thickness to the length of the plate is h/a=0.1 The length 

increases the width of the plate and the frequency of the 

vibration of the plate will decrease. Also, according to the 

figures, the higher the power law index, the higher the 

frequency of the system. As the volume ratio increases, the 

hardness of the plate increases and the percentage of ceramic 

in the plate increases. This is due to the direct relation between 

the frequency and the power law index ().  

Figure 12 shows the changes in the first frequency of the 

system relative to the thickness of the plate in contact with the 

fluid for the power law index (). The Figure 12 shows that 

the higher the plate thickness ratio, the higher the vibrational 

frequency of the system. As the power law index increases, so 

does the frequency of the system. As the power law index 

increases, the hardness of the plate increases and the 

percentage of ceramic in the plate increases. This is the reason 

for the direct relation between the frequency and power law 

index. 

 
 

Figure 13. The first frequency changes of the plate in contact 

with the fluid to the height 
 

 
 

Figure 14. Plate base frequency changes in contact with fluid 

to reservoir width 
 

Figure 13 shows the changes in the first four frequencies of 

the system to the height of the reservoir for different power 

law index. Due to the above figure, as the height of the 

reservoir increases, the amount of vibration frequency of the 

system decreases with a low slope. The ratio of the sides of 

plate a/b=1 and the ratio of thickness h/a=0.1 is assumed. 

Figure 14 shows the changes in the base frequency of the 

system to the width of the reservoir. Depending on the figures, 

the higher the reservoir width, the higher the frequency of plate 

vibration. Then the curve gradually decreases and the slope 

reaches zero. As for the width of the large reservoirs, the 

frequency will not change with increasing width. Also, as the 

power factor of the volumetric ratio increases, so does the 

frequency of the system. As the volume ratio increases, the 

hardness of the plate increases, and the percentage of ceramic 

in the plate increases. This is due to the direct relationship 

between the frequency and power law index (). The ratio of 

the sides of plate a/b=1 and the ratio of thickness h/a=0.1 is 

assumed. 
 

 
 

Figure 15. Plate base frequency changes relative to the sides 

for the power factor of the power law index α=0 
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Figure 16. Plate base frequency changes relative to thickness 

for power law index α=0, and different boundary conditions 

 

In Figures 15 and 16, the vibrational frequency changes for 

the fixed boundary conditions are similar to the simple 

boundary conditions. According to the results presented in 

these figures, due to the increase in hardness of the system due 

to the increase in geometric constraints at the plate boundaries 

for the same geometric and physical conditions, the natural 

frequency of the plate is simplified with the fixed boundary 

conditions. 

 

 

6. RESULTS OF FORCED VIBRATION 

 

In this section, to investigate the forced vibration in the time 

domain, the system's response to the harmonic, stepping, and 

triangular time distribution loads is obtained. According to the 

results obtained in the free vibration section, we now deal with 

the effect of volumetric coefficient parameters, sheet thickness 

ratio, fluid height and fluid tank width on the forced vibration 

response of the sheet-fluid system. The method used in this 

section is called the Eigenvalue Expansion method. In this 

section, the displacement curves of the central point of the 

rectangular FGM sheet (Al/Al2O3) have been checked. The 

boundary conditions are simply supported and a=b=1m. 

The relationship of forces is as follows: 

 

step force: F(t) = 
1000N⁡⁡⁡⁡t ≤ 0.01
0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡t > 0.01

  

trigonometric force: F(t) = 1 −
t

0.05
⁡ , t ≤ 0.05       (30) 

harmonic force: F(t) = 1000Sin (
π

0.05
t) , t > 0  

 

It is observed that according to Figure 17, the amplitude and 

period of the oscillations decrease with increasing the power 

factor of the power law index (). 
 

 
 

Figure 17. Changes in the response to the forced vibration of 

the FGM rectangular sheet to the power law index for the 

thickness ratio h / a=0.1 under the influence of the step force 

 
 

Figure 18. Changes in the response to forced vibration of the 

target rectangular sheet in proportion to the thickness for 

=0 and under the influence of the triangular force 

 

 
 

Figure 19. Changes in the response to forced vibration of the 

FGM rectangular sheet relative to the thickness for the effect 

of the harmonic force 

 

 
 

Figure 20. Changes in the response to forced vibration of a 

FGM rectangular sheet in contact with a fluid for h/a=0.1 

under the influence of a triangular force 

 

In Figures 18 and 19, it can be seen from the curves that 

increasing the thickness reduces the amplitude of the 

oscillations and reduces the periodicity of the oscillations. 

Figure 20 shows the changes in the vibration response of the 

target rectangular sheet in contact with the fluid with respect 

to the change in fluid height for = 5, h / a=0.1 and c1=0.4m, 

which is affected by the triangular force. According to the 

figure, increasing the height of the fluid increases the 

amplitude of the oscillations and increases the periodicity of 

the oscillations. 
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Figure 21. Changes in the response to the forced vibration of 

a targeted rectangular sheet relative to the change in tank 

width for =5 and h/a=0.1 b1=0.5 under the effect of a 

triangular force 

 

The effect of the change in the width of the tank under the 

triangular force is shown in Figure 21. 

According to Figure 21, increasing the width of the tank 

reduces the amplitude of the oscillations and also reduces the 

period of the oscillations. 

 

 

7. CONCLUSION 

 

In this study, the vibratory response of the FGM plate in 

contact with the turbulent fluid was investigated. The effect of 

volumetric coefficient parameters on volume ratio, length ratio, 

plate thickness ratio, fluid height, reservoir width and 

boundary conditions on the natural frequency of the plate in 

contact with turbulent fluid has been investigated and analyzed. 

The results show that first, as the width of the reservoir 

increases, the frequency of vibration of the plate will increase, 

then gradually the slope of the curve decreases and the slope 

reaches zero, so that for more width of the reservoir, the 

frequency will not change with increasing width. As the higher 

the reservoir height, the lower the vibration frequency of the 

system. When the ratio of length to width of the plate increases, 

the frequency of the vibration of the plate will decrease. 

According to the results, as the power factor of the volumetric 

ratio increases, so does the frequency of the system. As the 

volume ratio increases, the hardness of the plate increases and 

the percentage of ceramic in the plate increases. This is due to 

the direct relation between the frequency and the power law 

index (). If the length-to-width ratio of the plate increases, 

the vibration frequency of the plate will decrease. In the next 

step, the forced vibration of the system is examined. The 

answer to the forced vibration of the FGM sheet is obtained in 

relation to the loads with harmonic, stepped and triangular 

time distribution. 
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