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Accurately forecasting the icing load on overhead power transmission lines is an 

important issue to ensure the security and reliability of the power grid. A multi-scale time 

series phase-space reconstruction and regression model for icing load prediction is 

proposed in this paper to treat the non-stationary, nonlinear, and intermittent volatility of 

power line icing load data. Those is motivated by the traditional icing load prediction 

models having many disadvantages in the forecasting accuracy, as well as the casualness 

of the parameters selected. Firstly, the icing load data are decomposed into a multi-scale 

time series of intrinsic model function (IMF) components with stability by using the 

ensemble empirical mode decomposition (EEMD), which can reduce the interactions 

between different types of feature information. Secondly, phase-space reconstruction 

(PSR) theory is applied using the mutual information and the false nearest neighbor to 

determine the optimal delay time and embedding dimension of each IMF component. 

Thirdly, considering the characteristics of each IMF component, different kernel functions 

and optimization parameters are selected to establish the prediction model based support 

vector regression (SVR). Finally, according to the load prediction results, fuzzy reasoning 

method was used to determine the risk status of transmission line towers in this paper. 

Upon experimentally evaluating the validity of the model using related transmission lines 

of the Yunnan Power Grid, it is shown that this method could predict the real-time icing 

load on overhead power lines, obtaining better regression performance. This model could 

be used on power transmission and distribution systems for deicing and maintenance 

decisions. 

Keywords: 

power transmission line, ensemble empirical 

mode decomposition, multi-scale; icing 

alarming; combination forecasting model 

1. INTRODUCTION

Power transmission line icing could lead to accidents such 

as insulator icing flashover, wire galloping, disconnections, 

flashovers, and communication interruptions, which seriously 

threaten the safe and stable operation of an electric power 

system [1-4]. To reduce the occurrence of power transmission 

line icing accident and ensure the safety and reliability of the 

electric power system operation the accurate prediction of the 

icing load has become one of the problems that urgently needs 

to be solved in the construction of smart grids. 

At present, the commonly used methods of icing load 

prediction for power transmission lines include the artificial 

simulation method, statistical analysis method, Kalman filter 

method, fuzzy logic method, data-driven method, neural 

network method, and support vector machine method [5-13]. 

The artificial simulation method mainly simulates the icing 

forms of the power transmission lines under different 

environmental parameters and wires with different diameters 

in a wind tunnel facility, notably including the Goodwin model 

[5], the Makkonen model [6] and so on. However, the climatic 

conditions in the artificial simulation are largely different from 

those in an actual situation. The statistical analysis method 

establishes a model that is suitable for fitting with the line icing 

distribution by analysing many years of icing observation data 

[7, 8]. Yet, its prediction result is obtained based on the icing 

reappearance period, which cannot predict an accurate icing 

value. The validity of the Kalman filter method is established 

on the premise that the characteristics of the noise statistics are 

known, but this method has certain limitations for power 

transmission lines with unknown statistical characteristics [9]. 

Although the fuzzy logic method can establish a linear model 

that approximates the nonlinear, dynamic, and changing icing 

thickness, its learning ability is relatively weak [10]. The data-

driven method has obtained better prediction results under 

specific icing scenarios for power transmission lines, but it 

shows shortcomings of poor learning ability and performance, 

and its modeling robustness is still lacking [11]. Under large 

sample conditions, the neural network method has issues such 

as a long model optimization time, and poor generalization 

ability. Besides, the single neural network method easily falls 

into the local optimum, and cannot always reach the expected 

accuracy [12]. The support vector machine method uses the 

principle of structural risk minimization, which to a certain 

extent solves the problem of over-fitting present in the 

traditional neural network model [13]. However, it still relies 

on human experience in selecting the kernel function and 

determining the model parameters. 

Each of the above icing prediction methods has its own 

characteristics, but they each have certain limitations during 

actual application. Taking into account the nonlinearity, non-

stationarity, and intermittency of the icing itself, the traditional 
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single-prediction model can no longer satisfy the requirements 

of precision. Therefore, the idea of combined prediction is 

used in connection with the characteristics of each algorithm 

to establish an icing prediction model making use of 

complementary advantages, which can improve the prediction 

precision of the model. 

In this paper, the Ensemble Empirical Mode Decomposition 

(EEMD) and Support Vector Regression (SVR) methods are 

combined to establish a combined prediction model for the 

icing load of power transmission lines based on EEMD-SVR. 

First, EEMD is used to decompose the time series of the icing 

load into a series of Intrinsic Model Function (IMF) 

components with different features and a residual component, 

and the mutual information method and the false nearest 

neighbor method are used to determine the optimal delay time 

τ and the embedding dimension m for various IMF 

components to carry out Phase-Space Reconstruction (PSR) 

on various subsequences. Then, in connection with the 

features of each subsequence, different kernel functions are 

selected, the Particle Swarm Optimization (PSO) algorithm is 

introduced to optimize and determine the model parameters 

such as the penalty coefficient, and the SVR prediction model 

is established. Finally, a value for the icing load is predicted 

by superimposing the various subsequence prediction results, 

using fuzzy inference system to determine the risk status of 

transmission line towers. 

The main contributions of this study are demonstrated as 

follows: (a) A novel icing load prediction model is proposed 

by combing the EEMD, PSR and SVR; (b) The real 

performance of the SVR algorithm in the EMD or EEMD 

based field icing load on power transmission line has not been 

studied before; (c)PSO algorithms has been established to 

improve the convergence and iteration speeds and effectively 

prevent the proposed model and other comparing models; (d) 

Other eight single or hybrid icing load forecasting model 

including SVR model, EMD-SVR model, ELM(Extreme 

Learning Machine) model, EMD-ELM model, EEMD-ELM 

model, RBF(Radial Basis Function) model, EMD-RBF model 

and EEMD-RBF model have been compared fully with the 

proposed model to verify the prediction performance of our 

proposed model. Through the case analysis of power 

transmission line icing disasters of the Yunnan Power Grid, 

the combined model proposed in this paper shows higher 

prediction precision than the traditional single or hybrid 

models. 

The remainder of this paper is organized as follows: Section 

2 briefly reviews the principles of EMD, EEMD, PSR, and 

SVR. Section 3 details our proposed method with both 

theoretical analysis and algorithmic description. Section 4 

reports our simulation results, and Section 5 concludes this 

paper with further remarks. 

 

 

2. BASIC PRINCIPLES 

 

2.1 Principles of EMD and EEMD 

 

EMD is an adaptive data mining method based on signal 

analysis. By continuously rejecting the mean value of the 

upper and lower envelopes linked with the maximum value 

and the minimum value, the original signal is decomposed into 

several IMF components of different scales and a residual 

component [14]. The steps for decomposing the time series of 

the icing load are as follows: 

Step 1: Obtain the extremum points of the original signal 

x(t), and use the spline difference function to fit the upper and 

lower envelope curves of x(t), which are l1(t) and l2(t), 

respectively; 

Step 2: Obtain the difference between the original signal 

sequence and the mean value of the envelope curve: 

 

( )1 1 2

1
( ) ( ) ( ) ( )

2
m t x t l t l t= − +  (1) 

 

Step 3: Judge whether or not m1(t) satisfies the following 

two conditions: 1) the number of extremum points is equal to 

or within one of the number of zero-crossing points and 2) the 

sequence mean value within the domain range approaches zero. 

If these conditions are not satisfied, then repeat Step 1 and Step 

2 until the k-th iteration obtains an m1k(t) that satisfies the 

conditions, and obtain the IMF1 component: 

 

1 1( ) ( )kC t m t=  (2) 

 

Step 4: Separate the original signal from IMF1, take the 

residual component r1(t)= x(t)- C1(t) as the original signal, 

repeat the aforementioned steps, and obtain n IMF components. 

If the residual component rn(t) is in line with monotonicity, 

then the decomposition result of x(t) is: 

 

1

( ) ( ) ( )
n

i n

i

x t C t r t
=

= +  (3) 

 

where, Ci(t) is the IMF component, and rn(t) is the residual 

component. 

The monitoring and collection of the icing load for the 

power transmission lines would often have pulse interference 

signals that occur due to signal interruption and equipment 

faults, leading to the appearance of erroneous IMF 

components in the EMD decomposition process. 

EEMD solves the problem of the frequency-mode aliasing 

that appears in EMD by adding auxiliary noise to eliminate the 

intermittent phenomenon existing in the original signal [15]. 

The improvement process is as follows: 

Step 1: Add a random Gaussian white noise sequence nm(t) 

to the original signal x(t) to obtain a new target sequence xm(t): 

 

( ) ( ) ( )m mx t x t n t= +  (4) 

 

Step 2: Use EMD to decompose xm(t) into n IMF 

components Cim(t) and one residual component rnm(t). 

Step 3: Iterate the above two steps M times in a cycle, each 

time adding a different white noise sequence with an equal 

root mean square, and find the mean of the IMF components 

obtained after M cycles of decomposition as the final 

decomposition result of EEMD. 

 

2.2 PSR 

 

A relatively stationary subsequence is obtained after 

performing EEMD, and its stability is enhanced. However, the 

icing process for the power transmission lines has a 

nonperiodic motion and stronger sensitivity. In reference [16], 

the chaotic characteristics of the time series of the icing load 

are verified by calculating the largest Lyapunov exponent. The 

PSR method is used in this paper to analyze the intrinsic 

attributes of icing load changes. 
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PSR is the basis for the application of nonlinear dynamics 

theory, which can transform the one-dimensional time series 

of the icing load into a multidimensional phase space. The 

steps for phase-space reconstruction on various subsequences 

of the icing load are as follows: 

Step 1: Define the time series of the icing load as {xi, 

i=1,2,…,N}, wherein N is the length of the series.  

Step 2: Given the embedding dimension m (m≥2d+1, d is 

the system dynamics dimension) and τ as the time delay. 

Step 3: According to the embedding theorem proposed by 

Takens, the reconstructed phase space is: 

 

 ( 1), , , 1, 2, ,i i i mx x x i M + + − =  (5) 

 

where, M=N-(m-1)τ is the number of phase points. 

In the reconstructed phase space, the selection of the time 

delay τ and the embedding dimension m directly affects the 

acquisition of information after the reconstruction. From 

reference [17], if τ is too small, it may not be able to show the 

dynamic features of the system, and if τ is too large, then it can 

make the simple track complicated and reduce the number of 

valid data points. Similarly, a too small m embedded in space 

cannot accommodate the attractors of the dynamic system, and 

the dynamic characteristics of the system will not be 

comprehensively reflected, and a too large m can not only 

reduce the available data length and increase the calculation 

workload but also increase the prediction error. To determine 

the appropriate parameters, the mutual information method 

and the false nearest neighbor method are used in this paper to 

determine the delay time τ and the embedding dimension m, 

respectively, of the IMF components. 

 

2.3 SVR principles 

 

The core idea of SVR is to define a nonlinear mapping 

( )x  based on the principle of structural risk minimization. 

Map an input dataset to a high-dimensional feature space F. In 

this high-dimensional feature space, there is a linear function 

f(x) that can clearly represent the nonlinear relationship 

between the input dataset and the output dataset, as illustrated 

in Figure 1, its function is defined as follows [18, 19]: 

Given a training set T={(xi,yi), i=1,2,…,l}, wherein 

,N

i ix y R R , construct a linear regression function f(x) in 

the high-dimensional space F  as shown in Formula (4): 

 

( ) ( )Tf x x b=  +W  (6) 

 

W and b are the weight vector and the bias, respectively. 

Introduce the Lagrange multipliers i


, i

, i


, and  , and 

then the target function of the SVR quadratic programming 

problem is as shown in Formula (5): 
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where, C is the penalty coefficient,   is the insensitive loss 

coefficient, and ( , ) ( ) ( )T

ij i j i jQ K x x x x= =   is the kernel 

function. Commonly used kernel functions include the linear 

kernel function, T( , )i j i jK x x x x= , and the radial basis 

function (RBF) kernel function, 

2

2
( , ) ( )

i

i

x x
K x x exp



−
= − . 

The regression function can be obtained by solving Formula 

(5), as shown in Formula (6): 

 

1

( ) ( ) ( , )
l

i i i j

i

f x K x x b  

=

= − +  (8) 

 

For sample xi, define an edge function as shown in formula 

(7): 

 

1

( ) ( )
l

i i i ij j i

j

h x f x y Q y b
=

 − = − +  (9) 

 

The penalty coefficient C plays a very important role in the 

complexity and stability of the model. The RBF kernel 

parameter σ determines the width of the insensitive region of 

the regression function to the sample data [20, 21]. Therefore, 

in this paper, optimization is sought between the penalty 

coefficient C and the kernel parameter σ based on the PSO 

algorithm. In addition, a mean squared error (MSE) that can 

reflect the regression performance of the SVR is selected as 

the fitness function, as shown in Formula (8): 

 

1

n
i

i

y y
MSE

n=

−
=   (10) 

 

where, �̂� is the predicted value of the icing load, yi is the actual 

value of the icing load, and n is the sample size of the test set. 

 

 
 

Figure 1. Illustration of nonlinear mapping from the input 

space to a high-dimensional feature space 

 

 

3. A COMBINED PREDICTION MODEL FOR THE 

ICING LOAD BASED ON EEMD-SVR 

 
The icing load data for power transmission lines are 

characterized by a large fluctuation range, nonlinearity, non-

stationarity, and randomness, which seriously hinder the 

establishment of a prediction model and has a relatively large 

effect on the prediction precision. The use of EEMD to 

separate the various components in the time series of the icing 

load weakens the non-stationarity of the signal, and then PSR 

is carried out for each component and SVR is used for 

modeling and prediction. Finally, the predicted values of the 

various components are linearly superimposed to obtain the 
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predicted value of the icing load. Figure 2 is a flowchart of the 

combined prediction model for the icing load of the power 

transmission lines based on EEMD and SVR put forward in 

this paper. The specific modeling steps are as follows: 

Step 1: Carry out preprocessing on the icing load data set, 

including outlier extraction, data normalization, and so on; 

Step 2: Use the EEMD algorithm to decompose the time 

series for the icing load to obtain the subsequence components 

(IMF1 to IMFn) and the residual component rn(t); 

Step 3: Use the mutual information method and the false 

nearest neighbor method to determine the optimal delay time 

τ and the embedding dimension m, respectively, of the various 

IMF components, and reconstruct the phase space for various 

subsequences; 

Step 4: Separately establish an SVR model for different 

reconstructed IMF subsequences, select the optimal kernel 

function, and use the PSO algorithm to optimize and select the 

model parameters; 

Step 5: Superimpose the prediction result of each 

subsequence to obtain the predicted value of the icing load; 

Step 6: Compare with the actual icing load, calculate the 

error index, and carry out error analysis. 

 

3.1 Preprocessing of sample data 

 

To reduce the interference of abnormal data with the 

regression performance and accelerate the training speed and 

convergence speed of the prediction model, the min-max 

normalization method is used in this paper to carry out 

normalization processing on the sample set. 

 

( ) ( )g min max minx x x x x= − −  (11) 

 

where, xg is the data after normalization, x is the original data 

in the sample set, and xmin and xmax are, respectively, the 

minimum value and the maximum value of x. 

3.2 PSR parameter setting 

 

After EMD or EEMD decomposition is carried out for the 

time series of the icing load, a series of IMF components with 

different scales and a residual component are generated, and 

the time series of the icing load becomes stationary. PSR can 

extract and recover the variation rule of the original icing load 

from the time series. Moreover, in PSR, the selection of the 

time delay τ and the embedding dimension m determines the 

degree of similarity of the reconstructed phase space with the 

original system. 

The main selection methods for the time delay are the 

autocorrelation function method and the mutual information 

method. The autocorrelation function method is mainly 

suitable for use in linear and small dataset problems, and it can 

only extract a linear correlation of the time series space. The 

mutual information method is suitable for use in nonlinear 

time series. Therefore, the time corresponding to the first time 

the mutual information function reaches the minimum value 

point is selected in this paper as the delay time of PSR. For the 

time series of the icing load {xi, i=1,2,…,N}, set the delay time 

as τ, and then the time series changes to {xi+τ, i=1,2,…,N}. Let 

P(xk) be the probability that xk appears in the original time 

series {xi, i=1,2,…,N}, P(xk+τ) be the probability that xk+τ 

appears in the time series {xi+τ, i=1,2,…,N} after a delay of τ, 

and P(xk, xk+τ) be the probability that xk and xk+τ appear together 

in the two series, and then the mutual information function can 

be expressed as: 

 

( , )
( ) ( , ) log

( ) ( )

N
k k

k k

k i k k

P x x
I P x x

P x P x


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

 +

+

= +

=  (12) 

 

where, the optimal delay time τ is the first minimum value of 

the mutual information function. 
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Figure 2. Flowchart of icing load forecasting based on EEMD-PSR-SVR 
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The basic principle of the false nearest neighbor method is 

that as the embedding dimension m increases, the track of 

chaotic motion could be gradually opened. The false nearest 

neighbor points (two points that are originally not adjacent to 

each other that become adjacent to each other after projection) 

could be gradually removed, and the original chaotic motion 

trajectory could be gradually restored. The determination 

method for the embedding dimension by the false nearest 

neighbor method is to continuously increase the embedding 

dimension m starting from 2, calculate the proportion of false 

nearest neighbor points, and increase the embedding 

dimension until the proportion of false nearest neighbor points 

is less than 5% or not changing. The corresponding embedding 

dimension is the value that is sought. 

PSR can expand the subsequence after the EEMD 

decomposition to N-(m-1)τ samples, wherein there are m input 

dimensions and one output dimension. In this paper, the SVR 

model is used to predict the various subsequences after 

reconstruction to obtain the final prediction result for the icing 

load. 

 

3.3 SVR model 

 

In this paper, SVR is used to establish a prediction model 

for the subsequences of the icing load. Different kernel 

functions are used in connection with different decomposition 

sequences, and the PSO algorithm is introduced to optimize 

and select the model parameters. The specific steps are as 

follows: 

Step 1: Select the appropriate training samples and test 

samples from the data after PSR; 

Step 2: Select different kernel functions to test the training 

data. An RBF kernel function with a strong local adaptive 

capability can be used in connection with subsequences with 

obviously greater fluctuations, and a linear kernel function is 

selected for training subsequences with relatively small 

fluctuations. 

Step 3: Use the PSO algorithm to find the optimal 

parameters in connection with different training kernel 

functions. A model that uses linear kernel functions for 

training only needs to optimize and select the penalty 

coefficient C, while a model that uses the RBF kernel function 

for training needs to simultaneously optimize and determine 

C  and the insensitive loss coefficient σ; 

Step 4: Use the selected kernel function and the model 

parameters to establish a regression model for the training data. 

Input the prediction data, and test the prediction result. If the 

prediction result is not in line with the prediction precision, 

then go back to Step 2; 

Step 5: After the kernel function and the related parameters 

are optimized and determined, input the subsequence 

prediction data to carry out prediction and error analysis; 

Step 6: Superimpose the predicted value obtained by each 

subsequence to obtain the final prediction result for the icing 

load. 

 

 

4. CASE ANALYSIS 

 

4.1 Data source and evaluation indexes 

 

In this paper, algorithm verification was carried out using 

the real-time icing loads collected by the online monitoring 

system, “Tao Luo Xiong”, which is used in the power 

transmission lines of the Yunnan Power Grid located in 

northeast Yunnan, which has 2872 data points corresponding 

to the intermittent ice-accretion processes, and a sampling 

interval of 15 minutes. The time series of the icing load is 

shown in Figure 3. The first 2,021 data sample points were 

selected as the model training set, and data sample points 

2,022-2,160 were the test set. The descriptive statistics of the 

icing load data are shown in Table 1. 

The following three indicators were used to evaluate the 

regression performance of the model: 

(1) Mean Absolute Error (MAE) 

 

1

1 n

i

i

MAE y y
n =

= −  (13) 

 

(2) Mean Relative Error (MRE) 

 

1

1
( )

n

i i

i

MRE y y Mean y
n =

= −  (14) 

 

(3) Root Mean Square Error (RMSE) 
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1

1 n

i

i

RMSE y y
n =

= −  (15) 

 

where, �̂� is the predicted value of icing, yi is the actual value 

of icing, and n is the sample size of the test set.  
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Figure 3. Time series of the icing load for the Tao Luo 

Xiong line 

 

Table 1. Descriptive statistics of the icing load data. (unit:kg) 

 
Data Min Max Mean SD 

Icing load 0 951.9 40.23 133.75 

 

4.2 Mode decomposition and optimization of the 

parameters 

 

The EMD was carried out on the time series of the icing 

load for the power transmission lines in the field shown in 

Figure 3 to obtain 13 IMF components (IMF1-IMF13) and one 

residual component r13(t), as shown in Figure 4(a), and EEMD 

was carried out to obtain 10 IMF components (IMF1-IMF10) 

and one residual component r10(t), as shown in Figure 4(b). 

Comparing Figure 3, Figure 4(a) and Figure 4(b), the intrinsic 

model components after the EMD or EEMD decomposition 

are obviously more stationary than those of the original time 

series of the icing load, and the IMF components sequentially 
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characterize the frequency spectrum features of the original 

series from high frequency to low frequency. 

The mutual information method and the false nearest 

neighbor method were used to determine the delay time τ and 

the embedding dimension m of the various IMF components, 

and the PSO algorithm was introduced to find the optimal 

parameters for our proposed model and other comparing 

models of each subsequence, including the C and δ of SVM 

model, hidden layer nodes L, n of ELM model and RBF model, 

respectively. See Table 2 and Table 3 for the optimal values of 

the parameters for each model of subsequence component 

obtained for the EMD decomposition and EEMD 

decomposition, respectively.  

 

4.3 Prediction results for the icing load 

 

SVR models were separately established to carry out the 

prediction in accordance with the characteristics of the 

different IMF components. From the subsequences obtained 

by the EEMD decomposition, one can see that the intrinsic 

model components IMF1-IMF4 had a high fluctuation 

frequency and relatively high complexity. After multiple 

model trainings, the RBF kernel function was selected as the 

kernel function for the model training. Components IMF5-

IMF10 and the residual component were more stationary, and 

a linear kernel function was selected to carry out the prediction. 

Sigmoid function was selected as the kernel function for the 

combined ELM Models for training. 

 

    
 

(a) EMD results for the icing load signal                                         (b)EEMD results for the icing load signal 

 

Figure 4. EMD and EEMD results for the icing load signal 

 

Table 2. EMD combined model parameters of each subsequence 

 

Subsequence 
PSR  EMD-SVR EMD-ELM  EMD-RBF 

m τ  C σ L  n 

IMF1 4 15  70.7729 4.3572 3  45 

IMF2 4 6  18.5735 2.7742 21  27 

IMF3 4 11  2.642 7.3416 14  51 

IMF4 4 14  62.6944 2.2978 25  39 

IMF5 4 17  2.0232 - 11  43 

IMF6 4 17  10.5193 - 21  61 

IMF7 3 23  99.8593 - 7  74 

IMF8 3 25  11.1958 - 38  10 

IMF9 3 22  15.1366 - 21  18 

IMF10 2 17  7.9203 - 6  17 

IMF11 2 15  10.3403 - 12  10 

IMF12 2 20  28.4332 - 9  19 

IMF13 2 7  57.6768 - 12  83 

R13(t) 1 9  36.3223 - 6  44 

Note: “-” indicates that the subsequence prediction model does not have this parameter value 
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Table 3. EEMD combined model parameters of each subsequence  

 

Subsequence 
PSR  EEMD-SVR  EEMD-ELM  EEMD-RBF 

m τ  C σ  L  n 

IMF1 4 11  5.1455 6.6155  3  39 

IMF2 5 2  11.7762 4.2876  7  96 

IMF3 6 4  16.4824 3.1952  8  47 

IMF4 5 9  7.9869 2.2978  21  49 

IMF5 4 17  74.3221 -  17  54 

IMF6 3 27  5.6235 -  18  27 

IMF7 2 20  5.0396 -  7  34 

IMF8 2 23  19.7338 -  13  14 

IMF9 2 17  2.7042 -  7  8 

IMF10 2 7  4.2876 -  48  59 

R10(t) 1 10  7.3518 -  52  7 

Note: “-” indicates that the subsequence prediction model does not have this parameter value 

 

    
 

(a) EMD-PSR-SVR forecasting results of each subsequence            (b)EEMD-PSR-SVR forecasting results of each subsequence 

 

Figure 5. EMD-PSR-SVR and EEMD-PSR-SVR forecasting results of each subsequence 

 

Table 4. Evaluation indexes for icing load of nine models  

 

Prediction Model 
Evaluation Indexes 

MAE MRE RMSE 

RBF 68.3524 22.8% 151.3562 

ELM 62.7352 24.5% 125.4293 

SVR 56.9396 17.7% 103.6935 

EMD-PSR-RBF 55.7536 17.3% 94.9527 

EMD-PSR-ELM 58.0701 18.1% 97.0145 

EMD-PSR-SVR 52.9575 16.5% 93.4633 

EEMD-PSR-RBF 48.1368 14.9% 70.5701 

EEMD-PSR-ELM 50.2635 15.3% 78.3392 

Proposed model 44.2635 13.7% 66.3392 
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Figure 6. Comparison of results among nine icing load forecasting models: (a) RBF, (b) ELM, (c) SVR, (d) EMD-PSR-RBF, (e) 

EMD-PSR-ELM, (f) EMD-PSR-SVR, (g) EEMD-PSR-RBF, (h) EEMD-PSR-ELM, (i) Proposed model 

 

 

 

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

1100

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

RBF

Actural icing load data

a

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

ELM

Actural icing load data

b

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

SVM

Actural icing load data
c

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EMD-PSR-RBF

Actural icing load data

d

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EMD-PSR-ELM

Actural icing load data

e

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EMD-PSR-SVR

Actural icing load data

f

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EEMD-PSR-RBF

Actural icing load data

g

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EEMD-PSR-ELM

Actural icing load datah

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

1000

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EEMD-PSR-SVR

Actural icing load datai

a

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

RBF

b

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

ELM
c

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

SVM

d

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EMD-PSR-RBF e

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EMD-PSR-ELM f

2022 2042 2062 2082 2102 2122 2142 2162
0

100

200

300

400

500

600

700

800

900

T(15min)

Ic
in

g
 l

o
a

d
(K

g
)

 

 

EMD-PSR-SVR

86



 

 
 

Figure 7. Comparison of absolute curves of error among nine icing load forecasting models: (a)RBF, (b) ELM, (c) SVR, (d) 

EMD-PSR-RBF, (e) EMD-PSR-ELM, (f) EMD-PSR-SVR, (g) EEMD-PSR-RBF, (h) EEMD-PSR-ELM, (i) Proposed model 

 

Finally, the prediction results of the various IMF 

components were superimposed to obtain the predicted value 

of the icing load. To verify the validity and robustness of the 

model in this paper, RBF model, ELM model, SVR model 

EMD-RBF model, EEMD-RBF model, EMD-ELM model, 

EEMD-ELM model and an EMD-SVR model were 

established to carry out the prediction of the icing load and to 

calculate the MAE, MRE, and RMSE of each model. The 

prediction results for the various subsequences of EMD-PSR-

SVR model and EEMD-PSR-SVR model in this paper are 

shown in Figure 5(a) and Figure 5(b), respectively. The 

prediction results for the icing load using the nine models and 

the error curve are shown in Figure 6 and Figure 7, 

respectively. See Table 4 for the error indicators of nine icing 

load prediction models. 

Comparing the prediction error evaluation indexes for the 

icing load in Table 4 and the icing load prediction curves in 

Figure 6 and the absolute curves of error in Figure 7, it is easy 

to see that: 

1) All nine models can accurately predict the increasing and 

decreasing trends of the icing load for the power transmission 

lines in the field; 

2) Compared to the traditional SVR model, the EMD-SVR 

model and the model of this paper can effectively improve on 

the precision of the prediction model by performing the mode 

decomposition of the time series waveforms. In doing so, the 

MAE decreased by 6.99% and 22.3%, respectively; the MRE 

decreased by 1.2% and 3.94%, respectively; and the RMSE 

decreased by 9.86% and 36.1%, respectively. 

3) In comparison with the EMD combined model, it can be 

found that the model of this paper effectively avoided the 

interference with the waveform decomposition generated by 

the aliasing phenomenon that appears in the traditional EMD 

algorithm, thereby verifying the reasonableness of the model 

of this paper. 

4) Due to its real-time nature and accuracy, the model in this 

paper can effectively carry out the fitting and tracking of the 

icing load of power transmission lines in the field and react in 

a timely manner when the icing load is high, which proves the 

validity of the combined prediction model proposed in this 

paper. 

 

4.4 Evaluate risk status using fuzzy inference system 

 

For overhead power transmission lines, wind and ice storms 

may be treated as persistent design situations that have a 

decisive effect on the reliability of concrete poles and steel 

towers. Their safety and the same optimal solution are closely 

related to extreme action effects caused by wind storm 

pressures on the ice-free and ice-covered surfaces of structures 

and conductors [22, 23]. The fuzzy inference system is the 

actual process of mapping from a given input to an output by 

the fuzzy logic [24], which utilized to formalize reasoning and 

take a decision to exhibit the safety of transmission line towers 

in our study. The membership function is the core of fuzzy 

inference system, which reflect the gradualism, stability and 

continuity of the fuzzy concept, and a complete membership 

function is taken as a convex F set. The commonly used 

methods to determine the membership function are binary 

comparison sorting method, fuzzy statistics method, neural 

network method and expert experience method. For the 

convenience of calculation and processing, the membership 

functions obtained by different methods are often 

approximated into familiar analytic functions, such as triangle, 

bell, trapezoid, gaussian and Sigmoid. In this paper, the 

triangle function is utilized as the membership function and 

shown in Figure 8, the l1, l2, l3, l4, and l5 are icing load of five 

risk status of transmission line towers, which are very safe, 

safe, average, dangerous and very dangerous, respectively. 

 

 
 

Figure 8. The membership function between icing load and 

risk status 

 

Table 5. The functions and variables utilized in fuzzy logic 

controller 

 

Patent block Class 

Fuzzy logic controller Struct 

Type Mamdani 
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Or method Max 
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Implication method Min 
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Table 6. Risk status of prediction of testing set sample 

 

Point of test set Range of prediction 

result(kg) 

Risk status 

2022-2076, 2146-

2160 

0-177.9 Very safe 

2077-2089 189.8-279.3 Safe 

2090-2106 315.7-594.1 Average 

2107-2120 637.1-819.6 Dangerous 

2121-2145 826.1-951.9 Very dangerous 

 

A fuzzy logic controller is used to a design variables to 

exhibit the risk status of transmission line towers during the 

icing load of power transmission line under different icing 

loading conditions, and the prediction result of EEMD-PSR-

SVR model and the risk status of transmission line towers as 

input and output of fuzzy inference system, respectively. The 

flowchart of evaluate risk status based on fuzzy inference 

system is shown in Figure 9. 

In this study, the range of icing load of the “Tao Luo Xiong” 

transmission line must be equal or less than 1200kg, otherwise 

greater than the limits may damage the equipment or device 

on whole transmission line, and there are five risk status of 

transmission line towers [25-27]. The functions and variables 

utilized in fuzzy logic controller are listed in Table 5. The input 

and output membership functions are drawn by triangular 

membership functions and shown in Figure 10. Therefore, the 

icing load of power transmission line range from 830 to 

1200kg have been selected as the very dangerous that need 

deicing and maintenance decisions instantly, and other are 

represented accordingly by very safe, safe, average and 

dangerous. The risk status of prediction of testing set sample 

points 2,022-2,160 as listed in Table 6. 

 

 
 

Figure 9. Flowchart of evaluate risk status based on fuzzy inference system 

 

 
 

Figure 10. Icing load of power transmission line and risk status membership functions 

 

 

5. CONCLUSION 

 

A prediction model for the icing load of power transmission 

lines to ensure the security and reliability of the power grid 

was established based on EEMD, PSR and SVR that 

decomposed the time series signals of the original icing load 

into more stationary waveforms. The PSO algorithm, mutual 

information method, and false nearest neighbor method were 

introduced to determine the optimal SVR and PSR parameters. 

Compared to the other eight traditional icing load prediction 

model including SVR model, EMD-SVR model, ELM model, 

EMD-ELM model, EEMD-ELM model, RBF model, EMD-

RBF model and EEMD-RBF model, the following 

conclusions were obtained: 

(1) The selection of values for the model parameters and the 

PSR parameters directly affects the prediction precision. The 

use of optimization algorithms such as PSO can improve the 

convergence and iteration speeds and effectively prevent the 

model from falling into local extremum values; 

(2) PSR can better mine the nonlinear dynamic 

characteristics of the time series of the icing load and can 

reduce the effect of the non-stationarity and sensitivity present 

in the original time series of the icing load on the prediction 

results; 

(3) A combined prediction model can effectively improve 

the prediction precision. Both the EMD and EEMD combined 

model obtained better prediction results lower prediction error 

than the single model; 

(4) Utilizing fuzzy inference system to determine the risk 

status of transmission line towers for making deicing and 

maintenance decisions instantly; 

(5) The example shows that the model of this paper can 

better track the variation rule of icing in the field. In regions 

with frequent power transmission line icing, the application of 

this prediction model can better achieve the real-time 

prediction of icing loads. 
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