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ABSTRACT  

 
This study generalizes the role of transversely and radially applied magnetic field on flow formation in an 

annulus. The flow is assumed to be fully developed and driven by the movement of the cylinders. The 

governing momentum equation is derived and solved using the Laplace transform technique. The impact of 

moving inner, outer and both cylinders on flow formation is also considered. Result indicate that the 

application of both magnetic field leads to a further decrease in fluid velocity and an increase in skin-friction 

at the inner surface of outer cylinder. In addition, the movement of the cylinders is significant in the 

attainment of steady state skin-friction at the moving wall. 

 

Keywords: Transverse Magnetic Field, Radial Magnetic Field, Annulus, Unsteady, Couette 

Flow. 

 

 
1. INTRODUCTION 

 

The significant of magneto hydrodynamics (MHD) in 

nature and industrial applications cannot be over emphasized. 

This dynamic insights has made scientist to venture more into 

understanding role of MHD in solving physical situations that 

arises daily Li et al. [1]. Some of these applications include the 

magnetic behavior of plasmas in fusion reactors, liquid-metal 

cooling of nuclear reactors and electromagnetic casting. Many 

research work has been committed to study the effect of 

transversely externally applied magnetic field on fluid flow in 

annulus or micro-annulus Rossov [2], Hartmann [3], Jha and 

Odengle [4], Jha and Aina [6]. They found interesting result 

that the role of magnetic field is to decrease fluid motion as 

well as skin-friction. In other works (Nandi [6], Jha and Oni 

[7] and Makinde et al. [8]), the magnetic field are assume to 

be radially applied to flow direction. Similar results on flow 

formation as well as skin-friction are also obtained.  

On the other hand, the study of Couette flow in annular 

geometry has an increasing daily application in medicine, 

disease control and automobiles; movement of piston. A lot of 

work has been carried out to have a deeper understanding of 

the role of movement of one of the cylinder (Katagiri [9], Jha 

and Apere [10], Farhad [11]). 

In all the studied literature, no work has been devoted to see 

the effect of combined (transverse and radial) magnetic field. 

Also, it not very clear which cylinder should be moving in 

order to increase or decrease the force at which the fluid hits 

the surfaces of the cylinders (skin-friction).  

Therefore, this current research aimed at investigating the 

combined effect of transverse and radial mode of magnetic 

field application on Couette flow formation and skin-friction 

in an annulus. The governing momentum equation governing 

the flow formation for the case of transverse and radial 

magnetic field is generalized as a single equation. 

 

 

2. MATHEMATICAL ANALYSIS 

 

Consider the motion of a viscous, laminar, incompressible and 

electrically conducting fluid filling the gap between two 

concentric cylinders. The fluid exists in the region 𝑎 ≤ 𝑟 ≤ 𝑏, 
where the 𝑟 axis is the coordinate normal to the flow and 𝑎, 𝑏 

are the radiuses of the inner and outer cylinders respectively. 

The fluid flow inside the annulus is induced by movement of 

the inner or outer cylinder which is located at 𝑟 = 𝑎, 𝑟 =
𝑏 respectively. Since the cylinders are of infinite length and 

the flow is fully developed, all physical parameters are 

functions of 𝑟 and 𝑡′. It is further assumed that no applied and 

polarisation voltage exists. The flow field is exposed to the 

influence of an externally applied transverse or (and) radial 

magnetic field. It is assumed that the magnetic Reynolds 

number is very small, which corresponds to negligibly induced 

magnetic field compared to the externally applied one (Pai 

[12]; Jha and Apere [13]. Under these assumptions, the 

unsteady hydrodynamic continuity and momentum equations 

in the component form in the absence of pressure gradient are 

respectively: 

 
𝑑𝑢

𝑑𝑟
= 0     (1) 
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𝜕𝑢

𝜕𝑡′ =
𝜈

𝑟
[

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
)] −

𝜎𝐵0
2

𝜌
𝑢     (2) 

 
𝜕𝑢

𝜕𝑡′ =
𝜈

𝑟
[

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
)] −

𝜎𝐵0
2

𝜌𝑟2 𝑢    (3) 

 

subject to  

 

𝑡′ ≤ 0 𝑢 = 0𝑎 ≤ 𝑟 ≤ 𝑏  

𝑡′ > 0                             {
𝑢 = 𝐴𝑢0                            𝑟 = 𝑎
𝑢 = 𝐵𝑢0                            𝑟 = 𝑏

 (4) 

 

Using the following dimensionless parameters, the 

governing equation is obtained as: 

 

𝑅 =
𝑟

𝑎
 ,  𝜆 =

𝑏

𝑎
 ,   𝑢 =

𝑈

𝑢0
 , 𝑀2 =

𝜎𝝁𝒆
𝟐𝑩𝟎

𝟐𝑎2

𝜇
  , 𝑡 =

𝑡′𝜈

𝑎2   (5) 

 
𝜕𝑈

𝜕𝑡
=

1

𝑅
[

𝜕

𝜕𝑅
(𝑅

𝜕𝑈

𝜕𝑅
)] − 𝑀2𝑈     (6) 

 
𝜕𝑈

𝜕𝑡
=

1

𝑅
[

𝜕

𝜕𝑅
(𝑅

𝜕𝑈

𝜕𝑅
)] −

𝑀2𝑈

𝑅2                (7) 

 

𝑡 ≤ 0 𝑈 = 01 ≤ 𝑅 ≤ 𝜆  

𝑡 > 0                             {
𝑈 = 𝐴                            𝑅 = 1
𝑢 = 𝐵                            𝑅 = 𝜆

 (8) 

 

Unifying equations (6) and (7),  

 
𝜕𝑈

𝜕𝑡
=

1

𝑅
[

𝜕

𝜕𝑅
(𝑅

𝜕𝑈

𝜕𝑅
)] − 𝑀2𝑈 [𝐶 +

𝐷

𝑅2]               (9) 

 

where 𝐴, 𝐵, 𝐶 and 𝐷 are constants that assume value zero or 

one as follow: 

𝐶 = 0, 𝐷 = 0; no applied magnetic field 

𝐶 = 1, 𝐷 = 0; transversely applied magnetic field only 

𝐶 = 0, 𝐷 = 1; radially applied magnetic field only 

𝐶 = 1, 𝐷 = 1 ; combined transversely and radially applied 

magnetic field 

 

The solution of equation (9) can be obtained using the 

Laplace transform technique. Define the following transform 

variables 

�̅�(𝑅, 𝑆) = ∫ 𝑈(𝑅, 𝑡)𝑒−𝑆𝑡𝑑𝑡
∞

0
, where 𝑆  is the Laplace 

parameter and 𝑆 > 0 

And taking the Laplace transform of Eq. (9), we obtain the 

following ordinary differential equation 

 
1

𝑅
[

𝜕

𝜕𝑅
(𝑅

𝜕�̅�

𝜕𝑅
)] − 𝑀2�̅� [(𝐶 + 𝑆) +

𝐷

𝑅2]                        (10) 

 

Solving equation (10) with boundary conditions (8), the 

closed form expression in Laplace domain is obtained: 

 

�̅�(𝑅, 𝑆) =
[𝐴𝐾𝐷1

(𝜆𝐷2)−𝐵𝐾𝐷1
(𝐷2)]𝐼𝐷1

(𝐷2𝑅)+[𝐵𝐼𝐷1
(𝐷2)−𝐴𝐼𝐷1

(𝜆𝐷2)]𝐾𝐷1
(𝐷2𝑅)

𝑆[𝐼𝐷1
(𝐷2) 𝐾𝐷1

(𝜆𝐷2)−𝐼𝐷1
(𝜆𝐷2) 𝐾𝐷1

(𝐷2)]
   (11) 

 

where 𝐶1, 𝐶2, 𝐷1  and 𝐷2  are constants and 𝑆 is the Laplace 

domain: 

 

 𝐷1 = 𝑀√𝐷  , 𝐷2 = √𝑀2𝐶 + 𝑆  , 𝐶1 =
[𝐴𝐾𝐷1

(𝜆𝐷2)−𝐵𝐾𝐷1
(𝐷2)]

𝑆[𝐼𝐷1
(𝐷2) 𝐾𝐷1

(𝜆𝐷2)−𝐼𝐷1
(𝜆𝐷2) 𝐾𝐷1

(𝐷2)]
 and            𝐶2 =

[𝐵𝐼𝐷1
(𝐷2)−𝐴𝐼𝐷1

(𝜆𝐷2)]

𝑆[𝐼𝐷1
(𝐷2) 𝐾𝐷1

(𝜆𝐷2)−𝐼𝐷1
(𝜆𝐷2) 𝐾𝐷1

(𝐷2)]
            (12) 

 

The skin-friction at the surfaces of the cylinders is obtained 

as follows: 

 
𝑑�̅�(𝑅,𝑆)

𝑑𝑅
|

𝑅=1
=

𝐷2 [
[𝐴𝐾𝐷1

(𝜆𝐷2)−𝐵𝐾𝐷1
(𝐷2)]𝐼(𝐷1−1)(𝐷2)−[𝐵𝐼𝐷1

(𝐷2)−𝐴𝐼𝐷1
(𝜆𝐷2)]𝐾(𝐷1−1)(𝐷2)

𝑆[𝐼𝐷1
(𝐷2) 𝐾𝐷1

(𝜆𝐷2)−𝐼𝐷1
(𝜆𝐷2) 𝐾𝐷1

(𝐷2)]
]     

         (13) 

 
𝑑�̅�(𝑅,𝑆)

𝑑𝑅
|

𝑅=𝜆
=

𝐷2 [
[𝐴𝐾𝐷1

(𝜆𝐷2)−𝐵𝐾𝐷1
(𝐷2)]𝐼(𝐷1−1)(𝜆𝐷2)−[𝐵𝐼𝐷1

(𝐷2)−𝐴𝐼𝐷1
(𝜆𝐷2)]𝐾(𝐷1−1)(𝜆𝐷2)

𝑆[𝐼𝐷1
(𝐷2) 𝐾𝐷1

(𝜆𝐷2)−𝐼𝐷1
(𝜆𝐷2) 𝐾𝐷1

(𝐷2)]
]     

         (14) 

 

It is good to note that the solutions above are in Laplace 

domain. It is therefore significant to transform to time domain. 

Due to the complexity of these solution, the Riemann-sum 

approximation which a promising too for accuracy [13] is used 

to transform equations (10-13) the Laplace domain into time 

domain as follows: 

 

𝑈(𝑅, 𝑡) =
𝑒𝜀𝑡

𝑡
[

1

2
�̅�(𝑅, 𝜀) + 𝑅𝑒 ∑ �̅� (𝑅, 𝜀 +𝑁

𝑛=1

𝑖𝑛𝜋

𝑡
) (−1)𝑛 ]  , 1 ≤ 𝑅 ≤ 𝜆                     (15) 

 

where 𝑅𝑒  refers to the real part of 𝑖 = √−1  the imaginary 

number. 𝑁 is the number of terms used in the Riemann-sum 

approximation and 𝜀 is the real part of the Bromwich contour 

that is used in inverting Laplace transforms. The Riemann-sum 

approximation for the Laplace inversion involves a single 

summation for the numerical process its accuracy depends on 

the value of  𝜀  and the truncation error dictated by 𝑁 . 

According to Tzou [14], the value of 𝜀𝑡  that best satisfied the 

result is approximately 4.7. 

 

 

3. RESULTS AND DISCUSSIONS 

 

This section is devoted to the graphical representation of 

solutions obtained in previous section. The flow formation is 

seen to be regulated by Laplace parameter (𝑆) , Hartmann 

number (𝑀), annular gap (𝜆) and movement of the inner and 

outer cylinders respectively (𝐴 = 1, 𝐵 = 0 𝑜𝑟 𝐴 = 0, 𝐵 = 1). 

In addition, 𝐶  and 𝐷  are constants which assume 1  and 0 

indicating the presence or absence of magnetic field (M.F) 

respectively. 
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Figure 1a: Velocity profile for different values of M and M.F application at t=0.1,

  = 2.0, A=1,B=0
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Figure 1b: Velocity profile for different values of M and M.F application at t=0.1,

  = 2.0, A=0,B=1

U

 

 
No M.F (C = 0, D = 0)

Transverse M.F (C = 1, D = 0)

Radial M.F (C = 0, D = 1)

Combined M.F (C = 1, D = 1)

M = 4.0, 2.0

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

Figure 1c: Velocity profile for different values of M and M.F application at t=0.1,

  = 2.0, A=1,B=1

U

 

 
No M.F (C = 0, D = 0)

Transverse M.F (C = 1, D = 0)

Radial M.F (C = 0, D = 1)

Combined M.F (C = 1, D = 1)

M = 4.0, 2.0

170



 

Figures 1a-1c depict the role of transversely, radially or 

combined magnetic field on fluid velocity at fixed value 𝜆 and 

𝑡 for the case when the inner, outer and both cylinders are 

moving respectively. It is found that the maximum velocity is 

obtained when both cylinders are moving (Fig. 1c). As 

expected, the role of 𝑀 is observe to decrease fluid velocity. 

Thus, the application of combined magnetic field further 

retards fluid motion for all cases of movement of cylinders 

(Fig. 1a-1c). Further, there is no significant difference whether 

the inner or outer cylinder is the moving cylinder. In addition, 

radially applied magnetic field has a higher velocity compared 

to the case of transversely applied magnetic field. This is 

significant as it can be used as a control mechanism for fluid 

velocity in industries when there is need to increase or 

decrease motion of the fluid.  

Figures 2a-2c on the other hand present the effect of 

magnetic field and movement of the cylinder on skin-friction 

at the inner surface of outer cylinder at different time in the 

annulus for the case when the inner, outer and both cylinders 

are moving respectively. Result shows that the role of 

combined magnetic field leads to an increase in the skin-

friction at this wall. Also, it is found that skin-friction increases 

with increase in 𝑀. This is due to the presence of Lorentz force 

in the magnetic field.  In addition, the movement of inner 

cylinder leads to faster attainment of steady state skin-friction 

compared to the case of movement of both cylinders.  

 

 
 

 
 

 

4. CONCLUSION 

 

This study generalized the role of transversely and radially 

magnetic field application on flow formation in an annulus. 

The flow is assumed to be fully developed and driven by the 

movement of the cylinders. The governing equation is derived 

and solved using the Laplace transform technique. Results 

show that the role of combined effect of magnetic field is 

significant in increasing or decreasing fluid velocity or skin-

friction and also in attainment of steady state. In addition, the 

movement of the inner, outer or both cylinders contributes 

adversely to the attainment of steady state skin-friction at the 

moving surface. The findings in this article can serve as a 

control mechanism in situations when there is need to increase 
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Figure 2b: Skin-friction for different values of M and M.F application

at  = 2.0, A = 0, B = 1 (R=)
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or decrease fluid velocity as well as skin-friction. The result 

presented in this article corresponds with the findings of Jha 

and Apere [13] by relaxing certain parameters (𝐴 = 1, 𝐵 =
0, 𝐶 = 1, 𝐷 = 0) 
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NOMENCLATURE 

 

𝑎radius of the inner cylinder 

𝑏radius of the outer cylinder 

RSARiemann-sum approximation 

𝐼𝑛        modified Bessel function of the first kind of order 𝑛 

 𝐾𝑛      modified Bessel function of the second kind of order 𝑛 

𝑟dimensional radial coordinate 

𝑅dimensionless radial coordinate 

𝑡′dimensional time 

𝑡dimensionless time 

𝑢dimensional axial velocity 

𝑈dimensionless axial velocity 

 

Greek letters 

 

𝛼 thermal diffusivity 

𝜆ratio of radiuses (𝑏/𝑎) 

𝜈fluid kinematic viscosity 

𝜇 dynamic viscosity 

𝜌density 

𝜏skin-friction 

𝜎electrical conductivity of the fluid 

𝜇𝑒 magnetic permeability 

𝑀Hartmann number 
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