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Over the decades, autonomous vehicles have been developed and qualified using variant 

single-core architectures. With the evolutionary trend of safety critical applications, 

innovative safety design methodologies have raised present requirements constraints and 

limitations to mitigate such design complexity deviations. The main objectives of this 

work are to investigate, evaluate and introduce an efficient safety-critical multi-cache 

multicore architecture, that is fully compliant with methods and principles of ISO 26262. 

Moreover, this paper presents new safety design choices applied to timing monitoring, 

temporal protection, runtime monitoring and services protection to overcome multicore 

processor challenges in runtime that eventually decay the worst case execution time and 

the interconnections (symmetric and asymmetric processors, critical timing, data 

coherency and synchronization predictability, core interconnects, etc.), as well as to 

tolerate real-time interference faults. 
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1. INTRODUCTION

The decay of the semiconductor scaling [1] during the past 

decade marked the end of the gigahertz era, whereas the 

current shift rises towards multicore designs due to their more 

favorable performance-power ratio [2]. Moreover, there is no 

need to have a higher clock speed, as discussed in the research 

[3]. Optimizing inter-core resource sharing distributed among 

software application components, presented by Schliecker et 

al. [4], minimizes the computing power by avoiding 

concurrent accesses of wait-states to the shared resources with 

the expense of independent data processing and parallelization 

losses [5]. Thus, system architectures experiencing high-

performance data processing and computation have been 

trending to be real-time mixed-criticality multicore processor 

platforms, as interpreted in Figure 1. 

Figure 1. Multicore architecture block diagram 

These platforms target complex automotive applications 

such as Advanced Driver Assistance Systems (ADASs), which 

target reliable recognition of moving objects to provide 

decision-making algorithms. Autonomous driving imposes 

significant challenges at various levels as it mostly depends on 

technology fusion of one or more of the following: radar, high-

resolution camera, laser, and Light Detection and Ranging 

(LiDAR), examined in the studies [6, 7]. Software applications 

run with different criticality such as scheduling, sharing 

computation, communication delays, communication links, 

and communication resources. These issues become 

challenges at an operating system (OS) level in today’s 

multicore environments [8, 9]. 

Autonomous driving is both a rapidly advancing technology 

as it will ensure a better future with increased safety on the 

roads, and a subject of controversy due to automotive hacking 

incidents, and the risks of fatal crashes. There are 5 levels of 

autonomous driving [8], developed by the Society of 

Automotive Engineers (SAE), spanning from driver assistance 

to fully autonomous cars without considering the level zero 

that correlates to having no automation and instead complete 

human control of the vehicle.  

In level 1 which named as driver assistance, It ś a fail-safe 

system where the vehicle manages to detect the fault, but a 

human driver is responsible for all tasks associated with 

operating the car and to react to such a fault (i.e. normally 

stopping the operation). There is a driving automation system 

in the car that helps with either steering or accelerating, but not 

both.  

In level 2 which named as partial automation, the 

automation system in the car can assist with both steering and 

acceleration, while the driver is still responsible for most of 

the safety-critical functions and environment monitoring. 

Currently, the level 2 autonomous vehicles are by far the most 
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common on the roads. 

In level 3 which named as conditional automation, the car 

itself monitors the environment by utilizing autonomous 

vehicle sensors and performs other dynamic driving tasks, 

such as braking. It can also react partially to the undesirable 

event, by operating in a degraded mode with the help of the 

safety mechanisms. The human driver must be prepared to 

intervene if a system failure occurs or other unexpected 

conditions arise while driving. 

In level 4 which named as high automation, it is a fail 

operation where it correlates to a high level of automation. The 

car can complete an entire journey without any intervention 

from the driver and react to all hazardous events due to the 

sufficient level of redundancy. However, there are some 

restrictions: the driver can switch the vehicle into this mode 

only when the system detects that the traffic conditions are 

safe and there are no traffic jams.  

Finally, in level 5 which named as full automation, 

automakers are striving to achieve this level where the driver 

simply specifies their destination, and the vehicle takes 

complete control and responsibility for all driving modes. 

Therefore, level 5 cars will have no provisions for any human 

control, such as steering wheels or pedals. 

One of the major metrics that certifies the project street 

allowance is the functional safety (i.e., catastrophic 

consequences absence that affect the user(s) and the 

environment). Usually, safety-critical functions are subject to 

timing requirements. The criticality concept controls and 

potentially impacts the functional safety, informally refers to 

the system application. A more formal definition of a 

criticality (level) illustrated in ISO 26262 [10] for road 

vehicles which defined the design and development processes 

for the safety-critical embedded system (hardware and 

software).  

The criticality level results from performing Failure Mode, 

Effect and Criticality Analysis (FMECA) process, discussed 

by Tobias [11] which requires: 

(1) Defining the functionality and failure modes, 

(2) analyzing failure causes and effects, 

(3) assigning severities to the failure modes according to the 

failure effects,  

(4) identifying the existing compensating provisions, and  

(5) assign criticality categories and recommendations.  

ISO 26262 regulates mixed safety-critical systems in both 

design and integration. Although, mixed functionalities are 

defined in both the spatial and temporal domains, the whole 

system is developed according to the highest level of criticality. 

By the time, the Automotive Safety Integrity Level (ASIL) 

of such systems raises. The main cause is that ASIL, resulted 

from the hazard analysis and risk assessment [12], illustrates 

the frequency and severity of a failure mode and assign the 

corresponding safety requirements to the probability of failure, 

architectures, and design processes. Meantime, the state-of-

the-art ADAS functionalities are usually Quality Management 

(QM) and subject to the driver control and responsibility. 

Wherefore, autonomous driving transfers this responsibility to 

complex ADAS multicore critical systems depending on the 

autonomy level that results in producing highly safety-critical 

functions with high-performance requirements, as they have 

been introduced in the literature [8, 13, 14]. Moreover, 

traditional safety-critical mechanical features, such as antilock 

braking, have moved towards new autonomous driving 

solutions, such as the electronic stability program with the help 

of networked layered architecture systems. Furthermore, 

customers (i.e. ultimately passengers) constantly demand for 

fully autonomous vehicles. 

AUTOSAR illustrated in Ref. [15] supports an abstracted 

layered architecture in a runtime environment that resolve the 

tremendous development efforts performed to provide a new 

software if a component has become obsolete or outdated. So, 

the number of different messages revealed from various 

communication types provided on automotive networks has 

grown much faster than the number of implemented functions. 

As a result, the software integration becomes more complex, 

in addition to having a huge increase in the consumed 

computing power. This pushes the processing performance to 

its limits. 

AUTOSAR and OSEK/VDX OS utilize allowing controlled 

communication between partitions and uses time division 

multiple access (TDMA) scheduling for fixed time 

partitioning, in preparation of achieving timing independence 

as in FlexRay communication protocol. This is mandated by 

ISO 26262 as in memory and time partitioned system. 

Moreover, ISO 26262 permits static priority scheduling (as in 

CAN communication protocol), with higher priorities 

assigned to multiple critical tasks, and without considering 

inversion effects [16].  

ISO 26262 guarantees Freedom from Interference (FFI) in 

which the separation mechanism must always adhere to the 

highest ASIL involved. The main goal is that a safety code 

execution cannot be corrupted by a non-safety code. This 

means assuring the critical signals flow through software 

components with being protecting from lower ASIL or QM 

interfering software components that would affect the data 

correctness. Software architectures including communication 

interfaces (i.e. FlexRay, CAN, LIN, Ethernet, I2C, SPI, etc.) 

must be developed accordingly. A disruptive challenge of 

functional safety reveals in the system efficiency in which 

there is a performance loss, at least for the critical tasks by 

going to a safe state (i.e. degraded mode) and aborting fault 

propagation in case of failure. By increasing multicore system 

dynamics complexity, TDMA scheduling limitations increase 

[17, 18]. 

Although multicore CPUs have huge potential to produce 

efficient and sophisticated functionalities with a high return of 

its investment, ISO 26262 implicates many architectural and 

design requirements to assure the system operates in safe state 

in a time less than fault time tolerant interval (FTTI) if 

erroneous values affects critical signals (even related to 

calibration data). There are means of FFI corruption methods 

affect the safety-related Software Components (SWCs) such 

as: information exchange interference, memory interference, 

real-time interference, and shared peripheral interference. 

Functional safety methods and mechanisms reduces the 

functional system efficiency especially if it is a multicore 

architecture. 

This work is unprecedented and sets the basis for future 

development and discussions. This paper presents optimized 

safety-related configuration, and enhanced safety mechanisms 

protection for complex multicore architectures to seize and 

react to real-time faults and to let the system behave in a safe 

way. This work is fully compliant with ISO 26262 methods for 

Aurix and Renesas multicore microcontrollers.  

The rest of the paper is organized as follows. In Section 2, 

functional safety constraints of multicore architectures metrics 

that mostly deteriorate the safety-related WCET are discussed. 

While Section 3 represents the analysis of freedom from real-

time interference challenges for runtime faults. Whereas 
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Section 3 illustrates the proposed software safety mechanisms 

for real-time cutting-edge challenges encountered in multicore 

processors with proposed software safety-related 

configuration. Meanwhile future work is delineated for a full 

research scope in Section 5. Finally, a conclusion is provided 

in Section 6. 

 

 

2. SAFETY-CRITICAL MULTICORE 

ARCHITECTURES CHALLENGES DESIGN AND 

ANALYSIS 
 

Multicore processors integrate independent cores into a 

single Integrated Circuit (IC) that runs at lower clock 

frequencies with a lower power consumption and a higher 

performance. This performance is not multiples of single-core 

processor performance due to the exhibition of the required 

parallelism needed, by extra software, to have concurrent 

running cores. In this section, safety-relevant design measures 

featured in variant multicore architectures are presented. 
 

2.1 Symmetric and asymmetric multi-processors 

challenges 
 

A multicore processor is defined as homogenous or 

heterogeneous (usage of non-identical cores). While 

symmetric multi-processors involve utilizing a single OS 

running across multicore processor to reduce the IC footprint. 

Limitation of either shared-memory performance, or core 

performance, or input/ output performance impact the 

symmetric multicore scalability. In symmetric multi-

processors, as shown in Figure 2(a), the OS kernel executes 

application processes and threads scheduling across multiple 

cores. Even though, an affinity OS as a safety mechanism ties 

these processes and threads to individual cores to enhance real-

time performance.  

On the contrary, number of cores in symmetric multi-

processors is limited to protect critical shared resources that 

ensure serialized access. Consequently, application 

performance of such processors is limited. Many independent 

applications that are running simultaneously on different cores 

may require an inter-partition communication (IPC) as a safety 

mechanism. However, exploiting symmetric multi-processors 

experiences losses in determination as the consumed time to 

access a shared critical resource is not predictable due to 

depending on an activity in another core that attempts to gain 

another access to a shared critical resource. Furthermore, there 

are execution timings variances among rescheduled tasks on 

the multicore due to caching and interconnection effects as 

represented in the state-of-the-art cache-interference 

management [3, 19-22]. 

Asymmetric multi-processors, symbolized in Figure 2(b), 

employ a hypervisor instead of a framework to implement 

control and inter-core communication. This offers more 

flexibility and control and a higher level of security. They are 

distinguished processors as they treat each core as an 

individual processing unit in a way to replicate instances of the 

same application and operate on separate data sets across the 

multicores. Wherefore, they permit more operating systems 

(i.e. real-time OS, Linux, etc.) to operate on variant cores. The 

running operating systems may propagate faults from a core to 

another as the individual cores uses L2 cache and memory 

buses to share critical hardware resources. Thereby, utilizing 

supervision or virtualization to the multicore architecture 

increases as a defensive safety mechanism so as not to violate 

a safety goal by preventing multicore applications from 

contending for shared critical resources to provide more 

isolation among running QM applications on a core, and 

running safety-critical applications on another core (i.e. 

software partitioning) [23].  

 

 

 
 

Figure 2. Multicore architecture configuration (a) Symmetric 

multi-processor (b) Asymmetric hypervisor multi-processor 

 

However, exploiting asymmetric multi-processor indices 

potential barriers due to the increased coupling among 

application on the multicores due to sharing critical resources, 

memory controllers, caches, and hardware peripherals. Thus, 

deadlocks could be produced. By using semaphores, spinlocks, 

to protect shared safety critical resources from QM SWCs as 

safety mechanisms, it resolves the challenge of either having 

many running applications at the same/ different criticality 

levels with adjusting the tasks properties as well. 

 

2.2 Timing challenges 

 

If a safety-related task misses its deadline, it means the 

system will not go to the safe state (i.e. a software reset). This 

leads to a safety goal violation. So, the task must terminate 

before it reaches its deadline [24] (e.g. its, Worst Case 

Execution Time, WCET). There are many challenges to 

measure the WCET. Firstly, the WCET can be blocked or 

preempted if the OS is multi-tasking. The term Worst Case 

Response Time (WCRT), which include the WCET in addition 

to preemption/ blockage time jitter, is more accurate to depend 

on. In practice, using non-preemptive scheduling for higher-

ASIL short tasks shall reduce latency of safety critical outputs. 

In addition, tasks with long WCET should be preemptive to 

reduce latency of critical outputs. 

Secondly, because of the processor caching and pipe-lining 

effects, the timing sequence of an instruction represents part 

of previously executed instructions. Abstract interpretation is 

one of the safest method, which is processed during either 

static testing or fault injection to check timing, infeasible paths 

and how instructions flows in pipelining with consideration of 

cache hit/miss [3] for safety-related tasks. It is based on a 

semantics procedure mapped to an abstracted model, which 

provide faster computation. Predicting timing of tasks allows 

abstract interpretation to measure the WCET and WCRT 

maximum execution time for critical tasks (without exceeding 

program execution time) if they are performed during system 
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scheduling analysis.  

Lastly, resource sharing by concurrent accesses among 

tasks on either the core level or the multi cores level make the 

corresponding WCET and WCRT become variable. This 

results from accesses to shared caches, shared flash memory 

pre-fetch buffers, or shared memory controllers. Highly 

recommended safest solutions are to configure the access 

rights of software components especially for safety-related 

tasks as in the Memory Protection Unit (MPU), also to activate 

the hardware safety mechanisms such as instruction caches, 

branch history table, out-of-order pipelining, or static/dynamic 

branch prediction. However, this could make the local WCET 

(revealed as cache miss) not to be part of critical global WCET. 

In other words, the WCET is significantly less than the cache 

hit due to scheduling effects of processor. Additionally, 

configuring the lock-step mode achieves a predictable 

performance. 

 

2.3 Predictability challenges 

 

As the WCET prediction is complex, queues, represented 

before the caches for buffering and neglecting cache misses, 

are a suitable safety mechanism for load/ store operations in 

multicore architectures. Queue inter-connections are based on 

faster data flow of concurrent accesses into cache lines that are 

requested by ongoing instructions, in which their data might 

be available in the same core or another one. Precise memory 

addresses requests decrease WCET measurements for multiple 

scenarios. Hence, efficient Transactions on the architecture 

bus are maintained. In particular, hardware mechanisms of 

branch prediction and history tables provide extra bits that 

increase memory consumption. 

There are many safe, precise and efficient queue predictable 

procedures target processor caches. The Least-Recently-Used 

(LRU) procedure depends on classifying memory read access. 

Less performed read accesses make LRU procedure more 

accurate in WCET determination than First-In-First-Out 

(FIFO) and Pseudo-LRU (PLRU) procedures. On the other 

side, there are two-write procedures. The first procedure is 

write-through, in which an operation storage is written in the 

memory hierarchy level. The second procedure is write-back 

which follows write-through procedure if the memory field is 

freed from the cache. Due to the cache analysis uncertainties, 

as well as, increasing the cache levels, the write-back 

procedure analysis becomes more difficult. 

In other words, FIFO is a queue with new elements are 

inserted at the front, while evicting elements are at the end of 

the queue. In contrast, LRU hits do not change the queue. Their 

implementations utilize a round-robin replacement counter for 

each set pointing to the cache line to replace next. This counter 

is increased if an element is inserted into a set, while a hit does 

not change this counter. Moreover, PLRU is a tree-based 

approximation of the LRU policy. It arranges ways in a tree 

bits pointing to the line to be replaced. It is much cheaper to 

implement than true LRU in terms of storage requirements and 

update logic which reduces predictability. PLRU also tracks 

invalid lines. On a cache miss, invalid lines are filled from left 

to right, ignoring the tree bits. The tree bits are still updated. 

The same predictability procedures are followed for 

external devices connected with the caches over the system 

bus. These devices as static/ dynamic memory controllers (or 

communication controllers. On the other hand, WCRT shall be 

set with other overheads for asynchronous events of program 

executions. This strategy is followed for safety-related 

interrupts, Direct-Memory-Access (DMA), Error Correcting 

Code (ECC) in Random Access Memory (RAM) and 

hardware exceptions. 

 

2.4 Core interconnect challenges 

 

Figure 1 shows a 4-core architecture block diagram similar 

to Intel Core I7 with some changes. It consists of four physical 

cores connected with high-speed communication path 

illustrated as Interconnect with a shared L3 cache (shared with 

all physical/logical cores) for high power and performance 

efficiencies. Each physical core has two logical cores and an 

individual L2 cache. For a faster simultaneous multi-threading 

OS, each logical core has its private instruction and data L1 

cache, as well as shared memory controllers placed among all 

physical cores. Moreover, there is no inherited timing 

interferences among the cores. Each core has redundant nine 

banks of five registers (control, status, address and error 

information registers) linked to hardware safety units. 

Therefore, the architecture includes a safe hardware error 

reporting mechanism for: uncorrected errors, uncorrected 

recoverable errors, and corrected errors. 

All cores are interconnected with buses, crossbars, meshes 

and typical routed communication structures. To have a 

coherent system, interconnect accesses require arbitration 

accesses from the other cores due to the utilized architecture 

memory hierarchy defined as (L1, L2 and L3) caches per each 

core. Furthermore, additional core communication is required, 

since the L1 cache data of a core may be old as this data is 

renewed either in the L1 cache of another core, or in the 

memory controller.  

A shared resource access causes variants interconnect 

traffic challenges that appear on the processor interconnection 

to process a single instruction. This traffic includes data traffic, 

cohesion traffic and eviction traffic. The first interconnect 

traffic challenge is a cacheable read access issued by one core. 

If there is a cache hit to another core, the cacheable read 

memory access produces a silent communication. While, if 

there is a cache miss to another core, it initiates a read request. 

Finally, it initiates a prime write access to evict the modified 

data from the cache.  

Meanwhile, the second interconnect traffic challenge is a 

write access to a cacheable memory area issued by one core. 

With the same methodology, if there is a cache hit to another 

core, the cacheable write access memory causes no traffic. 

While, if a cache hit occurs to update directories of other cores, 

it produces a coherency traffic. Moreover, if there is a cache 

miss, it initiates a read access. Finally, it initiates a prime write 

access to evict the modified data from the cache.  

Lockstep mode is a hardware safety mechanism represented 

in many microcontrollers (i.e. Aurix Tri-core and Renesas 

RH850). The lockstep mode includes two identical hardware 

cores that execute the same software code. A unique 

independent hardware comparator is placed to compare each 

core output. ISO 26262 assures the microcontroller goes to a 

safe state if the comparator result is false, without having an 

additional multicore software handling (i.e. no intention to 

increase computing power). As it eliminates all interferences 

within cores that execute the same set of instructions in 

parallel, it makes the processor behave like a single-core 

architecture. When all available safety and performance 

hardware mechanism are utilized, the resolved challenges of 

core interconnect make the resulted timing bounds reach an 

accurate WCET. 
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3. FREEDOM FROM REAL-TIME INTERFERENCE 

CHALLENGES IN MULTICORE ARCHITECTURES 

 

In mixed safety critical systems, if a SWC experiences with 

the coexistence, where it includes mixed-ASIL sub-functions. 

The SWC is treated with the highest ASIL represented in its 

sub-functions if it interferes with other ASIL SWCs, as means 

of FFI are interpreted in Figure 3. While, from the FFI 

definition, where cascading failures absence among SWCs 

lead to a safety goal violation. Therefore, developing the 

whole SWCs with the highest ASIL assures FFI analysis by its 

definition, since there are no QM SWCs.  

 

 
 

Figure 3. Example of FFI due to information exchange 

interference, memory interference and shared peripheral 

interference 

 

In general, there is at least one critical path represents the 

data flow of a critical signal from input conditions to the output 

root-cause in a safety-related software architecture. It is 

represented in a software design critical path analysis that also 

includes different-ASIL SWCs interferences. In the critical 

path, it is sufficient to have SWCs that detect and react to 

means of software/ hardware faults. If all SWCs are developed 

according to the highest-ASIL ISO 26262 compliance matrix, 

there are redundant safety mechanisms that perform the same 

detection and reaction behavior. Thereby, the CPU load will 

exceed its limits enough to make the system not performing at 

all. As a result, this is a high-cost inefficient design choice [25]. 

On the other hand, if set of safety mechanisms are provided 

to the mixed critical system to contain QM SWCs failures on 

the ASIL SWCs. Hence, no safety efforts are needed in QM 

SWCs with the expense of a CPU overhead and an architecture 

optimization. Interferences to critical SWCs could affect its 

properties in multicore architectures with data faults, timing 

faults, OS faults, sequence faults and hardware faults.  

ISO 26262 abides to analyze dependent failures, portrayed 

in Figure 3, to show independence between software 

components used to implement independence requirements 

coming from ASIL decomposition at system level [26]. Thus, 

neither cascading failures nor common cause failures shall 

propagate among SWCs whether they are successive or placed 

in different paths, accordingly. Although common cause 

failures result from a single specific event or a root cause that 

shall affect 2 or more internal sub-functions of a SWC or 

external SWCs, they may result from a defined hardware block. 

This means that single point of failure metrics of the highest 

ASIL SWC before decomposition should be covered by an 

analysis method. To perform the dependent failure analysis, 

such ways of FFI methods among SWCs are used to 

implement the ASIL decomposition shall be progressed, even 

if they have the same ASIL level. In addition, FFI between 

each ASIL SWC that is used to implement ASIL 

decomposition and the shared component shall be analyzed. 

Software data faults may corrupt either memory [27, 28] (i.e. 

RAM, Flash, EEPROM, registers, DMA) or initialization data 

or calibration data (in pre-compile, link-time, post-build). 

They may affect logical data processing and data transmission 

among SWCs (in inter/intra ECU communication). Means of 

exchange faults are:  

(1) multiple message reception,  

(2) message deletion/ loss,  

(3) additional message insertion,  

(4) message corruption,  

(5) incorrect message flow,  

(6) message delay/ timeout,  

(7) invalid message destination address,  

(8) message inconsistency due to faulty network status in 

communication nodes,  

(9) blocking access to a communication channel, and (10) 

invalid message data range.  

Timing faults are represented as:  

(1) aliveness timing issues incomplete execution or no 

execution of a Supervised Entity (SE) within the OS 

periodicity due to unexpected termination), as shown in Figure 

4(a); and  

(2) deadline timing issues (i.e. non-terminating calculation 

or incorrect frequency/ timing execution or which means 

execution is either too slow/ fast or too early/ late), as shown 

in Figure 4(b).  

 

 
 

Figure 4. Timing diagram of safety-related impacted 

supervised entities (SE) (a) Aliveness timing issue (b) 

Deadline timing issue 

 

SEs of a critical SWC include multiple checkpoints to 

represent important elements (i.e. ASIL task, runnable, and 

function) for timing measurements and control flow.  

The SE has transitions to checkpoints with one or multiple 

beginning/ end checkpoints. Processing a fault instruction in 

the program flow or even missing to process a correct one from 

any beginning/ end checkpoint may lead to data corruption, 

data inconsistency, fail-silent violations, and process crashes 

in the control flow. These faults produce incorrect checkpoints 

control flow and timing faults that affect the program flow due 

to divergence that lead to sequence faults. 

The real-time interference is represented by means of 

runtime faults as:  

(1) Lower-ASIL non-preemptive tasks with a longer execution 

time (i.e. larger than the maximum allowed higher-ASIL 

task jitter) which delay execution of higher-ASIL tasks, 

(2) Critical sections used by lower-ASIL tasks, with undefined 

WCET, longer than the maximum allowed jitter of higher-

ASIL tasks with lower priority, 
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(3) Waiting hardware or external event loops without a 

timeout in lower-ASIL tasks/ interrupts may cause 

blocking of higher-ASIL tasks/ interrupts, 

(4) Shared resources (peripheral, or non-reentrant code 

segment, or shared data structure) acquired by lower-ASIL 

SWCs longer than the maximum allowed jitter of a higher-

ASIL SWCs shared the same resource, may block critical 

tasks, 

(5) Interrupts WCET of lower-ASIL SWCs longer than the 

maximum latency of higher-ASIL tasks/ interrupts which 

may cause a violation of real-time constraints allocated to 

higher-ASIL SWCs, 

(6) Improper choice of priority among higher-ASIL and 

lower-ASIL SWCs (i.e. higher-ASIL interrupts latency 

increases when lower-ASIL interrupts are assigned with 

higher priority than ASIL interrupts priority; or when 2 

mixed-ASIL tasks are ready at the same time, but the 

lower-ASIL task with higher priority starts causing 

delaying the execution of higher-ASIL task with lower 

priority; or when a lower-ASIL task with higher priority 

become ready, and may interrupt the execution of the 

currently running preemptive higher-ASIL task with lower 

priority), 

(7) Blocking of higher-ASIL tasks execution due to interrupt 

overloads in lower-ASIL interrupts, 

(8) Execution of higher-ASIL tasks triggered by external 

events communicated by lower-ASIL tasks may be 

delayed or not activated which causes a violation of a 

safety goal, 

(9) A higher-ASIL task calling synchronous services with a 

longer execution time from a lower-ASIL task enough to 

increase the WCET of the higher-ASIL task more than the 

maximum latency of critical output, and to delay/ block 

critical outputs. 

In this section, safety mechanisms for failure detection and 

reaction are proposed to develop ISO 26262 methods of FFI 

efficiently in multicore architectures. For real-time 

interference: timing monitoring with temporal protection, 

runtime monitoring, and service protection mechanisms are 

proposed to resolve timing faults, sequence faults and OS 

faults, respectively. 

 

 

4. PROPOSED SAFETY MECHANISMS FOR 

MULTICORE ARCHITECTURES 

 

The proposed safety mechanisms presented in this section 

are carried out for Aurix Tri-core, Renesas RH850, and 

Freescale targets. They detect and react to timing faults, 

sequence faults and services faults that take place during real-

time intercommunication of multicores among mixed-ASIL 

SWCs or even inside a single core at runtime. 

Practically, the safe OS is developed by a supplier with the 

minimum required quality of ISO 26262 methods for a target 

ASIL to get this SWC accredited and certified. It implements 

additional safety requirements to guarantee a systematic 

behavior at all expected operation failures for different kinds 

of freedom from interferences. The OS supplier takes 

responsibility if the OS fails (due to internal systematic fault 

in the OS), given that the safe OS is well integrated as defined 

in the supplier integration manual.  

Meanwhile, the QM OS is developed, as per the standard 

quality process, with no guarantee whether it is better or not 

than what ISO 26262 requirements cover. There are no 

additional mechanisms, added within it, to cover runtime 

errors (other than what stated by the OSEK standard). Thus, it 

is preferred to define additional safety mechanisms to cover 

possible OS failures, as stated in Section 3, identified by the 

performed safety analysis. Because the safe OS is costly in a 

way compared to the QM OS, the decision to begin a mixed-

critical project with a specific OS should be made earlier. 

There are major metrics must be ensured in choosing an OS:  

(1) Freedom from real-time interferences where the use of an 

ASIL watchdog manager with a proper monitoring strategy 

and good software integration could be sufficient, while 

using the QM OS to schedule safety critical tasks, 

(2) Freedom from memory interference where the choice 

between either the safe OS or the QM OS depends on:  

a. the memory protection safety mechanisms that shall be 

implemented,  

b. the used software architecture,  

c. implemented safety requirements in SWCs,  

d. the method and amounts information exchange in cross 

partitions including the critical shared variables, and  

e. in AUTOSAR, whether the Run-Time Environment 

(RTE) is used or not to communicate among SWCs and 

the basic software via the IPC. 

Choices to utilize the QM OS are based on whether the 

implementation of software requirements is centralized in a 

few SWCs with having a few cross partitions communication, 

a few amounts of critical data, an efficient memory mapping 

where safety critical data are aligned together and with non-

AUTOSAR architecture.  

Developing the OS as a specific ASIL level ensures only 

that there are no real-time failures caused by the OS itself, 

during scheduling (i.e. causing wrong context switching, 

delaying certain ASIL tasks, or blocking certain tasks from 

execution). However, ASIL and QM activities entitled in a 

software architecture inherit observable real-time 

interferences, on the scheduling sequence of the OS itself, 

caused by the QM runnable/ interrupts. Consequently, an 

interference on the ASIL tasks might reveal (the QM tasks 

takes more time than expected by preventing the ASIL tasks 

from operation. Thus, the solution is to ensure an efficient 

design with using monitoring functionalities to satisfy the 

safety real-time constrains and to ensure the freedom from 

real-time interference. 

 

4.1 Timing monitoring safety mechanisms 

 

Timing monitoring safety mechanisms aim to let safety 

critical tasks meet their execution time budgets. On top of that, 

the mechanisms shall detect potential risks, in which whether 

the QM tasks monopolize the OS by requesting many 

interrupts or loading the CPU in a way to block the critical 

tasks. Timing faults are not limited to execution blockage, 

deadlocks, live-locks, erroneous allocation of execution time, 

and invalid synchronization among SWCs. This means either 

SEs, or unrelated QM tasks or Cat2 interrupts miss their 

deadline at runtime, and they become blocking. As a result, 

this fault propagates through the critical system until reaching 

a target ASIL SE that misses its deadline, which will be 

detected by the watchdog.  

There are many reasons to consider QM or lower-ASIL 

interrupts configured as Cat2 over Cat1 in the real-time 

interferences. Cat2 interrupts are managed by the OS interrupt 

handler before the user’s interrupt. Thus, they interact with OS 

and can make OS calls. They have a higher latency, if 
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requested by the hardware until the first instruction execution. 

Besides, they can be completely controlled by the OS. They 

can communicate with other tasks or Cat2 interrupt handlers 

with the help of the OS resource.  

Unlike Cat2 interrupts, Cat1 interrupts are managed by the 

interrupt handler, which is called by the hardware interrupt 

vector. They are not supported by the OS and can just make a 

minor selection of OS calls to disable/ enable all interrupts. 

Manipulation of Cat1 interrupts depends on the target itself. 

There is no need to lock out interrupts as the shared critical 

regions are shared with low-priority tasks or interrupts. The 

hardware interrupts occurrences must be limited with an 

appropriate recovery strategy, in case of such failures. 

In contrast, Cat1 interrupts must be configured as Trusted, 

as proposed in Table 1, since:  

(1) blocking all interrupts eliminates the execution timer 

monitoring of such interruptions, 

(2) not supported by spatial and temporal protection 

configured in the OS as they sup-port only Non-Trusted 

code to detect and prevent time or space overruns, and  

(3) the usage of simple scheduler that disables interrupts.  

Thus, in such critical systems, Cat1 interrupts usage and 

frequency should be tuned, if and only if:  

(1) Cat2 interrupts latency are low,  

(2) small amount of jitter is required from interrupts, and  

(3) inter-arrival rate of an interrupt increases with extra 

overheads due to nested interrupts or interrupt wrappers 

effects. 

 

Table 1. Proposed OS application and MPU configurations 

for ISR categories given that there are ASIL-D SWCs in a 

software architecture 

 

Entity 
OS 

Application 

CPU 

Mode 

MPU 

Configuration Set 

OS Trusted Supervisor 0 

CAT1 ISR/ 

TRAP 
Trusted Supervisor 0 

CAT2 ISR Non-Trusted User 0 or 1 1 

 

To control timing faults in runtime for a multicore 

architecture, firstly, an interrupt/ task meets its deadline, if the 

fixed-priority preemptive OS is accurately configured with 

Scalability Class 2 (SC2) to have the OS timing protection 

safety mechanisms as:  

(1) Monitoring the execution time budget upper bound for 

tasks/ Cat2 interrupts to detect when lower-ASIL tasks 

exceed the expected execution time, as represented in 

Figure 5(a). An exception shall be thrown when lower-

ASIL task execution time exceeds the expected value 

specified during the task creation. 

(2) Monitoring the uppers bound of resources/ peripherals 

blockage, locking budget and suspending all interrupts to 

prevent lower-ASIL SWCs from blocking higher-ASIL 

components execution due to excessive usage of the shared 

resources. Mutex, semaphore or spinlocks can be used by 

higher-ASIL SWCs to ensure mutual access to resources 

shared with lower-ASIL SWCs. An exception shall be 

thrown when lower-ASIL tasks continue using the shared 

resources for more than the maximum allowed interval 

specified during task creation.  

Supervision of the lower bound among activated successive 

tasks (at running or at ready state for basic tasks and at waiting 

state for extended tasks) or Cat2 interrupts inter-arrival, as 

revealed in Figure 5(b). This means that interrupt overload 

protection monitors number of interrupts received on certain 

channel to be disabled temporarily once they exceed the 

expected limits (interrupt counter is reset). This is 

implemented inside an interrupt. After consuming the 

configured delay, the interrupt will be reenabled. If the 

interrupt overrun is detected again, then the interrupt will be 

disabled permanently until the next ignition cycle. Thus, the 

usage of interrupts that are based on external trigger signals 

shall be limited to the avoid interrupt overload. This is 

implemented inside man-ager function that is responsible of 

the interrupt. On other words, the interrupt overload 

mechanism protects higher-ASIL SWCs from being blocked/ 

delayed due to high CPU overload occurs because of the 

arrival of many interrupts.  

 

 
 

Figure 5. Timing diagram illustrated between ASIL task1 

interfered with QM or lower-ASIL task2 (a) Practical 

execution timing (b) Inter-arrival timing (C) Deadline timing 

 

Then, with the support of safety mechanisms built-in a 

hardware timer element, and with setting the relevant interrupt 

with a higher priority, the timing enforcement is promised. The 

mode of hardware watchdog shall be configured as Slow at 

initialization, as Fast at steady state, and as Off. Furthermore, 

interrupts latency time shall abide architecture real-time 

constraints.  

 

4.2 Temporal protection safety mechanisms 

 

Even though a safe behavior permits the system to detect 

and react on a failure during the FTTI, as illustrated in Figure 

6, timing protection of AUTOSAR OS cannot individually 

assure exact timing protection in multicore architectures. 

Thereupon, it must be combined with temporal protection 

safety mechanisms to provide a fully timing protection to 

correctly identify tasks/ interrupts that cause timing faults. 

In temporal protection, a non-safety code is forbidden to 

impact safety-related code timings. This is monitored by the 

qualified watchdog component as shown in Figure 7. The 

AUTOSAR watchdog manager SWC monitors SEs execution 

by triggering the watchdog hardware component. It 

periodically monitors the frequency (i.e. the configured 

occurrence number of cyclic checkpoints) during the OS 

periodicity range to feature the SE aliveness supervision.  

On top of that, the watchdog manager monitors the time 

duration delay (not the exact timeout) of aperiodic consecutive 

checkpoints in a SE in case of irrelevant interrupts/ tasks are 

interfering with the SE execution. Hence, it features the 

deadline supervision, as interference delineated in Figure 5(c); 

to assure that the SE flow is meeting its deadline. The 
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watchdog manger shall check the timing before calling the 

next checkpoint, so as not to fail to detect non-occurrence of 

the second checkpoint. Thus, more checkpoints may be 

proposed to critical tasks or functions (at the expense of RAM 

consumption) as a runtime safety mechanism to make use of 

the watchdog supervision mechanisms. 

 

 
 

Figure 6. Achieving the safe state after applying a safety mechanism during the FTTI slot 

 

 
 

Figure 7. Temporal protection for the FFI performed by the 

watchdog component 

 

Figure 8 shows a time span with 3 aliveness supervision 

cycles as a detection mechanism. In each cycle, checkpoints 

(CP1 and CP2) are hit once. Once the watchdog manager main 

function is called, the window for the next watchdog trigger is 

defined by WdgMTriggerWindowStart and 

WdgMTriggerConditionValue. Whereas Figure 9 and Figure 

10 show the minimum and the maximum reaction time 

required by the watchdog manager because of the aliveness 

supervision, respectively. At first a checkpoint being hit first. 

Then, after the next checkpoint hit, the fault can be detected, 

which is due to the subsequent supervision cycle. Therefore, 

violation, detection, communication and system reset take 

place in the second call of the watchdog manager main 

function. In other words, the fault detection is placed at the end 

of the next supervision reference cycle for alive supervision. 

 

 
 

Figure 8. Aliveness supervision detection cycle of the watchdog manager 
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Figure 9. Timing diagram of the minimum reaction time required by the watchdog 

 

 
 

Figure 10. Timing diagram of the maximum reaction time allowed by the watchdog 

 

4.3 Runtime monitoring safety mechanisms 

 

In SC2, AUTOSAR OS experiences runtime monitoring, in 

which it verifies no QM task grants continued privilege to 

access interrupts hardware elements, or to operate with 

uncontrolled deadline. In addition to watchdog manager 

features illustrated in previous section, it performs the logical 

supervision, which monitors an accurate program flow order 

at runtime (i.e. the execution sequence of a SE that is 

represented in check-points transition directions according to 

its configured graph). Moreover, it will verify the checkpoints 

timings in the SE. However, the transition timing itself is 

verified by the deadline supervision featured by the watchdog 

manager SWC.  

Figure 11 and Figure 12 represent the program flow 

monitoring mechanism of a multicore architecture. It is 

recommended be implemented for each core address the 

following challenges:  

(1) no mutual checkpoints are involved in the SE of cores, 

(2) checkpoint availability request placed in one core and 

called by the program flow monitoring placed in the other 

core,  

(3) core interconnect synchronization to verify the 

interconnect acceptable jitter among the cores, and  

(4) one-core program flow monitoring mechanism fatal failure 

that may need to activate its watchdog reaction mechanism 

synched accurately with reporting this status, to the other-

core program flow monitoring mechanism.  

In this case, the second program flow mechanism assesses 

the first-core failure reaction mechanism with the help of its 

watchdog manager, for the sake of activating its own failure 

reaction mechanism. Based on the system architecture 

constraints, different watchdog drivers may be interfaced to 

each core or a global watchdog may be utilized for all cores. 

The main purpose of this use-case is verifying the multicore 

initialization synchronization. 

If a checkpoint is reached, SEs report to the watchdog 

manager SWC through function calls. An instance of the SE is 

created, for each core. Hence, concurrent SEs and overlapping 

checkpoints among SEs are limitations to that solution. 

However, it gathers and monitors all SEs logical sequence 

inside or among all cores that trigger the watchdog. In addition, 

in each core, the SEs run independently and can inform their 

status to the watchdog SWC over core boundaries. 
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Consequently, temporal protection and logical supervision of 

program flow sequences are utilized as safety measures of 

failure detection of either the hardware clock or the 

microcontroller unit. 

A local SE failure status reveals once a confirmed failure 

reaches a SE where the detection mechanism occurs, while the 

global failure status of a microcontroller represents all 

gathered and combined local SEs failure status. The watchdog 

shall activate recovery mechanisms from such failures based 

on the global and local failure status.  

Firstly, the watchdog manager SWC shall report such 

failures to the SE with the help of the RTE protection 

mechanism. Moreover, it stores a new SE failure with its 

relevant attributes that illustrate the faulty items with the help 

of the diagnostic manager. Thus, the SE shall react to recover 

from such failures based on those reporting mechanisms.  

Secondly, if there is no watchdog hardware triggering 

performed by the watchdog stack (i.e. refreshments timeout 

due to checkpoints failures), a hardware reset to either the 

microcontroller or the whole Electronic Control Unit (ECU) is 

performed by the watchdog hardware element. After that, an 

initialization is progressed to free such hardware failures. The 

watchdog refreshment ensures the program execution 

monitoring as it covers all ECU and functional modes, their 

transitions and all exceptions. Lastly, a global SE failure 

affects the whole system mandates an immediate 

microcontroller reset may occur by the watchdog manager 

followed by an initialization to the watchdog element. 

 

 
 

Figure 11. Watchdog flow monitoring safety mechanism in the AU-TOSAR layered architecture 

 

 
 

Figure 12. Watchdog flow monitoring safety mechanism in the Microsar layered architecture 
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4.4 Services protection safety mechanisms  

 

During interaction between an ASIL OS application and 

QM or lower-ASIL OS services, the services calls (i.e. handled 

by StartupHook, PreTaskHook, PostTaskHook, Alarm 

Callback, Tasks, Cat1/ Cat2 interrupts, Shutdown Hook, 

Protection Hook and Error Hook) shall not corrupt the OS 

itself. Several service protection safety mechanisms are highly 

recommended to be configured in the OS if they are supported 

or to be developed in case of an inhouse developed OS. 

Firstly, services in wrong context, which are not called from 

Cat1 interrupts (i.e. calling non-reentrant higher-ASIL 

services in reentrant context by lower-ASIL SWCs or calling 

out-of-order higher-ASIL services), shall not be processed as 

the OS is highly recommended to protect them against the 

Non-Trusted Cat2 interrupts by returning an invalid value or a 

call level error. These out-of-bound context services shall not 

produce any behavior once called. Besides, the whole OS 

services must be fully configured whether used or not for the 

OS objects related to an OS application. Meanwhile, the 

higher-ASIL SWC design shall assure the exclusive access to 

non-reentrant services. Reentrance shall be supported and 

checked if used. 

Secondly, Non-Trusted QM or lower-ASIL OS applications 

may affect higher-ASIL OS applications indirectly though OS 

services that have a global context through means of service 

faults such as: non-safe service calls; or non-safe handling of 

either global data, or function input parameters, or function 

input/output parameters, or function return value, or wrong 

periodicity, or wrong function pointer (invalid pointer 

arithmetic, or memory corruption). As a result, the OS services 

calls context shall be restricted. Besides, they can perform 

trusted restricted actions (i.e. not shutting down the OS). 

Values of different tasks shall be selected to be unique and to 

keep large with proper hamming distance among different tag 

values to detect bit errors easily. 

 

 
 

Figure 13. Protection hooks representation for between 

higher-ASIL Task A and lower-ASIL or QM Task B in the 

extended status OS 

 

In general, restoring the wrong context for higher-ASIL 

tasks can be detected by using unique task context tag pushed 

into stack when task preempted and checked when task 

resumed. PreTaskHook is periodically called directly after a 

new task enters the running state, while PostTaskHook, is 

periodically called directly before the old task leaves the 

running state, as shown in Figure 13. Thus, GetTaskId does 

not return any issue, if the task is still/ already in the running 

state. 

Thirdly, calls to undefined services are enough to make the 

OS behavior is undefined in an extended state and to be 

corrupted. The service protection shall describe all use-cases 

for such behaviors so as not to jeopardize the impacted OS 

application, the OS and the whole system. This shall be 

considered either for tasks that end without a termination, or 

for Cat2 interrupts that end with locked resources and 

interrupts, or out of order call (i.e. processing Post hook during 

shutdown call, processing interrupts without the 

corresponding disable or calling services during disabling 

interrupts). On top of that, Disable/ Enable interrupts shall 

support nested calls. 

Fourthly, service calls with invalid objects not defined in 

the OSEK Implementation Language (OIL) or with out of 

range parameters (i.e. erroneous set of alarm cycle) shall not 

be processed and the OS shall return either an invalid identifier 

or an invalid value, respectively.  

A configuration shall be done to permit Non-Trusted OS 

application with invoking Trusted OS services provided by the 

Trusted OS application with the help of the OS interrupt or 

trap. The OS shall verify the memory access rights allocated 

to the calling OS application against concurrent accesses, for 

proper memory protection, with such services to assert the 

memory left in the stack region. Every memory write access 

shall be conditioned by a writing request and a writing 

authorization, located in non-consecutive source code areas. 

Meanwhile, the maximum memory write duration shall be 

guaranteed. 

Lastly, in multi OS applications, as in shown in Figure 1, 

controlling OS objects related to other Non-Trusted higher-

ASIL OS applications by Non-Trusted QM or lower-ASIL OS 

application could provide an interference. Consequently, the 

QM OS application should not have such permissions to 

modify the ASIL OS objects. Moreover, the OS shall return an 

invalid identifier for that restricted access rights privileges. In 

case of an error detected during message reception, the 

reception buffer shall be reinitialized to ensure the erroneous 

previous message will not be used. 

In case of failure, a safe reaction shall be performed in order 

to go to a safe state. Suitable error handling mechanisms shall 

be implemented in the OS with the intention of trapping such 

an erroneous state and even before an OS fault detection. This 

mechanism shall detect such protection errors, which are 

considered as software systematic faults generated in an OS 

application.  

The protection errors are not limited to illegal service (i.e. 

unauthorized service call); memory access violations; timing 

faults (exceeding WCET); and hardware exceptions (i.e. 

illegal arithmetic instructions). An out-of-context occurrence 

of a protection error (i.e. during OS shutdown) leads to 

operating on an infinite loop, even before calling the 

reasonable mechanism. With the support of the watchdog, a 

microcontroller reset is activated due to this endless loop. A 

timeout limitation of the endless loop shall be verified to let 

the elapsed time measurement be performed before the process 

completion test. 

Firstly, in SC3 and SC4, the application-specific startup 

hook mechanisms relevant to OS applications may be called 

by the OS after the OS startup call, to initiate other hook safety 

mechanisms. Secondly, in SC3 and SC4, the configured 

generalized error hook mechanism shall be activated before 

the application-specific error hook, which is activated if Cat2 

interrupts/ tasks related to an OS application produce an error.  

Thirdly, in SC3 and SC4, the configured generalized 

shutdown hook mechanism shall be activated after calling the 

application-specific shutdown hook, which is activated if the 

safety critical system begins to shutdown itself. It is preferably 

to have all application-specific shutdown hooks return 

parameters to the corresponding calling OS application so that 

the processing of the generalized shutdown hook is initiated. 

Lastly, in SC2, SC3, and SC4, the protection hook 
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mechanism is called by the OS in a Trusted code to notify the 

means of protection errors take place at runtime. Depending 

on the return value of the protection error, the protection hook 

shall respond with either an OS shutdown, or a silent behavior, 

or an immediate termination of the current faulty Cat2 

interrupt (while the newly requested/ waiting interrupts are 

invoked correctly), or an immediate termination of all 

interrupts (including newly requested/ waiting interrupts) and 

tasks related to a faulty OS application with/ without restarting 

the OS application. 

There are limitations on choosing the OS scalability class as 

in SC2 there are timing protection, global time 

synchronization support, and protection hook features, while 

in SC3 there are MPU, OS application, other hook functions, 

service protection and Trusted functions features. Regardless 

all features can be configured in the SC4 OS, the SC4 OS is 

costly, and all SC4 proposed features might not be the aimed 

design choices for such a system architecture. As a result, this 

work is proposing multiple safety mechanisms to cover the gap 

of not being privileged with such OS features. 

 

 

5. FUTURE WORK 

 

The full scope of this work is to design a safety-compliant 

efficient multicore architecture that serve various autonomous 

driving applications to demonstrate the benefits of the 

proposed safety mechanisms to vehicle decisions (sensor 

fusion) of deep reinforcement learning. Assuring that higher-

ASIL SWCs operate with no impact of the lower-ASIL or QM 

SWCs (i.e. guaranteeing the freedom from interference), 

regardless the used sophisticated architecture is, is mandatory 

to have a safe improved accuracy of vehicle decisions. The 

improvement in the safe vehicle operation obtained with fault 

injection verification asserts that there is still a lot of scope for 

improvement. The future work is summarized as follows: 

(1) Experiencing, proposing safety mechanisms for possible 

ways of interferences (information exchange interference, 

shared peripheral interference) are the next step to have a 

fully compliant set of multicore architectures. 

(2) Incorporating safe configuration of different set of 

multicore processor targets to tolerate means of hardware 

faults. 

(3) Proposing and examining ISO 26262 compliant enhanced 

algorithms for sensor fusion for moving object detection, 

tracking, and calibration. 

The author hopes that this study becomes a candidate to 

encourage for further deep research in exploring other real-

time residual faults for perfect detection and reaction in 

cutting-edge nanoscale processors, or in web-based processors 

to validate the detection accuracy, or possible enhancements 

of the proposed safety mechanisms nature. 

 

 

6. CONCLUSION 

 

In this paper, safety-critical challenges of multicore 

architectures for autonomous driving applications have been 

explored, leveraged, analyzed and mitigated. These challenges 

represented for set of multi-cache multicore architectures in 

symmetric and asymmetric processors, critical timing, data 

coherency and synchronization predictability, core 

interconnects. Furthermore, various novel solutions, to each 

single challenge/ constraint, are proposed to present complex 

architectures designs to be compliant with the ISO 26262 

methods and principals based on the examined system 

architecture ASIL. The proposed safety mechanisms target 

real-time faults detection and immediate reaction mechanisms, 

enough to let the system behave in the safe state before the 

defined FTTI. 

Several proposed safety mechanisms to detect timing faults 

are combined as: timing monitoring, resource locking time 

protection, execution time protection and inter-arrival time 

protection with possible configurations improvements to Cat2 

interrupts rather than Cat1 interrupts; as well as temporal 

protection are proposed: watchdog aliveness supervision, and 

watchdog deadline supervision. Whereas runtime flow 

monitoring and logical supervision detect the sequence faults 

with the support of the watchdog. Meanwhile, safe OS hooks 

configuration and safety mechanisms are proposed to detect 

all runtime services faults to higher ASIL OS applications, 

tasks and interrupts. 
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NOMENCLATURE 

 

ADAS advanced driver assistance system 

LiDAR light detection and ranging 

OS operating system 

FMECA failure mode, effect and criticality analysis 

ASIL automotive safety integrity level 

QM quality management 

TDMA time division multiple access 

FFI freedom from interference 

33



 

FTTI fault time tolerant interval 

SWC 

IC 

software component 

integrated circuit 

IPC inter-partition communication 

WCET worst case execution time 

WCRT worst case response time 

MPU memory protection unit 

LRU least-recently-used 

FIFO first-in-first-out 

PLRU pseudo least-recently-used 

DMA direct memory access 

ECC error correcting code 

RAM random access memory 

RTE run-time environment 

SC scalability class 

ECU electronic control unit 

OIL osek implementation language 
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