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ABSTRACT  

 

In this paper a new model is presented for design and modelation of piping systems. This work 

results from recent investigations on pipes friction factor. It provides an empirical solution for the 

solution of the three basic problems found in the design and evaluation of pipe systems, which in 

conventional cases require tedious iterative trial and error processes. The proposed solutions are 

valid in the same interval as the traditional methods used, and in all cases the average error 

computed never exceeds 2% with respect to traditional iterative methods. The research was done 

with a regression analysis between kinematic viscosity, relative roughness, flow rate, friction 

factor, and others factor, using experimental data reported by different authors, establishing 

comparison with the Swamee-Jain solution for this problems types concluding that between new 

model and the most universally used there are not signified differences without is lightly better. 
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1. INTRODUCTION 

 
Many of the current problems of engineering involve the flow 

of fluids in pipes, this brings associated that the determination 

of the friction factor in these systems is of vital importance for 

an adequate study of the process in question. Friction is an 

element that occurs in any flow regime, either in single phase 

or in two phases. For the determination of Darcy's friction factor, 

one of the most widespread works in the world is the well-

known Coolebrook-White Equation, which in a simplified form 

is described by the following expression: 
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In Equation (1) e is the pipe wall equivalent sand grain 

roughness, d  Equivalent inner tube diameter of pipe ,  f in the 

Darcy-Weibach dimensionless friction factor;  GdRe is 

the Reynolds number, (with G  being the mass flux and  the 

dynamic viscosity). 

However it is known and confirmed at the same time by 

experiments, than at the totally wrinkled zone the numerical 

value of Reynolds's dimensionless number stops influencing the  

 

friction factor, depending on relative roughness of the 

numerical value of Reynolds's dimensionless number, the one 

that the friction factor begins to be persevering may be 

determined by the following expression obtained by (Camaraza: 

2011) 
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Table 1. Equivalent roughness values for new commercial 

pipes 

 
Material Roughness e (mm) 

Glass , plastic 0,0005 - 0,01 

Concrete 0,05 - 9 

Wood stave 0,5 

Rubber smoothed 0,01 – 0,06 

Commercial steel 0,04 – 0,08 

Cooper or brass tubing 0,01 – 0,05 

Cast iron 0,15 - 0,35 

Galvanized iron 0,07 – 0,23 

Wrought Iron 0,025 – 0,046 

Stainless steel 0,002 – 0,004 

 

The absolute roughness value e , included in the above 

Equations, varies with the material of the conduit and with the 
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technology of its manufacture. In this paper, the values 

recommended in the Cuban’s NC-176-2002 are shown in the 

table 1 

  The tubes used in industrial facilities are different from those 

used in the experiments in the sense that the roughness of the 

former is not uniform and it is difficult to give an accurate 

description of it. Table 1 gives values of the equivalent 

roughness for some commercial pipes, but it must be borne in 

mind that these values are for new pipes and the relative 

roughness of these can be increased with the use as a 

consequence of corrosion, the accumulation of scale. and the 

precipitation. As a result, the friction factor can be increased by 

a factor of 5 to 10 

It is worth mentioning that the precision of the calculations 

on friction in the tubes, can vary with the somewhat 

unpredictable change in the roughness and the friction factor, 

due to the accumulation of sediment and corrosion on the walls 

of the tube with the time of use of the conduit . This 

accumulation not only increases the surface roughness, but also 

reduces the effective diameter of the tube and can lead to a 

potentially large increase in the friction factor after the tube has 

been in service for a long period, so in these cases the roughness 

values given in the table can contain errors that can compute up 

to 70%.   

In the literature consulted a remarkable group of explicit 

Equations for the calculation of the Darcy friction factor f  in 

smooth and rough pipes for turbulent regime. For the 

determination of the pressure losses in pipes or systems of these, 

it is required to estimate the friction factor. To this end, iterative 

solutions such as Equation (1) can be used, however their use 

requires an appreciable calculation time, especially when 

studying large water distribution networks. A quick solution 

that currently enjoys great acceptance is the use of the Moody 

diagram, especially in previous decades, however its use has 

two important drawbacks:  

1- The precision of the results is affected by reading errors in 

logarithmic scale 

2- it is not possible to apply in computer-aided simulations  

In the design and analysis of piping systems that involve the 

use of the Moody chart (or the Colebrook Equation), is it usually 

encounter three types of problems, in which the fluid and the 

roughness of the pipe are assumed to be specified in all cases. I) 

Determining the pressure drop (or head loss) when the pipe 

length and diameter are given for a specified flow rate (or 

velocity); II) Determining the flow rate when the pipe length 

and diameter are given for a specified pressure drop (or head 

loss) and III) determining the pipe diameter when the pipe 

length and flow rate are given for a specified pressure drop (or 

head loss)  

  In the engineering processes that require the analysis of piping 

systems, there are generally three basic types of problems to be 

solved, in which it is necessary to assume the specific pipe 

roughness. These three basic problems are reduced to: 

I. Determine the pressure drop for the circulation of a required 

flow (or velocity), the diameter and length of the pipe being 

known. 

II. Determine the allowable flow rate for a preset pressure drop, 

the diameter and length of the pipe being known. 

III. Determine the diameter of the pipe required for a preset 

pressure drop, the length of the pipe and the flow rate flowing 

through it being known. 

 

 

 

2. MATERIALS AND METHODS 

 

2.1 Development of problems type I. 

 

The problem type I is the simplest of all because the results 

sought are obtained directly. The friction factor is determined 

and then the Darcy Weibash relationship is implemented to 

obtain the pressure drop. The only problem that limits the 

precision of the final results is the determination of the friction 

factor, since depending on the model used and the assumed 

conditions for obtaining the friction factor, it is the degree of 

precision. 

Currently in the literature consulted and available are known 

more than a dozen expressions for determining the friction 

factor. A large part of them allow obtaining the friction factor 

as an explicit variable based on known variables, thus 

facilitating the calculation and simplifying the analyzes, 

however they have the disadvantage that their areas of 

applicability is lower with respect to Coolebrook-White’s 

Equations (1) and that the accuracy of the results is also 

sacrificed due to having a lower correlation index. Table 2 

shows a summary of the most widespread at present in the 

literature consulted and available. 

 

2.2 Development of problems type II and III. 

 

In the problems type II, diameter is given, but the flow rate is 

unknown. A good assumption for the friction factor in such case 

is obtained from the fully turbulent flow region for the given 

roughness. This is true for large Reynolds numbers, which is 

often the case in practice. After the flow rate is obtained, the 

friction factor can be corrected with the Moody diagram, 

Equation (1) or similar from table 2, and the process is repeated 

until the solution converges (usually, only a few iterations are 

needed for convergence to three or four digits of precision).  

In problems type III , the diameter is not known and therefore 

the Reynolds number and the relative roughness cannot be 

calculated. Consequently, calculations are started with the 

assumption of a pipe diameter. Then the pressure drop 

calculated for the assumed diameter is compared to the 

specified pressure drop, and the calculations are repeated with 

another pipe diameter iteratively until convergence. 

To avoid tedious iterations in load loss, flow rate and 

diameter calculations, Swamee and Jain proposed in 1976 the 

following explicit relationships, whose use throws average error 

with respect to the values obtained through the iterative process 

described in the previous paragraphs. 

a) For the problems type 1 (Determining the pressure 

drop) 

 

The Equation (12) is validate for 
83 103Re103   and 61001,0  de  

 

In Equation (12) w is the flow rate, g is the gravity 

acceleration, L is the pipe length, ν is the kinematic viscosity. 

 

b) For the problems type II (Determining the flow rate) 
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Table 2. Somes empirical Equations for the determination of Darcy's friction factor f  

 

Author Equation Validity range 

Alshul(1962) 
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Equation (13) is validate for 
83 10Re104   and

71005,0  de .
 
In Equation (13) ∆p is the head loss in the 

duct.  

 

c) For the problems type III (Determining the pipe 

diameter)  
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Equation (4) is validate for  
83 103Re103   and 

61001,0  de  

 

Note that in the expression (12); (13) and (14) all quantities 

are dimensional and the units simplify to the desired unit. 

 

 

3. PROPOSED EXPLICIT EQUATIONS 

 

A data set of 3418 exact values of d was generated by 

solving numerically the Swamme-Jain Equation (14) for
83 102,3Re103  .  For every value of Reynolds number, 

e was change in the range 71005,0  de . The previous 

ranges of Re and e correspond to 83 103Re103  and 
61001,0  de . The coefficients for the two Equations 

presented in this paper were development with the Least 

Squares Method in tkSolver. 

Absolute relative errors were estimated by: 

 

SJ

SJ

d

dd
E




    

 

 

where dSJ is the diameter value obtained by the Swamme-Jain 

Equations (12), (13) y (14). 

According the authors [19], which is reaffirmed in [20], 

Equation (14) has an average margin of error of approximately 

2%. Recently [Babajimopoulos and Terzidis, 2013] found that 

the mean error is approximately 2.75%. The authors of this 

article agree with this criterion when finding a mean error 

value of Equation (14) equal to 2.8% 

The authors got three expressions for the determination of 

head losses , the flow rate and the diameter calculation , whose 

use generate a   of half error regarding values that were 

obtained through the iterative process described in previous 

paragraphs, in addition to possess a more ample specific field.   

The so-called expressions are: 
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The Equation (15) is validate for
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j) For the problems type II (Determining the flow rate) 
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The Equation (16) is validate for 
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k) For the problems type III (Determining the pipe 

diameter)  
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The Equation (17) is validate for  83 102,3Re103   and 
61005,0  de  

Note that in the expression (15); (16) and (17) all quantities 

are dimensional and the units simplify to the desired unit. 

Figure 1 shows the correlation of 2284 experimental points 

with the obtained Equation (17) to solve problems type III 

(Determining the pipe diameter) in logarithmic coordinates,  

 

 
 

Figure 1. Correlation of 2284 experimental points with the 

Equation (17) 

 

 
 

Figure 2. Correlation enter adimensional Reynold’s number 

and medium error obtained with the uses of Equation (16) 

 

In the figure 2 is shown the correlation between 

dimensionless Reynold’s number and the medium error 

obtained when using Equation (16) was made a comment 

beforehand about the divergence among these models is little, 

but the question arises as to which of these models best 

represents the experimental data that originated or was used for 

its validation. 

The calculation of the relative error when validating 

Swamee -Jain's Equation (14) is shown in figure 3. The 
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analysis made to this Equation evidences a maximum error 

equal to 3,8 %, while experimental available data correlate 

with a %8.2  in 82.4 % of the experimental points.  

The calculation of the error relative when validating 

Equation (17) is shown in figure 4. The analysis made to this 

Equation evidences a maximum error equal to 3.92 % , while 

experimental available data correlate with a %5.2  in 88,1 % 

of the experimental points. It can be verified that the Equation 

(17) provides results that are closer to the available 

experimental data, so it is considered to be more accurate, 

besides having a more specific field. 

 

 
 

Figure 3. Correlation of experimental data with Swamee-Jain 

Equation (14) 

 

 
 

Figure 4. Correlation of experimental data with Equation 

(17) 

 

By the results obtained, the Equation (17) shows with an 

average error value of the order of 2,5%, which is lower than 

the 2,8% error obtained by using Equation (14). Another aspect 

of interest is the fact that the experimental data used in the 

validation of the models fit better to Equation (17) than to 

expression (14), these reasons are solid elements by which the 

authors of this article recommend the expression (17) for the 

evaluation of piping systems, considering it accurate and 

reliable. 

 

 

4. CONCLUSIONS 

 

An explicit model was obtained to determine the diameter 

of a duct, using a regression, with the best possible adjustment 

to the experimental data that gave rise to it and better than the 

best recognized model, the Swamee - Jain Equation. The new 

Equation obtained allows to reach a greater precision, 

facilitates the engineering calculations, besides extending the 

domain of applicability of the same ones to possess a zone of 

validation more extensive, so that its work is recommended in 

process of engineering calculations. 

The mathematical performance of the explicit proposed 

model is: 

 
1,0

08,2

08,2

76,34,09,1

8,3

6,7 13,011,0






































p

L

g

w

p

L

g

ew
d


 

 

Validate for 83 102,3Re103   and 61005,0  de  
The analysis made to this Equation evidences a maximum 

error equal to 3,92 % , while experimental available data 

correlate with a %5,2  in 88,1 % of the experimental points. 

It can be verified that the Equation (8) provides results that are 

closer to the available experimental data, so it is considered to 

be more accurate, besides having a more specific field. 
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