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This work examines the effects of non-linear thermal radiation and Joule heating on MHD 

three-dimensional visco-elastic nanofluid flow due to a surface stretching in lateral 

directions. A coupled nonlinear differential system is generated from the boundary layer 

equations by using self-similarity variables and is then solved numerically by using most 

powerful shooting technique with Runge Kutta method of fourth order. The computational 

results for the flow variables are plotted graphically and are discussed in detail for various 

governing parameters that emerged in the analysis. It is observed that the momentum of 

the visco elastic nanofluid is better than that of a viscous fluid. Thicker thermal and 

concentration boundary layers are formed for increasing nonlinear thermal radiation and 

temperature ratio parameters. Also the results are in very good agreement with the 

outcomes available in the literature as a particular case. This model may play a significant 

role in the field of manufacturing and engineering applications. 
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1. INTRODUCTION

Nowadays, many researchers have been attracted towards 

the study in MHD viscoelastic (biological solutions, colloids, 

asphalts, glues, tars, paints, and fluids contain melts of 

polymer) nanofluid flows in view of their diverse scientific 

applications. Thermal and concentration boundary layer flow 

of a viscoelastic fluid over a stretching sheet was presented 

numerically by Ashraf et al. [1], and Mohamed et al. [2]. Non- 

Newtonian nanofluid flow due to polymeric stretching sheet in 

the presence of dissipation and surface transpiration was 

devoted by Rana et al. [3]. They reported that their analysis 

finds applications in the manufacturing process of rheological 

nano-bio-polymers. Seth et al. [4] explored the viscoelastic 

nanofluid flow past a stretching sheet with thermal radiation 

and soret effects. The influence of Cattaneo-Christov double 

diffusion in a viscoelastic nanofluid flow has been discussed 

by Hayat et al. [5]. Recently, some of the researchers [6-12] 

investigated the viscoelastic nanofluid flow induced due to a 

sheet stretching. 

The influence of Joule heating and non-linear radiation on 

magnetohydrodynamic nanofluid flow caused due to sheet 

stretching plays a significant role in the fields of 

manufacturing and engineering. He et al. [13] developed the 

fictitious domain method with distributed Lagrange 

multipliers to study the unsteady flow in a screw extruder. 

Tarakaramu and Satyanarayana [14] investigated the 

hydromagnetic nanofluid flow induced by a sheet stretching 

with chemical reaction. Kumar et al. [15] analysed the 3D flow 

of non -Newtonian nanofluid in the presence of radiation and 

Joule heating. Rehman et al. [16] presented the thermo-

physical aspects of nanofluid flow induced by a cylindrical 

stretching surface. Babu and Narayana [17] explored the 

magnetohydrodynamic non-Newtonian fluid flow induced by 

sheet stretching with Joule heating. Several researchers [18-

23] explored 3D convection flows caused due to a sheet

stretching in the presence of Lorentz forces.

The couple stresses [24-26] are non-central forces exerted 

between particles in a fluid flow. These forces in nanofluid 

flows play a significant role in several industrial applications 

(food industry, waste heat recovery, air conditioning, 

refrigeration and automobile radiators) due to enhanced heat 

transfer. Also, these fluids are capable of describing different 

fluid characteristics. The influence of nonlinear thermal 

radiation on three-dimensional boundary layer flow of a 

couple stress nanofluid was explored by Hayat et al. [27]. 

MHD couple stress viscoelastic nanofluid flow induced by a 

continuously sheet stretching has been analysed by 

Turkyilmazoglu [28]. The effects of thermal radiation and 

thermodiffusion on couple stress fluid flow between two 

vertical parallel plates have been discussed by Kaladhar et al. 

[29], and Hayat et al. [30]. They presented the influence of 

heat transfer characteristics of a couple stress nanofluid on a 

magnetohydrodynamic three-dimensional flow due to 

bidirectional stretching. Beg et al. [31] presented the 

oscillatory flow of a non-Newtonian bio-fluid in a rotating 

channel with Lorentz forces. Hayat et al. [32] presented the 

three-dimensional magnetohydrodynamic flow of a couple 

stress nanofluid past a stretching surface. Kumar et al. [33] 

experimentally developed the Fe3O4 nanofluid flow through 

longitudinal strip inserts. Many authors [34-44] considered 

various mathematical nanofluid flow models to analyse the 

International Journal of Heat and Technology 
Vol. 39, No. 1, February, 2021, pp. 205-212 

Journal homepage: http://iieta.org/journals/ijht 

205

https://crossmark.crossref.org/dialog/?doi=10.18280/ijht.390122&domain=pdf


 

heat transfer aspects. Satyanarayana [45] adopted the lie group 

analysis to examine the nanofluid flow induced by the sheet 

stretching. 

The main objective of present work is to analyse the 

magnetohydrodynamic 3D flow of a couple stress fluid in the 

presence of Joule heating and non-linear thermal radiation. 

The governing boundary layer equations are converted to a 

system of coupled ODEs by using the similarity variables. The 

transformed system can be solved numerically by RKF 

scheme with shooting method. Expressions for various values 

of parameters on the flow field and other aspects are discussed 

graphically and numerically.  
 

 

2. MATHEMATICAL FORMULATION 
 

Three dimensional hydromagnetic flow of an 

incompressible electrically conducting visco-elastic couple 

stress nanofluid induced by a bidirectional stretching sheet is 

considered in this mathematical model. A constant Lorentz 

force is applied on the fluid normal to the flow direction. 

Choose a Cartesian coordinates system (x,y,z) in which x- and 

y- axes are along the lateral directions of the stretchable 

surface and z- axis is normal to it. The fluid flow occurs for 

z>0 as displayed in Figure 1. The stretching components of 

velocities along x and y directions are respectively defined as 

A=ax and B=by. Joule heating, dissipation and nonlinear 

thermal radiations are considered in the energy equation. 

Using the above assumptions, the equations of continuity, 

momentum, energy and species concentration are as follows 
 

 
 

Figure 1. Physical model and configuration  
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The relevant boundary conditions (B.Cs) for this model are 
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According to the Rosseland’s approximation (Brewster 

[46]), the non-linear radiative heat flux 𝑞𝑟 is defined as: 
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On differentiation we get  
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In view of Eq. (8), Eq. (4), can be written as  
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The suitable similar transformations for this model are  

 

𝐴 = 𝑎𝑥𝑓′(𝜂), 𝐵 = 𝑎𝑦𝑔′( 𝜂), 𝐶 = −√𝑎𝜐(𝑓(𝜂) + 𝑔( 𝜂))
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𝑎

𝑐
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1/2

𝑧
} (10) 

 

Using the above Eq. (10), we can recast the Eqns. (2)-(5) 

and (9) as 

 

𝑓′′′ − 𝐾 𝑓𝑣 − (𝑓′)2 −𝑀2𝑓′ + 𝑓′′(𝑓 + 𝑔) = 0 (11) 
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𝜙′′ + 𝐿𝑒 𝑃𝑟( 𝑓 + 𝑔)𝜙′ + (
𝑁𝑡
𝑁𝑏

)𝜃′′ = 0 (14) 

 

The corresponding boundary conditions are given by 

 
𝑓 = 0𝑔 = 0𝑓′ = 1,
𝑔′ = 𝜆𝜃 = 1𝑁𝑏𝜙′+ 𝑁𝑡𝜃′ = 0,
𝑎𝑡𝜂 = 0

𝑓′ → 0𝑔′ → 0,
𝜃 → 0𝜙 → 0     𝑎𝑠𝜂 → ∞ }

 
 

 
 

 (15) 

 

The skin friction coefficients and Nusselt number are given 

as 
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where, 𝑅𝑒𝑥 =𝐴𝑤𝑥/𝑣 read as local Reynolds number. 

 

 

3. RESULTS AND DISCUSSION  

 

The converted Eqns. (11)-(14) with corresponding 

boundary conditions (15) have been calculated numerically by 

Runge-Kutta-Fehlberg scheme along with well-known 

shooting technique. The graphical results are displayed from 

Figures 2-10 for distinct values of the physical parameters on 

velocity, temperature and concentration distributions as well 

as the skin friction coefficient and Nusselt number.  

The influence of stretching ratio parameter λ is illustrated in 

Figures 2(a)-2(d). It is noticed that the transverse velocity rises 

with larger values of λ as the stretching velocity in the y 

direction exceeds that of its counterpart in the x-direction and 

it is obvious that the x-component of velocity diminishes. θ(η) 

and ϕ(η) profiles follow the trend of axial velocity for the same 

set of values of λ and therefore the thermal and solutal 

boundary layers are thinner. Also, λ=0, corresponds to 2D 

flow analysis and it is pertinent to emphasise that the 

temperature boundary layer thickness in the case of 2D flow is 

greater than that of the corresponding case of 3D flow. 

Moreover, the velocity along x-axis for couple stress nanofluid 

is more comparing to the water nanofluid. These results are 

useful in high heat transfer experiments in industrial 

applications. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 2. Influence of λ on (a) f’(η)
 
(b) g’(η)

 
(c) θ(η)

 
(d) ϕ(η) 

 

Figure 3 signify the influence of Prandtl number Pr on 

temperature distributions. It is noticed that the thermal 

boundary layers thickness enhances for smaller Pr values. 

Physically, the thermal diffusivity of the fluid is higher for 

smaller Pr and hence thicker thermal boundary layers occur. It 

is also observed that the temperature distribution in the case of 

a non-Newtonian fluid is fewer than that of viscous fluid. 

Figure 4(a)-(b) exhibit the influence of Eckert number Ecx 

and Ecy along x and y-directions respectively on ϕ(η), θ(η). 

From these figures it is noticed that both ϕ(η) and θ(η) 

augmented with an increase in Ec along x and y-direction. This 

is due to the frictional force effect in the fluid layers. Also, 

noticed that the influence of Ecx on ϕ(η) is more than that of 

Ecy. 

Figures 5(a)-5(b) display the impact of Rd (thermal 

radiations parameter) on temperature θ(η) and concentration 

ϕ(η) profiles, respectively. It is pointed out that thickness of 

the thermal concentration boundary layers increases for 
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enhanced values of Rd due to the fact that increasing radiation 

release more thermal energy in the fluid.  

 
 

Figure 3. Influence of Pr on θ(η) 

 

 
(a) 

 
(b) 

 

Figure 4. Influence of (a)
xEc on ( )  (b) 

yEc on ( )   

 
(a) 

 
(b) 

 

Figure 5. Influence of Rd on (a) θ(η) (b) ϕ(η) 

 
 

Figure 6. Influence of θw on θ(η) 

 
 

Figure 7. Influence K on ϕ(η) 

 

Figure 6 illustrate the impact of temperature ratio parameter 

θw on θ(η) profile. Presence of θw is due to non-linear thermal 

radiation and its contribution is seen to enhance the thermal 

energy leading to higher temperatures. Figure 7 depict the 

couple stress parameter K on the concentration ϕ(η) 

distributions respectively. It is noticed that the reduction in 

temperature profile is observed with enhancing values of 

couple stress parameter K.  

Figure 8 expose the variation of thermophoresis parameter 

Nt on θ(η) profile. It is clear that both the profiles θ(η) increase 

with higher values of Nt. Physically, increase in 

thermophoresis parameter Nt causes the nanoparticles to move 

from hotter area to colder area and consequently the 

temperature and the thermal boundary layer thickness rise. The 

influence of magnetic field parameter M2 on 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥 

against λ is exhibited in Figure 9. It is noticed that the 
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𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥 rate of heat transfer enhance with increasing 

values of magnetic field parameter M2. 
 

 
 

Figure 8. Influence K on ϕ(η) 

 
 

Figure 9. Influence of M2 on 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥 

 
(a) 

 
(b) 

 

Figure 10. Influence of K  on (a) 1/2Rex xNu− (b) 1/2Rex fxC  

Figures 10(a)-10(b) depict the effect K with respect to λ on 

the two components of skin friction coefficients and Nusselt 

number 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥. It is observed that the two components 

of coefficients of skin friction reduce with K. Also, observed 

that the skin friction coefficient in the presence of magnetic 

field (M2=0.2) is seen to be more than that of the nonmagnetic 

(M2=0) case. On the other hand, a reverse trend is observed in 

the case of rate of heat transfer 𝑅𝑒𝑥
−1/2

𝑁𝑢𝑥. In the absence of 

𝐸𝑐𝑥  and 𝐸𝑐𝑦  the present model reduces to the flow model 

discussed by Hayat et al. [9] and they observed that the rate of 

heat transfer is seen to be lesser. Hence, it may be concluded 

that both Joule heating and viscous dissipation are vital in 

improving the rate of heat transfer of a couple stress nanofluid. 

The validity of the current work outcomes of final values 

are compared with Wang [47] in Table 1. The skin friction 

coefficient values for λ=0 compared with those of Oyelakin et 

al. [48], Nadeem et al. [49], Gupta and Sharma [50], and 

Ahmad and Nazar [51], respectively in Table 2. The skin 

friction coefficient values for λ=1 compared with Nadeem et 

al. [49] in Table 3. It is observed that the current results are in 

good agreement with those existing results. 

 

Table 1. Comparison of final values for various values of λ 

 

λ 

Previous 

Study 

Wang [47] 

f(∞) 

Present 

study 

f(∞) 

Previous 

Study 

Wang [47]  

g(∞) 

Present 

study 

g(∞) 

0.00 1.000000 1.00000 0.000000 0.00000 

0.25 0.907075 0.90707 0.257986 0.25798 

0.50 0.842360 0.84236 0.451671 0.45167 

0.75 0.792308 0.79230 0.612049 0.61212 

1.00 0.751527 0.75152 0.751527 0.75148 

 

Table 2. Comparison of -f''(0) (Skin friction coefficient) for 

various values of M for λ=0 

 

M 

Present 

study 

-f''(0) 

Oyelakin 

et al. [48] 

Nadeem 

et al. 

[49] 

Gupta 

and 

Sharma 

[50] 

Ahmad 

and 

Nazar 

[51] 

0.0 1.00000 1.0000 1.0004 1.0003 1.0042 

10 3.31662 3.31662 3.3165 3.3165 3.3165 

100 10.04987 10.04987 10.049 10.0498 10.049 

 

Table 3. Comparison of -f''(0) (Skin friction coefficient) with 

various values of M for λ=1 

 

M 
Present Study 

-f''(0) 

Nadeem et al. [49] 

-f''(0) 

0.0 1.1737 1.1737 

10 3.3672 3.3667 

100 10.0664 10.066 

 

 

4. CONCLUSIONS 

 

This article deals with the steady MHD 3D flow of a couple 

stress nanofluid caused due to a sheet stretching. The 

dimensionless equations are derived and solved 

computationally. The major conclusions in the current study 

are indicated here under: 

➢ The Eckert number is seen to have significant 

influence on temperature. The velocity of the couple 

stress fluid in the presence of stretching ratio 
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parameter is additional than that of a viscous fluid.  

➢ The temperature of the couple stress fluid in the 

presence of Prandtl number is lower than that of a 

viscous fluid. Viscous dissipation boosted the rate of 

heat transfer.  
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NOMENCLATURE 

( , )x y Cartesian coordinate’s 

, ,A B C velocity components along x, y, z-axis 

 volume fraction of nanoparticle 

fc Skin friction coefficient 

pc Specific heat 

c
Uniform ambient concentration 

0D Brownian diffusion 

D
Thermophoresis diffusion 

xEc Eckert number in the direction of x 

( )

22

( )

w

p wf

A

c 

=
 −

yEc Eckert number in the direction of y 

( )

22

( )

w

p wf

B

c 

=
 −

f Dimensionless stream function 

'f Dimensionless velocity 

*k Mean absorption coefficient 

k Thermal conductivity 

K Couple Stress Parameter 2
'a


=

Le Lewis number
0

m

D


=

2M
magnetic field parameter

2

0H

a




=

tN Thermophoresis parameter 

D ( )
( )

( )

p

w

f

c

c











=  −


bN Brownian motion coefficient 

0D ( )
( )

( )

p

w

f

c

c



 
=  −

Pr Prandtl number
m

v


=

rq radiative heat flux 

Rex
Reynolds number 

dR
Radiation parameter

* 2

*

16

3kk

 =

 fluid temperature far away from the surface 

w Constant fluid Temperature of the wall 

wA Stretching velocity 

A
Free stream velocity 

Greek symbols 

m Thermal diffusion 

 Dynamic viscosity 

 Dimensionless concentration 

 Ratio parameter b
a

=

 Kinematic viscosity

 Electrical conductivity 

 Dimensionless temperature

m Base fluid thermal diffusivity ( )p f
k c=

' Couple stress viscosity 


=

 Ratio of the nanoparticle to the fluid 
( )

( )
p

f

c

c





( ) fc Heat capacity of the fluid 

( ) pc Heat capacity of the nanoparticle to the fluid 

f Fluid density 

 Density 

* Boltzmann constant 

Subscripts 

 condition at free stream 
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