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ABSTRACT  

 

In this work, the Fourier sine transform method has been applied to solve the flexural problem of rectangular 

Kirchhoff plates resting on Winkler foundations for the case of simply supported edges and transverse 

distributed loads. The Fourier sine transformation was applied to the governing partial differential equation, 

and the boundary value problem simplified to an algebraic problem. By inversion, solutions were obtained 

for the general case of arbitrary distributed load and for particular cases of point load, patch load, sinusoidal 

load, uniform load and linearly distributed loads. It was found that the solutions obtained were exact 

solutions, and were exactly identical with the solutions obtained in literature using Navier’s double 

trigonometric series methods. The effectiveness of the Fourier sine transform method was thus illustrated. 

 

Keywords: Finite Fourier Sine Transform Method, Kirchhoff Plate, Winkler Foundation, 

Navier’S Double Trigonometric Series Method, Boundary Value Problem. 

 

 
1. INTRODUCTION 

 

Flexural problems of plates resting on elastic foundations 

and carrying transverse distributed loads are common in 

geotechnical and structural engineering. They are encountered 

in the analysis of foundation structures such as column 

footings, combined footings, and plate or raft foundations. 

They are also encountered in problems of structural analysis 

that are described by mathematical equations that are 

analogues of the fourth order partial differential equation of 

the Kirchhoff plate on Winkler foundation problem. Such 

problems of soil structure interaction are described by 

incorporating the soil interaction/reaction model into the 

governing equations of the plate structure in a variational 

formulation or equilibrium formulation. 

Many theories exist for the description of the flexural 

behaviour of plates. They include: Lagrange plate theory, 

Germain theory, Kirchhoff plate theory, Love plate theory, 

von Karman theory, Reissner [1, 2] plate theory, Mindlin [3] 

plate theory, Shimpi [4] refined plate theory, Reddy [5] plate 

theory and other variants of the refined plate theories and shear 

deformation plate theories. Kirchhoff’s plate theory, otherwise 

called the classical thin plate theory or the Kirchhoff – Love 

plate theory is adopted in this paper. The theory is ideally 

suitable for thin plate for which the thickness h to least 

governing span a ratio is less than 1/20. 

The fundamental hypothesis of the theory are: 

(i)Straight lines that are normal to the middle surface of the 

plate before bending remain straight after bending deformation. 

(ii)Straight lines normal to the plate middle surface before 

flexural deformation remain normal to the middle surface after 

flexural deformation. 

(iii)The thickness of the plate does not change during 

bending deformation. 

The Kirchhoff plate theory is a two dimensional 

approximation of the classical mathematical theory of 

elasticity in three dimensional space applied to the problem of 

plates in order to determine the stress and displacement fields 

in the plate, considered thin, and subjected to forces and 

moments under different restraint conditions. It can be 

considered a two dimensional extension of the one 

dimensional Euler – Bernoulli beam theory. It assumes that a 

middle plane surface assumed neutral during flexural 

deformations can be used to represent a three dimensional 

plate in two dimensional domain [6]. The obvious advantages 

of the Kirchhoff plate theory are: 

(i)The three dimensional problem of plate is simplified by 

reduction to a two dimensional problem. 

(ii)The bending and stretching behavious are uncoupled. 

(iii)The linearity property of the governing partial 

differential equation, renders the equations solvable within the 

plate domain using techniques for solving linear partial 

differential equations. 

(iv)Stresses can be found from the displacements using the 

stress displacement relations. 

(v)It is commonly applied to plate problems that are 

classified as thin. 

The most significant defect of the theory is the disregard of 

the transverse shear deformation and its inability to correctly 
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analyse plate bending problems in which transverse shear 

deformation plays a significant role. 

The interaction of the soil on the interfacing foundation 

structure, is represented by the soil reactive pressure 

distribution [7]. Many mathematical expressions exist for 

describing the soil interaction on the interfacing foundation 

structure. The elastic foundation models are broadly 

categorized as discrete foundation models, simplified elastic 

continuum models, and elastic continuum models [8, 9]. 

In discrete parameter models, the elastic foundation, which 

is a continuous body is discretized and replaced with a set of 

closely spaced, individual elastic springs that may or may not 

be connected or coupled to one another. 

In continuum models, the mathematical theory of elasticity 

in three dimensional space variable is used as an analytical and 

theoretical framework to determine complex analytical 

expressions that describe the soil reactions on the interfacing 

foundation structure. Simplified elastic continuum foundation 

models are simplifications of the rigorous theory of elasticity 

formulation for the soil reactions; obtained by the use of 

simplifying assumptions in respect of stresses or deformations. 

Discrete parameter foundation models include: 

(i)Winkler [10] foundation model. 

(ii)Pasternak [11] foundation model. 

(iii)Filonenko – Borodich [12] foundation model. 

(iv)Hetenyi [13] model. 

(v)Generalized two parameter foundation model. 

(vi)Generalized n parameter foundation model. 

The simplest soil structure interaction model is provided by 

the classical Winkler foundation, which idealises the 

foundation using a mechanical analogy made of a single bed 

of closely spaced, independent vertical elastic springs, that do 

not interact with one another. In the Winkler foundation model, 

the soil reaction on the plate soil – interface is directly 

proportional to the deformation of the plate at that point. This 

yields the mathematical idealization 

 

( , ) ( , )sp x y k w x y  (1) 

 

where p(x, y) is the soil reactive pressure distribution at an 

arbitrary point (x, y) on the plate – soil interface area, w(x, y) 

is the corresponding vertical deformation and ks is a 

proportionality constant, representing the contact pressure per 

unit deformation. ks is commonly called the Winkler 

coefficient or coefficient of subgrade modulus. In the Winkler 

model also called, a one parameter model, ks is the only 

foundation parameter characterising the elastic response of the 

soil. Winkler foundation model suffers the defect of 

discontinuity of deformation at the edges of the plate, since 

there occurs only vertical deformation of only those springs 

that are located under the loaded plate. 

Another shortcoming of the Winkler foundation model is 

that the vertical deformation at any point is independent of the 

vertical deformation of other adjoining points, in contradiction 

to the theory of elasticity. These shortcomings have resulted in 

the development of other discrete parameter models, which 

account for shear interaction [11]. However, the simple nature 

of the Winkler model equation and its extensive use has 

ensured its widespread usage till today. 

The Filonenko – Borodich, Pasternak and generalised two 

parameter foundation models are discrete parameter 

foundation models where the soil reaction pressure p(x, y) is 

given in general by [11. 12]: 

 

2
1 2( , ) ( , ) ( , )p x y k w x y k w x y    (2) 

 

where k1 and k2 are the two discrete parameters of the model, 

and 2 is the Laplacian operator in two dimensional Cartesian 

coordinates, given by: 

 
2 2

2
2 2x y

 
  

 
 (3) 

 

In the Kerr model, a shear layer is introduced in the 

conventional Winkler bed of elastic springs. The shear layer 

separates the elastic bed into two different beds characterized 

by two different spring constants; k1 for the first layer 

interfacing the plate and k2 for the second layer that is in 

contact with a rigid base. The governing equation for the Kerr 

[14] formulation model is given by the differential equation: 

 

2 22
2

1 1

1
k G

p p k w G w
k k

 
      

 
 (4) 

 

where k1 is the spring constant of the first bed of springs, k2 the 

spring constant of the second bed of elastic springs, G the 

shear modulus of the shear layer which separates the first and 

second layers and w(x, y) is the deflection of the first layer. 

 

Research aim and objectives 

 

The aim of this research is to use the finite Fourier sine 

transform method to solve the problem of flexure of simply 

supported Kirchhoff plate resting on Winkler foundation. The 

specific objectives are: 

(i)to apply the Fourier sine transform method to obtain the 

general solution to the flexural problem of simply supported 

Kirchhoff plate resting on Winkler foundation for the case of 

general distributed transverse load. 

(ii)to transform the boundary value problem of Kirchhoff 

plate on Winkler foundation under arbitrary distribution of 

transverse load to an algebraic problem using Fourier sine 

transformation. 

(iii)to solve the resulting algebraic equation to obtain 

solutions for the general case of distributed transverse load on 

the Kirchhoff plate on Winkler foundation. 

(iv)to obtain solutions for the flexural problem of Kirchhoff 

plate on Winkler foundation for particular types of transverse 

load, namely:  

(a) point load applied at a known point (x0, y0) on the plate 

region. 

(b)bisinusoidal distribution of load over the entire plate 

region. 

(c)uniformly distributed transverse load on the entire plate 

region and 

(d)linearly distributed transverse load over the entire plate 

region. 

 

Theoretical framework/governing equation 

 

A rectangular Kirchhoff plate of length a and width b 

resting on a Winkler foundation as shown in Figure 1, was 

considered in this study. 
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Figure 1. Rectangular Kirchhoff plate on Winkler foundation 

under arbitrary (general) load distribution 

 

The boundary value problem at the Kirchhoff plate on 

Winkler foundation is given by the fourth order partial 

differential equation: 

 
4 ( , ) ( , ) ( , )D w x y kw x y q x y    (5) 

 

or
4 k q
w w

D D
    (6) 

 

for 0 x a  0 y b   

where 

3

212 1( )

Eh
D 

 
 (7) 

 
4 4 4

4 2 2
4 2 2 4

2
x x y y

  
      

   
 (8) 

 

D is the flexural rigidity of the plate material, E is the 

Young’s modulus of elasticity,  is the Poisson’s ratio, h is the 

plate thickness, k is the Winkler modulus of soil reaction, w(x, 

y) is the transverse deflection of the plate’s middle surface, q(x, 

y) is the distributed transverse load, and x and y are the inplane 

Cartesian coordinate variables.  

For the case of Kirchhoff plate on Winkler foundation with 

simply supported edges at x = 0, x = a, y = 0, y = b, the 

geometric and force boundary conditions are: 

at x = 0, x = a, 

 

0 0( , ) ( , )w x y w x a y     (9) 

 
2 2

2 2
0 0( , ) ( , )

w w
x y x a y

x x

 
   

 
 (10) 

 

at y = 0, y = b, 

0 0( , ) ( , )w x y w x y b     (11) 

2 2

2 2
0 0( , ) ( , )

w w
x y x y b

y y

 
   

 
 (12) 

 

 

METHODOLOGY 

 

The finite Fourier sine transform method is an integral 

transformation technique for solving boundary value problems 

(BVP) of mathematical physics, introduced by Doetsch [15]. 

The method has been subsequently further developed by 

Kneitz [16], Strandhagen [17], Roettinger [18] and Brown [19]. 

The general principle of the method is to seek to simplify the 

BVP by elimination of partial derivatives with respect to the 

independent variables, thus yielding simplifications to the 

original problem. Thus partial differential equation (PDEs) 

expressed in terms of two independent coordinate variables are 

transformed by application of single finite Fourier sine 

transformation to ordinary differential equations (ODEs) and 

to algebraic equations by use of double finite Fourier sine 

transformation. Similarly, ODEs are transformed by single 

finite Fourier sine transform method to algebraic equations. 

The finite Fourier sine transform of a function w(x) of the 

independent variable x is defined as the integral transformation: 

0

( ( )) ( )sin

l

m

m x
S S w x w x dx

l


    (13) 

where m = 1, 2, 3, … ;  0  x  l. 

The finite Fourier sine transform of the derivatives of w(x) 

are obtained using the technique of integration by parts, in 

terms of the finite Fourier sine transform of the function w(x). 

Similarly, for a function w(x, y) of two independent variables 

x and y, the finite Fourier sine transform, also called the double 

finite Fourier sine transform is defined by the integral 

transformation. 

 

0 0

( ( , ) ( , ) ( , )sin sin

b a

mn

m x n y
S S w x y W m n w x y dxdy

a b

 
   

 (14) 

 

where m = 1, 2, 3, 4, …;   n = 1, 2, 3, 4, …;  0  x  a;  0  y  

b 

The kernel K(m, n) of the Fourier sine transformation is given 

by: 

 

( , ) sin sin
m x n y

K m n
a b

 
  (15) 

 

By inversion, the unknown function w(x, y) is recovered 

from the transform along the inversion formula: 

 

1 1

4
( , ) ( , )sin sin ,

m n

m x n y
w x y W m n

ab a b

 

 

 
      m = 

1, 2, 3, 4, …;   n = 1, 2, 3, 4, … (16)   

 

For BVP with Drichlet boundary conditions, the finite 

Fourier sine transforms of the partial derivatives of w(x, y) 

with respect to x and y; as well as the mixed partial derivatives 

of w(x, y) are found using integration by parts technique. 

Thus, 

4 4

4 4

0 0

( , ) ( , )sin sin

b a
w m x n y

x y w x y dxdy
a bx x

   


  
 (17) 

 

     
4 34

04

0 0 0

1( , )sin sin ( ) sin

b a b

m
x a x

w m m x n y m n y
w x y dxdy w w dy

a a b a bx
 

     
   

  
 

   
42 2

2 2
0

0

1( ) sin ( , )

b

m

x a x

m w w n y m
dy W m n

a b ax x 

     
    

  
 (18) 
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Since we have Drichlet boundary conditions for simply 

supported Kirchhoff plate on Winkler foundation. 

Similarly, 

 

4 4

2 2 2 2

0 0

( , )
( , )sin sin

b a
w x y m x n y

w x y dxdy
a bx y x y

   


    
 (19) 

 

   
2 24

2 2

0 0

( , )
( , )sin sin

b a
w x y m n m x n y

w x y dxdy
a b a bx y

    


  
 (20) 

 

   
2 24

2 2

( , )
( , )

w x y m n
W m n

a bx y

  


 
 (21) 

 

 

RESULTS 

 

Application of the finite Fourier sine transform to the BVP, 

Equation (5) yields: 

 


4 4 4

4 2 2 4

0 0 0 0

2
( , )

sin sin sin sin

b a b a
w w w k m x n y q x y m x n y

w dxdy dxdy
D a b D a bx x y y

       
    

     
 (22) 

 

We employ the linearity property of the finite Fourier sine 

transform to obtain 

 
4 4 4

4 2 2 4

0 0 0 0 0 0

2sin sin sin sin sin sin

b a b a b a
w m x n y w m x n y w m x n y

dxdy dxdy dxdy
a b a b a bx x y y

        
 

     
   

0 0 0 0

( , )
( , )sin sin sin sin

b a b a
k m x n y q x y m x n y

w x y dxdy dxdy
D a b D a b

   
    

 (23) 

 

Simplifying, 

 

       
4 2 2 4

2
( , )

( , ) ( , ) ( , ) ( , )
m m n n k q m n

W m n W m n W m n W m n
a a b b D D

   
   

 (24) 

 

where W(mn) is given by Equation (14); and is the finite 

Fourier sine transform of the unknown function w(x, y); q(mn) 

is the finite Fourier sine transform of the distributed transverse 

load, and is given by: 

 

0 0

( , ) ( , )sin sin

b a
m x n y

q m n q x y dxdy
a b

 
    (25) 

 

Solving, 

 

   
22 2

( , )
( , )

m n k q m n
W m n

a b D D

  
   
  

 (26) 

 

Thus, 

 

   
22 2

/( , )
( , )

q m n D
W m n

m n k

a b D


  

  
 

 (27) 

 

   
22 2

( , )
( , )

q m n
W m n

m n k
D

a b D


   
   
  

 (28) 

 

By inversion of the finite Fourier sine transform, the 

unknown deflection is obtained as follows: 

 

   
22 2

4
( , )sin sin

( , )

m n

m x n y
q m n

a bw x y
ab m n k

D
a b D

 
 


   
   
  


 (29) 

where m = 1, 2, 3, 4, …;   n = 1, 2, 3, 4, …. 

 

Bending moment distributions 

 

The bending moment distributions Mxx, Myy are obtained 

using the bending moment deflection equations. Thus, 

 
2 2

2 2xx

w w
M D

x y

  
    

  
 (30) 

 
2 2

2 2yy

w w
M D

y x

  
    

  
 (31) 

 
2

1( )xy

w
M D

x y


   

 
 (32) 

 

By differentiation of Equation (29) and substitution into 

Equations (30 – 32), we obtain: 

 

   

   

2 2

22 2

4
( , )sin sin

xx

m n

m n m x n y
q m n

a b a bM
ab m n k

a b D

 
    

  
 

  
  

 


 (33) 

   

   

2 2

22 2

4
( , )sin sin

yy

m n

n m m x n y
q m n

b a a bM
ab m n k

a b D

 
    

  
 

  
  

 


 (34) 

 

 

   
22 2

4
1

sin sin

( )
mn

xy

m n

m n m x n y
q

a b a bM
ab m n k

a b D

 
   


  

   
   
  


 (35) 

 

Finite Fourier sine transform solution for point load P1 at 

(x1, y1) (0  x1  a, 0  y1  b) 

 

The flexural behaviour of Kirchhoff plate on elastic 

foundation under point load P1 acting at a point (x1, y1) on the 

plate region is obtained  using Dirac delta function theory in 

the general solutions obtained to have:  

 

1 1 1

0 0

4
( , ) ( , )sin sin

b a
m x n y

q m n P x x y y dxdy
ab a b

 
   

 (36) 
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1 1 14
( , ) sin sin

P m x n y
q m n

ab a b

 
  (37) 

 

   

1 1

1
22 2

4
sin sin sin sin

( , )

m n

m x n y m x n y

P a b a bw x y
ab D m n k

a b D

 
   


   
   
  


  (38) 

 

   

   

2 2
1 1

1
22 2

4
sin sin sin sin

xx

m n

m x n ym n m x n y

P a b a b a bM
ab m n k

a b D

 
      

  
 

   
   
  


 (39) 

 

   

   

2 2
1 1

1
22 2

4
sin sin sin sin

yy

m n

m x n yn m m x n y

P b a a b a bM
ab m n k

a b D

 
     

  
 

  
  

 


 (40) 

where m = 1,  3, 5, 7, …;   n = 1, 3, 5,7, …. 

 

For a point load P1 acting at the centre of the Kirchhoff plate 

on Winkler foundation x1 = a/2, y1 = b/2, and the maximum 

deflection and bending moments would occur at the plate 

centre, and are obtained as follows: 

 

   

2 2

1
22 2

4 2 2
max

sin sin

c

m n

m n

P
w w

ab D m n k

a b D

 
 

 
  

  
 

  (41) 

 

   

   

2 2
2 2

1
22 2

4 2 2
max

sin sin

xx

m n

m n m n

P a bM
ab m n k

a b D

 
    

  
 

  
  

 


 (42) 

 

   

   

2 2
2 2

1
22 2

4 2 2
max

sin sin

yy

m n

n m m n

P b aM
ab m n k

a b D

 
    

  
 

  
  

 


 (43) 

 

For simply supported square Kirchhoff plate resting on 

Winkler foundation under point load P1 applied at the plate 

centre, a = b, and the maximum deflection and bending 

moments occur at the centre and are obtained as follows: 
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a a
M M M   (46) 

where m = 1,  3, 5, 7, …;   n = 1, 3, 5,7, …. 

 

Finite Fourier sine transform solution for transverse 

sinusoidal load 1

 
( , )= sin sin

x y
q x y q

a b
 

Here, 
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where m = 1, n = 1. 

0( , )q m n   if 1 1,m n  (50) 

Then, 
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The maximum values of deflection and bending moments 

are found at the plate centre(s) as follows: 
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For simply supported plates on Winkler foundations, a = b, 

and we obtain the deflections and bending moments as follows: 
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Similarly, the finite Fourier sine transform solutions for 

bending moment expressions for simply supported square 

Kirchhoff plates on Winkler foundations are obtained for 

sinusoidal transverse load as: 
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The twisting moment is obtained for rectangular thin plate 

on Winkler foundation as: 
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For square plates, 

 

2
1

2 2
4

2

1

2

cos cos
( )

xy

x y

q a aM
a k

Da

 

   


  
    
   

 (70) 

 

2 2
1

4
4

1

4

( ) cos cos

xy

x y
q a

a aM
ka

D

 
   



 

 (71) 

 

The maximum twisting moment is obtained at x = 0, y = 0, 

and is given by: 
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Finite Fourier sine transform solutions for uniformly 

distributed load q(x, y) = q0 

 

For uniformly distributed load over the entire plate surface, 
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Then, the deflections and bending moment expressions 

become: 

 

   

0
2

22 2

4

4
sin sin

( , )

m n

q ab m x n y

a bmnw x y
ab m n k

D
a b D

 
 


   
   
  

 (75) 

 

   
0

2 22 2
4

16
sin sin

( , )

m n

m x n y

q a bw x y
D m n k

mn
a b D

 
 


   
    
   

  (76) 

1 3 5 7 1 3 5 7, , , ...; , , , ...m n   

 

   

   

2 2

0
2 22 2

16
sin sin

xx

m n

m n m x n y

q a b a bM

m n k
mn

a b D

 
    

  
 

    
   
  


 (77) 

 

   

   

2 2

0
2 22 2

16
sin sin

yy

m n

n m m x n y

q b a a bM

m n k
mn

a b D

 
    

  
 

    
   
  


 (78) 

 

The maximum deflection and bending moment, expectedly 

are found at the centre, as: 
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where r = a/b, r is the plate aspect ratio. 

Similarly, 
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For simply supported square Kirchhoff plate on Winkler 

foundation, 
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The twisting moments Mxy are obtained as: 
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For square plates, r = 1, 
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Finite Fourier Sine Transform Solutions for Linearly 

Distributed Load /( , ) q x y q x a0  
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For linearly distributed load over the entire plate surface, 
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The deflection field (function) becomes: 
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At the plate centre, x = a/2, y = b/2, 
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The bending moments are obtained from the bending 

moment curvature (bending moment displacement) relations 

as: 
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Bending moments at the plate centre are given by: 
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For square Kirchhoff plates on Winkler foundation, r = 1, 

and 
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The Finite Fourier sine transform solutions for the 

maximum deflection and maximum bending moments which 

occur at the plate centre (x = a/2, y = b/2) for square simply 

supported Kirchhoff plates resting on Winkler foundations for 

values of the dimensionless Winkler parameter 
4 1 4/ /( )K ka D  where K = 0, K = 1, K = 3, and K = 5 were 

determined and presented in Table 1 for the case of uniformly 

distributed transverse load of intensity q0 over the plate region. 

Similarly, the finite Fourier sine transform solutions for the 

maximum deflection and bending moments for square simply 

supported Kirchhoff plates resting on Winkler foundations for 

values of the dimensionless Winkler parameter K given by K 

= 0, K = 1, K = 3, K = 5 and K = 7 for the case of sinusoidal 

load distribution over the plate domain were computed and 

shown in Table 2. 

 

Table 1. Finite Fourier sine transform solutions for maximum deflection and bending moments for simply supported square 

Kirchhoff plate on Winkler foundation under uniform load,  = 0.30 

 

K K2 
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2 210( )xxM qa  

2 210( )yyM qa  
2 210( )xyM qa  

0 0 4.062 4.790 4.790  

1 1 4.053 4.809 4.809 2.943 

3 81 3.348 3.910 3910 2.456 

5 625 1.507 1.575 1.575 1.181 

 

Table 2. Finite Fourier sine transform solutions for maximum deflection and bending moments in simply supported square 

Kirchhoff plate on Winkler foundation under transverse sinusoidal load 0 / /( , ) sin sinq x y q x a y b     ( = 0.30) 
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2 210( )xxM qa  

2 210( )yyM qa  
2 210( )xyM qa  

0 0 2.566495 3.29294 3.29294 1.797 

1 1 2.559925 3.28451 3.28451 1.792 

3 81 2.124782 2.7262 2.7262 1.487 

5 625 0.985574 1.26454 1.26454 0.06899 

7 240 0.358341 0.45977 0.45977 0.025084 

 

 

DISCUSSION 

 

The finite Fourier sine transform method has been 

successfully implemented in this work to solve the flexural 

problems of simply supported rectangular Kirchhoff plates 

resting on Winkler foundations where the plate is under 

transverse distributed loads. The problem was presented as a 

boundary value problem involving the fourth order partial 

differential equation given as Equation (5) subject to the 

boundary conditions in Equations (9 – 12). Application of the 

finite Fourier sine transformation to the boundary value 

problem for the general case of arbitrary distribution of load 

yielded the solution for the deflection in the transform space 

as Equation (28). By inversion, the unknown deflection was 

obtained for any distribution of load as Equation (29). Bending 

and twisting moments were obtained using the moment 
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displacement or moment curvature relations as Equation (33 – 

35). 

Particular cases of transverse loads were considered, and 

solved for. The solutions for deflections and bending moments 

for the case of point load applied at any point on the plate 

domain were found as Equations (38 – 40). It was observed 

that maximum deflections and bending moments occur at the 

plate centre for the case of point load applied at the centre, and 

their values were obtained as Equations (41 – 43) for 

rectangular plates, and Equation (44 – 46) for square plates on 

Winkler foundations.  

The solutions for rectangular Kirchhoff plate an Winkler 

foundation under sinusoidal load were found as Equation (52 

– 54). The maximum values of the deflection and bending 

moments were found to occur at the plate centre, and were 

found as Equations (55 – 57) for rectangular plates and 

Equations (61), and (67) for square plate on Winkler 

foundation. Twisting moment expressions were found for 

rectangular plate as Equation (69) and Equation (71) for square 

thin plate on Winkler foundation. The maximum twisting 

moment was found at a corner of the plate as Equation (72). 

The solutions for uniform transverse load over the entire 

plate domain were obtained as Equation (76 – 78). The 

maximum deflection and bending moments were found to 

occur at the plate centre and were determined as Equation (79 

– 82) for rectangular plates, and Equation (83) and (84) for 

square Kirchhoff plate on Winkler foundation. The twisting 

moment for uniform load was found as Equation (85) and 

Equation (86) for square Kirchhoff plate on Winkler 

foundation. 

The solutions for linearly distributed load were obtained as 

Equations (90), (92) and (93). Expressions for the deflection 

and bending moments at the plate centre were found, in this 

case, as Equations (91), (94) and (95) for rectangular plates, 

and Equation (96 – 98) for square plates on Winkler 

foundations. For the case of linearly distributed load on the 

plate, the maximum values of deflection and bending moments 

may not occur at the plate centre due to the non-symmetrical 

load distribution with respect to the plate centre. 

The finite Fourier sine transform solutions obtained for 

simply supported square Kirchhoff plate on Winkler 

foundation for the case of uniformly distributed transverse 

load which is shown in Table 1 for various values of the 

dimensionless Winkler parameter K, show that the maximum 

deflections and bending and twisting moments at the plate 

centre decrease as the elastic stiffness of the Winkler 

foundation, characterised by the dimensionless Winkler 

parameter K increases. Similarly, Table 2 shows that the 

maximum deflection, bending and twisting moments at the 

plate centre reduce with increase in the dimensionless Winkler 

parameter K. 

It is further observed that the solutions obtained in all cases 

of load considered in this study were double sine series of 

infinite terms. The double sine series for deflections were 

rapidly convergent for sinusoidal, uniform and linearly 

distributed loads, but less rapidly convergent for point load. 

The series for bending moments were less rapidly convergent 

even for sinusoidal, uniform and linearly distributed loads. 

The rapidly convergent properties of the double series 

obtained for the deflections for distributed loads ensured that 

reasonably accurate results were obtained using a few terms of 

the double series for the deflections. More terms of the series 

for bending moments were needed for satisfactory convergent 

results. 

It is further observed that the finite Fourier sine transform 

solutions obtained in this work for simply supported Kirchhoff 

plates on Winkler foundations gave analytical closed form 

solutions which were exactly the same as solutions obtained 

using a Navier double trigonometric series technique for the 

problem. 

 

 

CONCLUSIONS 

 

The following conclusions can be made from this study: 

(i)The finite Fourier sine transform method transforms the 

boundary value problem (BVP) of the flexure of simply 

supported Kirchhoff plate resting on Winkler foundation and 

carrying transverse loads to an algebraic equation in terms of 

the transform variables m, n. 

(ii)The finite Fourier sine transform transforms the 

boundary value problem of bending of simply supported 

Kirchhoff plate on Winkler foundation for the case of any load 

to an algebraic problem in the transform space variables. 

(iii)The finite Fourier sine transform method yielded 

mathematically closed form solutions for the deflection, 

bending and twisting moments for the rectangular Kirchhoff 

plate on Winkler foundation with simply supported edges, and 

under transverse distributed load. 

(iv)The analytical closed form solutions obtained using the 

method were exact solutions within the scope, limitations and 

fundamental assumptions of the classical Kirchhoff’s small 

deformation thin plate theory and the Winkler foundation 

model used in formulating the BVP. 

(v)The finite Fourier sine transform solutions are exactly 

identical with the solutions obtained using Navier’s 

trigonometric series technique for the same problem. 

(vi)The Winkler foundation has the effect of reducing the 

maximum deflections and bending moments at the centre of 

the plate for loads distributed symmetrically about the plate 

centre. 

(vii)The Dirichilet boundary conditions associated with 

simply supported edges x = 0, x = a,  y = 0, y = b greatly 

simplified the applications of the finite Fourier sine 

transformation of the BVP. 

(viii)Convergence of the double sine series expressions 

obtained for displacements were more rapid than those 

obtained for the bending and twisting moments. 

(ix)Convergence of the double sine series expressions 

obtained for the case of point load on the plate was very slow 

due to the singularity property of the point load and its 

representation using many terms of the finite Fourier sine 

transformation. 
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