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 Epilepsy is the most common form of neurological disease. Patients with epilepsy may 

experience seizures of a certain duration with or without provocation. Epilepsy analysis can 

be done with an electroencephalogram (EEG) examination. Observation of qualitative EEG 

signals generates high cost and often confuses due to the nature of the non-linear EEG signal 

and noise. In this study, we proposed an EEG signal processing system for EEG seizure 

detection. The signal dynamics approach to normal and seizure signals' characterization 

became the main focus of this study. Spectral Entropy (SpecEn) and fractal analysis are used 

to estimate the EEG signal dynamics and used as feature sets. The proposed method is 

validated using a public EEG dataset, which included preictal, ictal, and interictal stages 

using the Naïve Bayes classifier. The test results showed that the proposed method is able 

to generate an ictal detection accuracy of up to 100%. It is hoped that the proposed method 

can be considered in the detection of seizure signals on the long-term EEG recording. Thus 

it can simplify the diagnosis of epilepsy.  
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1. INTRODUCTION 

 

Epilepsy is considered one of the most common 

neurological conditions, and it has affected around 50 million 

people in the world [1]. The most susceptible patients are older 

people and children with a prevalence rate of 0.7-1.0% and 

some patients with comorbidities [2]. People with epilepsy 

sometimes go through discrimination, misunderstanding, and 

depression. Meanwhile, this disease is endangering if a risky 

activity performed by a person living with epilepsy, epilepsy 

would lead to death [3, 4]. Diagnosis of epilepsy is 

individualized, and so are the treatment decisions. 

Neurologists will diagnose that someone has epilepsy when 

they experience an epileptic seizure and tend to have recurrent 

seizures in the next 24 hours. In particular, an individual with 

a probability of having another seizure after having two 

unprovoked seizures for the next ten years can also be 

diagnosed as epilepsy [5]. 

Seizure preventions can be done to avoid brain damage in 

seizing an early-stage seizure detection. This action is 

performed by analyzing the brain signal activity. When a 

seizure occurs, the brain signal activity is different from the 

normal signal activities in terms of patterns, amplitudes, and 

frequency [6]. Electroencephalogram (EEG) is one of the most 

effective techniques to record brain signals of all methods. In 

the past, seizures were examined and diagnosed by 

neurologists analyzing the recordings manually, which were 

tiring, expensive, and time-consuming [7]. The most time-

consuming and tiring part is the measurement of the 

considerable length of EEG signal recordings. Aside from it, 

neurologists must have high skill and talent in visual 

diagnosing and interpreting, which is very hard to find [8]. 

Therefore, the research groups are developing a potential 

Computer-Aided Diagnosis (CAD) system to detect seizures 

automatically and facilitate long-term EEG monitoring by 

extracting and classifying the signals' features at the end [6, 7, 

9]. 

A plethora of signal processing studies have reported 

epileptic seizure detection based on the number of the dynamic 

EEG signals' irregularity and nonlinearity properties. One of 

the foremost algorithms used in extracting features is chaotic 

measurements, such as entropies and fractal dimensions. 

Entropy calculations have been used since they are better in 

understanding the complex EEG signals where discriminative 

shape forms of the signals exist [10]. Moreover, entropy can 

identify the dynamics of the EEG signals well [11]. 

Permutation entropy (PE) has been widely used to detect the 

dynamic changes of the complex system, even in the primary 

dataset of three to eight patients in several universities, such as 

the University of Florida Health, with more than 25 channels 

used [12, 13]. In the paper [14], Wavelet entropy (WEn) 

showed a better result in detecting the nonstationary signal 

than spectral analysis. Meanwhile, a review study done by 

Acharya et al. tackled the statement since spectral entropy 

(SpecEn) performed better than the other entropies [11]. In 

another study, Wijayanto et al. adequated Katz's fractal 

dimensions to detect seizure since they were very beneficial in 

handling the irregularity property of EEG signals [4]. 

This research presents a dynamics approach of EEG signals 

to detect seizures with no decomposition process involved but 

can provide competitive accuracy. EEG signals are filtered in 

a suitable frequency range to remove noises and other artifacts. 

Then, three feature extraction algorithms are calculated, 

namely SpecEn, Katz fractal, and Sevcik fractal. These 

features are put together into feature sets. The robustness of 

the proposed methods is examined using Naïve Bayes on the 

dataset consisted of three classes: preictal, interictal, and ictal. 

This paper is orderly written as follows. Section 2 explains 
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the EEG dataset used along with the proposed methods applied 

in this study, SpecEn, Katz fractal, Sevcik fractal, and Naïve 

Bayes. Section 3 presents and discusses the results achieved in 

this paper. Lastly, a brief conclusion is declared in Section 4. 

 

 

2. MATERIAL AND METHOD 

 

2.1 Epileptic EEG dataset 

 

This study worked on an open EEG dataset collected in the 

Neurology and Sleep Centre, Hauz Khaz, New Delhi, India. 

Since it is an open dataset, it can be legally downloaded 

through Researchgate [15]. The dataset consists of various 

recordings from ten patients. The signals were recorded using 

200 Hz sampling frequency in 16 scalp EEG electrodes and 

complying with the international 10-20 electrode placement 

rule. A filtering process was performed by applying a band-

pass filter (0.5 and 70 Hz). This dataset defined three classes, 

i.e., preictal (X), interictal (Y), and ictal (Z), with 50 

recordings each and 5.12 of length. Figure 1 shows the sample 

of the recorded signal for three classes. This study arranged 

several scenarios to validate the proposed method's 

performance in classifying preictal, interictal, and ictal, which 

is described in section 3.  

 

2.2 Spectral entropy 

 

Spectral entropy (SpecEn) is a measure of the irregularity 

of a dynamic or irregular signal. SpecEn calculates the change 

of entropy in the spectral power amplitude component of the 

EEG signal at each frequency. This method starts with 

segmenting the signal in a certain length and then continues to 

the spectral power estimation using Welch's periodogram. The 

measure of the estimated power spectral irregularity is 

calculated using entropy. SpecEn is then calculated for each 

epoch of 1024 data points (5.12 seconds) with a window length 

of approximately 0.17 seconds. These values are then 

averaged to obtain the mean SpecEn as the feature set. 

 

2.3 Katz and Sevcik Fractal Dimension 

 

According to Katz's method, the Katz Fractal Dimension 

(KFD) directly calculates the time-series signals [16]. The sum 

and average of the Euclidean distances in between successive 

points of the sample are measured along with the average 

length of the first and the other point of the sample 

simultaneously [17]. The KFD of the sample is written in Eq. 

(1) as D: 

 

log( / ) log( )

log( / ) log( ) log( / )
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+
 (1) 

 

where, L is the time-series data length, a is the average 

distance, d is the other point of the sample, and n is L per a that 

states the total steps exist in KFD waveform [18]. 

Instead of calculating directly, Sevcik Fractal Dimension 

(SFD) approximates the fractal dimension from the Hausdorff 

dimension for the sampled time-series data [19, 20]. The 

measurement of SFD is defined in Eq. (2) as SevFD. 
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where, L is the curve length in the unit square, and N is the 

total of segments [18]. 

 

2.4 Performance validation using Naïve Bayes  

 

Naïve Bayes (NB) is one of the simplest probabilistic 

classifiers adopting the Bayesian theory of assuming that the 

features are independent [21]. Here, the assumptions are called 

event models of NB. Since the assumptions are common and 

very simple, NB has smoothly solved many complex 

classification problems such as text and seizure classification 

[22, 23]. Moreover, the required training data is less than the 

other classifiers. NB uses the maximum likelihood to estimate 

the occurrence absence of the model [21]. 

 

 
 

Figure 1. EEG signals sample of preictal, ictal, and interictal 
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There are two most popular NB classifiers with different 

event models. First, the Bernoulli event model which was 

mainly used in classifying discrete signal. Second, the 

Gaussian event model is popularly used to classify continuous 

signals. This study utilized the Gaussian event model since the 

recorded EEG signals are continuous signals [24]. The process 

starts with the calculation of the prior probability of each class. 

Then, the features' contribution is combined with the prior 

probability to get the maximum likelihood that can be 

calculated using Eq. (3).  
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Here ( )2,c cN    is a separate Gaussian with the mean 

and variance vectors of the features, respectively. The �⃗� is the 

input EEG signals, c is class, and k is the prior probability. 

 

 

3. RESULTS AND DISCUSSION 

 

Before measuring SpecEn and fractal dimensions, the signal 

was filtered in the 2-30 Hz range using Butterworth FIR for 

baseline and muscle noise reduction. This frequency range 

also represents delta, theta, alpha, and beta EEG activity. After 

performing the filtration, the mean SpecEn, Katz fractal, and 

Sevcik fractal were measured. Figure 2 shows the mean of the 

SpecEn, Katz fractal, and Sevcik fractal. 

 

 
 

Figure 2. The mean and deviation of SpecEn, Katz, and 

Sevcik of the interictal, preictal, and ictal stage 

 

The proposed feature extraction method represents a 

quantitative measure of the irregularity in a dynamic signal. A 

larger value indicates a more complex signal. Figure 2 shows 

that the irregularity in the ictal stage is lower than the interictal 

and preictal. We found that the ictal state has the lowest 

irregularity measure than interictal and preictal, which is 

consistent for all methods. This means that there is a decrease 

in signal complexity. The decrease in the dynamic level of the 

EEG signal is indeed related to the presence of pathology. A 

normal EEG signal is more complex than an abnormal EEG 

signal [25, 26]. The proposed feature extraction method is able 

to characterize and differentiate interictal, preictal, and ictal 

signals quantitatively.  

The validation of the proposed method is done by applying 

several scenarios, such as shown in Table 1. This validation 

involves Naïve Bayes with a 5-fold cross-validation method to 

split training data and test data. The feature extraction stage 

generates three values that are used as the feature vectors for 

all classification scenarios. No feature selection process is 

applied in this study. 
 

Table 1. Test scenario 
 

Scenario Classification Problem 

A Interictal vs. ictal 

B Preictal vs. ictal 

C Interictal vs. preictal 

D Non-ictal (pre and inter) vs. ictal 

E Interictal vs. ictal vs. preictal 

 

Table 2 shows the classification accuracy generated by 

Naïve Bayes as well as the confusion matrix for each scenario. 

It is shown that the system can produce 100% of detection 

accuracy on interictal vs. ictal classification problems. Slightly 

lower, the preictal vs. ictal classification problems achieved an 

accuracy of 96%. Since pre-ictal and inter-ictal are similar 

conditions that occur before ictal, we merge both conditions 

into the non-ictal class. This scenario achieves an accuracy of 

97.3%. Meanwhile, the lowest accuracy was found in the 

interictal and preictal classification problems. The validation 

test results of the proposed feature extraction method show 

that this system is capable of producing high accuracy (> 95%) 

in ictal vs. non-ictal classification problems.  

Validation was carried out by comparing the proposed 

method's performance with previous studies that used the same 

dataset resource. A summary comparison with previous 

studies is presented in Table 2 and Table 3. In the ictal vs. 

interictal scenarios, the detection accuracy reached 100%, 

which outperformed studies by Gupta et al. [27], Li et al. [28] 

and Hadiyoso et al. [29]. Figure 3 shows the distribution of 

features on ictal vs. interictal having a significant boundary 

line, which generates perfect accuracy. Moreover, the EEG 

dataset used has low noise and short duration, leading to a 

relatively simple computation.  
 

Table 2. Confusion matrices of five scenarios used in this study 

 
 (a)  

A Inter-ictal Ictal 

Inter-ictal 50 0 

Ictal 0 50 
 

 (b)  

B Pre-ictal Ictal 

Pre-ictal 48 2 

Ictal 2 48 
 

 (c)  

C Inter-ictal Pre-ictal 

Inter-ictal 46 4 

Pre-ictal 17 33 
 

 (d)  

D Non-ictal Ictal 

Non-ictal 98 2 

Ictal 2 48 
 

   (e)    

E Inter-ictal Ictal Pre-ictal 

Inter-ictal 46 0 4 

Ictal 0 48 2 

Pre-ictal 14 2 34 
 

0

0.5

1

1.5

2

2.5

Spectral Entropy Katz Sevcik

Interictal PreIctal Ictal
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Table 3. System performances of the proposed method 

 
Scenario Sens. (%) Spe. (%) Acc. (%) 

A 100% 100% 100% 

B 96% 96% 96% 

C 73% 89.2% 79% 

D 98% 96% 97.3% 

E 85.3% 92.7% 85.3% 

 

We also highlighted the ictal vs. preictal scenario, the 

method's proposed performance outperforming the study by 

Gupta et al. [27], Hadiyoso et al. [29] and Sharma et al. [30] 

with an accuracy of 79.7, 95%, and 90%, respectively. 

Meanwhile, the interictal vs. preictal scenario also 

outperformed the study by Gupta et al. and Wijayanto et al. 

[27, 31]. However, it is not higher than the accuracy produced 

by the study of Li et al. [28]. Actually, ictal vs. preictal and 

interictal vs. preictal scenarios were not superior to studies by 

Li et al. [28], yet at least the resulting accuracy is similar. 

Overall, these results are very encouraging because this 

system has the opportunity to be developed in the application 

of seizure prediction. Meanwhile, the interictal and preictal 

classification problems still produce quite a low accuracy. This 

refers to their nature which has similar characteristics in that 

these signals occur before the seizure. As shown in Figure 3, 

the interictal and preictal feature values are almost similar. 

However, in its application, prediction or ictal detection is 

preferred for analysis. Finally, the proposed system is 

expected to assist clinicians in detecting seizures based on 

EEG signals automatically. 

 

 
 

Figure 3. Distribution of Ictal, preictal, and interictal features based on SpecEn, Katz, and Sevcik 

 

Table 3. Summary of comparisons with previous studies 

 
Study Method Scenario Acc. (%) 

Gupta et al. [27] DCT, Hurst Exponent and ARMA 

Interictal vs. ictal 

Preictal vs. ictal 

Interictal vs. preictal 

96.5 

79.7 

74.6 

Li et al. [28] MRBF-MPSO-OLS, GLCM 

Interictal vs. ictal 

Preictal vs. ictal 

Interictal vs. preictal 

99.3 

97.4 

85.7 

Hadiyoso et al. [29] Wavelet Sub-Band Energy and Wavelet Entropy 

Interictal vs. ictal 

Preictal vs. ictal 

Interictal vs. preictal 

96 

95 

80 

Sharma et al. [30] MMSF - OWFB 

Interictal vs. ictal 

Preictal vs. ictal 

Interictal vs. preictal 

100 

90 

N/A 

Wijayanto et al. [31] Wavelet energy 

Interictal vs. ictal 

Preictal vs. ictal 

Interictal vs. preictal 

100 

97 

73 

Proposed study SpecEn, Katz, and Sevcik FD 

Interictal vs. ictal 

Preictal vs. ictal 

Interictal vs. preictal 

100 

96 

78 
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4. CONCLUSIONS 

 

This study observed the dynamic approach of the EEG 

signal to detect epileptic seizure conditions. The main focus 

was to determine the seizure condition instead of the normal 

condition. The dynamic approach analysis was performed by 

calculating the spectral entropy (SpecEn) and the EEG signal's 

fractal dimension using Katz's and Sevcik's methods. The 

feature set was then fed into Naive Bayes with 5-fold cross-

validation. There were five scenarios covering the 

combination of preictal, interictal, and ictal conditions. A 

perfect classification result was achieved in the interictal vs. 

ictal condition. On the other hand, the lowest accuracy of 78% 

was achieved in the interictal vs. preictal condition. The low 

accuracy happened because the nature of the interictal and 

preictal conditions was similar. Both of them occurred right 

before the seizure condition arise. For future works, further 

observation in the EEG signal's time-frequency domain may 

give advantages to see the EEG signal characteristic from two 

different points of view. 
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