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To improve the reconstruction quality of electrical resistance tomography (ERT) images, 

this paper designs and optimizes the finite element model for human lungs. According to the 

computer tomography (CT) scan image on human chest, the entire simulation domain was 

divided into a region of lungs, heart, and spine, and a region of adipose tissue, and the 

boundary curve equations of each region were derived by the improved particle swarm 

optimization (PSO). Based on the prior knowledge, a structural model was established for 

human lungs; the ERT forward problem was solved by the finite element model based on 

grid reconstruction, and the calculated boundary voltage of sensitivity field was taken as the 

theoretical value. Next, two optimization goals were set up: improving the calculation 

accuracy of forward problem, and easing the ill-conditionedness of the sensitivity matrix; 

two variables were configured: the number of layers of the finite element model in each 

region, and the polar diameter ratio of the finite element nodes on each layer to the finite 

element nodes on the boundary of each region corresponding to the same polar angle. On 

this basis, the finite element model was optimized by the improved PSO to adapt to human 

lung ERT. Simulation results show that, under the same experimental conditions, the 

proposed finite element model could solve the forward problem more accurately, improve 

the ill-conditionedness of the sensitivity matrix and the Hessian matrix, and make the 

sensitivity distribution more uniformly, thereby enhancing the accuracy of image 

reconstruction.  
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1. INTRODUCTION

As a novel technology for visualized measurement, 

electrical tomography (ET) is a family of process tomography 

(PT) techniques. Based on the different electrical features of 

the object in the sensitivity field, the ET techniques could be 

divided into electromagnetic tomography (EMT), electrical 

capacitance tomography (ECT), electrical impedance 

tomography (EIT), and electrical resistance tomography 

(ERT). Based on the principle of electromagnetic induction, 

the EMT can reconstruct the distribution state of the magnetic 

permeability for the medium in the sensitivity field [1-6]; 

Based on the principle of capacitance sensitivity, the ECT can 

reconstruct the distribution state of the dielectric constant for 

the medium in the sensitivity field [7-17]; Based on the 

principle of impedance sensitivity, the EIT can reconstruct the 

distribution state of the complex admittance for the medium in 

the sensitivity field [18-24]; Based on the principle of 

resistance sensing, the ERT can reconstruct the distribution 

state of the dielectric resistivity/conductivity for the medium 

in the sensitivity field [25-30]. 

As a major topic in today’s biomedical engineering, the 

ERT is a new-generation medical imaging technology 

developed after morphological and structural imaging. There 

are three prominent strengths of the ERT: functional imaging, 

noninvasiveness, and medical image monitoring. The ERT of 

human lungs is grounded on the principle that different tissues 

and organs differ in resistivity/conductivity, and every 

physiological and pathological condition often correspond to 

a certain change in the resistivity/conductivity of tissues and 

organs. During human lung ERT, a safe excitation current is 

applied to the electrode array on the body surface of the subject, 

creating a sensitivity field in human lungs; then, the effective 

boundary voltage of the field is measured by the data 

acquisition circuit; finally, the ERT inverse problem is solved 

by an image reconstruction algorithm to obtain the 

resistivity/conductivity distribution of tissues and organs in 

the sensitivity field. 

Previous simulations and physical model experiments have 

confirmed that, for the ERT, finite element model applies to 

both forward and inverse problems; optimizing the finite 

element model helps to elevate the calculation accuracy of the 

forward problem, improve the ill-conditionedness of the 

empty field sensitivity matrix, and enhance the solution 

accuracy to the inverse problem [31]. Considering the 

peculiarity of human lung ERT, the finite element model 

should be optimized according to the goodness-of-fit between 

the model and the actual tissues and organs. 

Xiao et al. [32] improved the goodness-of-fit for the region 

of human tissues and organs like lungs, heart, and spine, and 

optimized the finite element model for human lung ERT by the 

improved genetic algorithm (GA), with the aim to improve the 

calculation accuracy of the forward problem and the ill-

conditionedness of the empty field sensitivity matrix. 

However, the inverse problem was not solved desirably due to 

the low goodness-of-fit for the region, as well as the assumed 
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even distribution of tissues and organs (which varies greatly 

from the actual distribution). Under the same experimental 

conditions, the solving accuracy of the inverse problem by the 

image reconstruction algorithm could be improved by using a 

sensitivity matrix that corresponds to the close-to-actual 

distribution. 

To solve the above defects, this paper firstly divides the 

finite element model for human lung ERT into a region of 

lungs, heart, and spine, and a region of adipose tissue, and 

determines the boundary curve equations of the two regions 

with the improved particle swarm optimization (PSO). After 

acquiring the theoretical boundary voltage of the sensitivity 

field, the authors optimized the finite element model for 

human lung ERT with improved PSO, in an attempt to 

improve the calculation accuracy of the forward problem and 

the ill-conditionedness of the sensitivity matrix. In this way, 

the authors solved the forward problem more accurately, 

improved the ill-conditionedness of the sensitivity matrix and 

the Hessian matrix, and made the sensitivity distribution more 

uniformly, thereby effectively enhancing the accuracy of 

image reconstruction. 

2. MATHEMATICAL DESCRIPTION OF ERT

According to the Maxwell’s equations and the Quasi-

Steady-State hypothesis (QSS), the sensitivity field 𝜴 of the 

ERT satisfies: 

0= J (1) 

where, 𝛻 ⋅ is the divergence operator; 𝑱 is the current density 

in the sensitivity field Ω: 

EσJ = (2) 

where, 𝝈 is the dielectric conductivity distribution in the 

sensitivity field Ω; E is the electric field strength. In the 

sensitivity field Ω, the potential distribution 𝜱  and electric 

field strength E basically meet the following relationship: 

ΦE −= (3) 

where, 𝛻 is the gradient operator. 

From formulas (1)-(3), the mathematical model of the ERT 

sensitivity field can be obtained as:  

0)( = Φσ (4) 

Thus: 

02 =+ ΦσΦσ (5) 

If medium in the sensitivity field Ω is uniform, linear, and 

isotropic, 𝜵𝝈 = 0. In this case, formula (5) can be simplified 

to a Laplace equation: 

02 = Φ (6) 

where, 𝛻2 is the Laplace operator.

In the current ERT, the general practice is to apply an 

excitation current at the source and measure the boundary 

voltage of the sensitivity field. Therefore, the ERT technology 

satisfies the Neumann boundary condition: 

j
n

Φ
σ Ω=



 (7) 

where, n is the outer normal direction of the boundary ∂Ω of 

the sensitivity field Ω; j is the current density of the boundary 

∂Ω. In practice, the voltage is measured on the boundary of the 

sensitivity field Ω. Thus, any point 𝐴(𝑥0, 𝑦0)  is usually

selected from the sensitivity field Ω as the reference point for 

zero potential: 

ΩΦ = ),(0),( 0000 yxyx (8) 

3. DESIGN AND OPTIMIZATION OF FINITE 

ELEMENT MODEL

The finite element model for human lung ERT was designed 

by dividing the entire simulation domain into a region of lungs, 

heart, and spine (Region 1), and a region of adipose tissue 

(Region 2), according to the computed tomography (CT) scan 

image on human chest. The finite element model was then 

optimized in two aspects: (1) To improve the goodness-of-fit 

of each region, the boundary curve equations of the two 

regions were determined by improved PSO; (2) To improve 

the calculation accuracy of the forward problem and the ill-

conditionedness of the sensitivity matrix, the improved PSO 

was introduced to optimize the number of layers of the finite 

element model in each region, and the polar diameter ratio of 

the finite element nodes on each layer to the finite element 

nodes on the boundary of each region corresponding to the 

same polar angle.  

Figure 1. The CT scan image on image on human chest 

The design and optimization of the finite element model for 

human lung ERT were implemented in the following steps:  

Step 1. According to the CT scan image on human chest 

(Figure 1), the entire simulation domain was divided into 

Region 1 and Region 2. Then, the boundary curves of the two 

regions were obtained by image processing. On this basis, the 

boundary curve equations were obtained in the form of polar 

coordinates: 
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where, �̄� is the polar diameter; θ is the polar angle; 𝑎𝑖, 𝑏𝑖, and

𝑐𝑖 ∈ [−10,  10]; 20 ≤ 𝑛 ≤ 100 is an integer (in this study, n

is set to 20). 
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Taking 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 as variables, the fitness was calculated 

by: 
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where, 𝑋  is a variable represented by 𝑎𝑖 , 𝑏𝑖 , and 𝑐𝑖(𝑖 =
1,2⋯𝑛); 𝑚 is the number of nodes on the boundary between 

the two regions; 𝜌 is the polar diameter of the boundary nodes; 

�̄�𝑖  and 𝜌𝑖  have the same polar angle; 𝜆𝑖 ∈ (0, +∞). The 𝜆𝑖 
value can be increased if the region is the local area of the array 

on body surface or region of interest (RoI), such as to further 

improve goodness-of-fit. In this study, 𝜆𝑖 was set to 1. 

Then, the improved PSO was introduced to determine the 

boundary curve equations of the two regions. By the improved 

PSO, the velocity V and position X of each particle can be 

respectively updated by: 
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where, 𝑘 is the number of iterations; maxk  is the maximum 

number of iterations; 𝑐1  and 𝑐2  are learning factors; 𝜔 is the 

inertia weight; 𝜔𝑚𝑎𝑥  and 𝜔𝑚𝑖𝑛  are the maximum and 

minimum of the inertia weight, respectively; 𝑟𝑎𝑛𝑑 1  and 

𝑟𝑎𝑛𝑑 2 are random numbers uniformly distributed in (0, 1). 

Step 2. By the boundary curve equations of the two regions, 

the calculation accuracy of the forward problem was compared 

comprehensively; the time consumptions were measured for 

the calculation of the effective boundary voltage of the 

sensitivity field, and of the sensitivity matrix; the total number 

of layers was determined for the finite element model of 

human lung ERT [32]. 

Step 3. The initial finite element model was constructed 

model in a uniformly distributed form, according to the 

boundary curve equations of the two regions, and the total 

number of the finite element model. The triangular finite 

elements and nodes were numbered from inside to the outside 

in counterclockwise direction. When the total number of 

model layers and the relationship between the number of nodes 

on each layer and the serial number of that layer are both fixed, 

the finite element models with different topologies but the 

same numbering principle have the same the bandwidth 𝛾(𝑲) 
of the overall stiffness matrix K, and the bandwidth of each 

model depends on the maximum difference between the node 

numbers in the same triangular finite element of the model. 

Therefore, the following operations were carried out after 

numbering finite elements and nodes to improve optimization 

efficiency, and avoid repeated computations of the overall 

stiffness matrix K:  

The node number of the fixed reference potential was kept 

unchanged, and the node numbers in all the other triangular 

finite elements were taken as variables; the node numbers of 

the finite element model were optimized offline by the 

improved PSO to reduce the bandwidth 𝛾(𝑲) of the overall 

stiffness matrix K, and thus shorten the time to calculate the 

effective boundary voltage of the sensitivity field. During 

these operations, the fitness was calculated by formula (13), 

and the velocity V and position X of each particle were 

respectively updated by formulas (11) and (12). 
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where, 𝑚 is the serial number of the triangular finite element 

corresponding to the maximum difference between node 

numbers; 𝑚𝑖 , 𝑚𝑗 , and 𝑚𝑘  are the serial numbers of the 

corresponding nodes. 

Step 4. According to the prior knowledge of human lungs, 

a structural model was set up for human lungs. Then, the finite 

element model based on grid reconstruction was adopted to 

solve the forward problem of the ERT. The resulting boundary 

voltage of the sensitivity field was taken as the theoretical 

value. 

Step 5. With formula (14) as the fitness function, the finite 

element model was optimized to adapt to human lung ERT by 

improved PSO, using variables like the number of layers of the 

finite element model in each region, and the polar diameter 

ratio of the finite element nodes on each layer to the finite 

element nodes on the boundary of each region corresponding 

to the same polar angle. During the optimization, the velocity 

V and position X of each particle were respectively updated by 

formulas (11) and (12). 
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where, Y is a variable characterizing the number of layers of 

the finite element model in each region, and the polar diameter 

ratio of the finite element nodes on each layer to the finite 

element nodes on the boundary of each region corresponding 

to the same polar angle; RMS  and S  are the root mean square 

and sensitivity matrix corresponding to the prior knowledge 

model of lungs; cond  is the condition number. The RMS  can 

be calculated by: 
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where, 𝑀 is the number of effective boundary voltages of the 

sensitivity field; 𝜱𝐹𝐸𝑀 is the effective boundary voltage of the 

sensitivity field calculated by the finite element model; 

𝜱𝑡ℎ𝑒𝑜𝑟𝑦  is the theoretical effective boundary voltage of the 

sensitivity field obtained in Step 4. 

 

 

4. DESIGN OF FINITE ELEMENT MODEL AND 

OPTIMIZATION RESULTS 

 

Figure 2 compares the actual boundary curves of the two 

regions with the curves fitted by the boundary curve equations. 

Obviously, the boundary curve equations obtained by the 

improved PSO could effectively enhance the goodness-of-fit 

of the two regions. 

Figure 3 shows the preliminary uniformly distributed finite 

element model derived from the boundary curve equations of 

the two regions, and the total number of layers of the finite 
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element model in each region. Figure 4 compares the 

bandwidth γ(K) of the overall stiffness matrix K before the 

node numbers are optimized by improved PSO and that after 

the optimization. It can be seen that, through the optimization, 

the bandwidth γ(K) of the overall stiffness matrix K was 

reduced by 34.0870% from the 575 corresponding to the serial 

number of commonly used nodes to 375. This greatly reduces 

the time to compute the effective boundary voltage of the 

sensitivity field, enhancing the real-time performance of the 

algorithm [33]. 

 

 
 

Figure 2. The comparison between actual and fitted 

boundary curves 

 

 
 

Figure 3. The preliminary finite element model for human 

lung ERT 

 

 
(a) Pre-optimization 

 
(b) Post-optimization 

 

Figure 4. The bandwidths γ(K) of the overall stiffness matrix 

K before and after optimization 

 

Figure 5 presents the structural model of human lungs. 

Figure 6 displays the finite element model, which treats the 

boundary voltage of the sensitivity field obtained by solving 

the ERT forward problem as the theoretical value. It can be 

seen that the model contains 3,697 nodes in 6,944 triangular 

finite elements. 

 

 
 

Figure 5. The structural model of human lungs 

 

 
 

Figure 6. The finite element model for ERT forward problem 

 

As shown in Figure 5, the 𝑅𝑀𝑆  of the preliminary 

uniformly distributed finite element model was 21.1003%, and 

the conditional number of the corresponding sensitivity matrix 

was 1.2367×107, according to the structural model of human 
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lungs (Figure 5) and the theoretical boundary voltage solved 

by the model in Figure 6. From the boundary voltage of the 

sensitivity field obtained by the preliminary model (Figure 7), 

it can be seen that the optimization of node number does not 

affect the calculation accuracy of the forward problem. 

 

 
 

Figure 7. The boundary voltage of the sensitivity field 

obtained by the preliminary model 

 

Figure 8c presents the finite element model for human lung 

ERT optimized by improved PSO. In Figure 8a, finite element 

model 1 was established by adjusting the finite element nodes 

to the boundary of Region 1, and using the improved PSO to 

optimize the number of nodes on each layer, and the polar 

diameter ratio of the finite element nodes to those on the 

boundary of Region 2 with the same polar angle. In Figure 8b, 

finite element model 2 was obtained by dividing the two 

regions according to the traditional equal interval principle. 

Figure 9 shows the convergence curve of the improved PSO 

during the optimization of finite element model 3. 

 

 
(a) Finite element model 1 

 

 
(b) Finite element model 2 

 
(c) Finite element model 3 

 

Figure 8. Three different finite element models 

  

 
 

Figure 9. The convergence curve of the improved PSO 

 

Figure 10 compares the boundary voltages of the sensitivity 

field derived by the three finite element models in Figure 8, 

with the boundary voltage of the sensitivity field calculated by 

solving the forward problem with the finite element model 

based on grid reconstruction as the theoretical value. The RMS 

values of finite element models 1-3 were .2167%, 4.1566%, 

and 1.4202%, respectively. Compared with models 1 and 2, 

the proposed model 3 lowered the RMS by 72.7759%, and 

65.8327%, respectively, and effectively improved the 

calculation accuracy of the forward problem. 

 

 
 

Figure 10. The comparison between the boundary voltages 

of the sensitivity field derived by the three finite element 

models 

 

Based on the prior knowledge model of human lung (Figure 

5), the condition numbers of the sensitivity matrix 

corresponding to finite element models 1-3 were 1.9500×107, 

1.3212×107, and 8.4075×106, respectively. Compared with 

models 1 and 2, the proposed model 3 reduced the condition 

109



 

number by 56.8846%, and 36.3647%, respectively. Hence, our 

model effectively improved the ill-conditionedness of the 

sensitivity matrix, laying the basis for high-quality image 

reconstruction. 

In addition, the reconstruction accuracy of human lung ERT 

images hinges on the uniformity of the sensitivity distribution, 

which is usually measured by index P: 

 

𝑃 =
∑ ∑ |𝑝𝑖𝑗|

𝑘
𝑗=2𝑖=1

𝑘
 (16) 

 

where, 𝑘 is the number of effective boundary voltages of the 

sensitivity field; 𝑝𝑖𝑗  can be expressed as: 

 

𝑝𝑖𝑗 =
𝑆𝑖𝑗
𝑑𝑒𝑣

𝑆𝑖𝑗
𝑎𝑣𝑔⁄  (17) 

 

where, 𝑆𝑖𝑗  is the sensitivity of the electrode pair i-j; 𝑆𝑖𝑗
𝑎𝑣𝑔

 and 

𝑆𝑖𝑗
𝑑𝑒𝑣  are the mean and standard deviation of the sensitivity 

matrix after the introduction of the triangular finite element 

area coefficient. 

The smaller the P value, the better the uniformity of the 

sensitivity distribution, and the higher the solving accuracy of 

ERT inverse problem. Based on the prior knowledge model of 

human lung (Figure 5), the P values of finite element models 

1-3 were8.1635, 8.8428, and 8.0233, respectively. Compared 

with models 1 and 2, the proposed model 3 reduced the P value 

by 1.7174%, and 9.2674%, respectively, making the 

sensitivity distribution more uniform. 

 

 

5. COMPARISON OF IMAGE RECONSTRUCTION 

RESULTS  

 

To verify the effectiveness of the proposed finite element 

model 3 in improving the reconstruction quality of human lung 

ERT images, several models were constructed for human 

lungs with lesions at different positions (Figure 11). Under the 

same experimental conditions (Intel Core Duo T8100 CPU, 

3.00GB, 2.10GHz), the three finite element models and their 

sensitivity matrices were respectively applied to the image 

reconstruction by improved Newton-Raphson algorithm. 

Figure 12 compares the conditional numbers of the Hessian 

matrix corresponding to the three models during the iterative 

reconstruction process. 

Currently, the image reconstruction quality in ERT is often 

evaluated by correlation coefficient and relative error: 

 

𝜌 =
∑ (�̂�𝑖 − �̂�) ⋅ (𝑔𝑖 − �̄�)𝐿
𝑖=1

√∑ (�̂�𝑖 − �̂�)2∑ (𝑔𝑖 − �̄�)2𝐿
𝑖=1

𝐿
𝑖=1

 
(18) 
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where, 𝒈 is the original image; �̂� is the reconstructed image; 

L  is the number of finite elements; �̄� and �̄̂� are the means of 

𝒈 and �̂�, respectively. 

 

 
 

Figure 11. The models of lesions at different places of 

human lungs 

 

 
 

Figure 12. The comparison between conditional numbers of 

Hessian matrix corresponding to the three models 

 

The greater the correlation coefficient, the smaller the 

relative error, and the better the reconstruction accuracy. 

Figure 13, Table 1, and Table 2 display the reconstruction 

results by the three finite element models. 

 

Table 1. The correlation coefficients of the three finite element models 

 
Image Finite element model 1 Finite element model 2 Finite element model 3 

Model a 0.8706 0.8760 0.9359 

Model b 0.8859 0.8848 0.9357 

Model c 0.8719 0.8758 0.9347 

Model d 0.8818 0.8774 0.9344 

Model e 0.8851 0.8755 0.9296 

Model f 0.8848 0.8718 0.9346 

Model g 0.8699 0.8843 0.9332 

Model h 0.8787 0.8759 0.9322 
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Table 2. The relative errors of the three finite element models (%) 

 
Image Finite element model 1 Finite element model 2 Finite element model 3 

Model a 30.6102 29.9774 22.8635 

Model b 28.8769 29.0497 23.0424 

Model c 30.1741 29.8459 23.1085 

Model d 29.2233 29.7355 23.0999 

Model e 28.9367 30.1424 23.7060 

Model f 29.0242 30.5022 23.0997 

Model g 30.6630 29.0480 23.1877 

Model h 29.4768 29.8878 23.2817 

 
(a) Reconstruction results of finite element model 1 

 

 
(b) Reconstruction results of finite element model 2 

 
(c) Reconstruction results of finite element model 3 

 

Figure 13. The reconstruction results of the three finite 

element models 

 

As shown in Table 1, under the same experimental 

conditions, the mean correlation coefficients �̄�  of finite 

element models 1-3 were 0.8786, 0.8777, and 0.9338, 

respectively; As shown in Table 2, under the same 

experimental conditions, the mean relative errors of finite 

element models 1-3 were 29.6232%, 29.7736%, and 

23.1737%, respectively. Finite element model 2 is better than 

finite element 1 in the calculation accuracy of forward problem, 

and the ill-conditionedness of the sensitivity matrix, but worse 

than the latter in the uniformity of sensitivity distribution, and 

the ill-conditionedness of Hessian matrix. Therefore, the 

image reconstruction quality of model 2 was not desirable. 

Compared with finite element models 1 and 2, the proposed 

model 3 increased the correlation coefficient 𝜌by an average 

of 6.2827%, and 6.3917%, and lowered the relative error by 

21.7718%, and 22.1670%, respectively. From Figures 12-13 

and Tables 1-2, our model achieved better accuracy in solving 

forward problem, improved the ill-conditionedness of 

sensitivity matrix and Hessian matrix, and made the sensitivity 

distribution more uniform, thereby enhancing the solving 

accuracy of the inverse problem. 
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6. CONCLUSIONS 

 

To improve the reconstruction quality of ERT images, this 

paper proposes a method to design and optimize the finite 

element model for human lungs. Firstly, the simulation 

domain was split into a region of lungs, heart, and spine, and 

a region of adipose tissue, and the polar coordinate equations 

of the boundary curves were determined for each region by 

improved PSO, improving the goodness-of-fit of each region. 

On this basis, the improved PSO was further employed to 

optimize the number of layers of the finite element model in 

each region, and the polar diameter ratio of the finite element 

nodes on each layer to the finite element nodes on the 

boundary of each region corresponding to the same polar angle. 

In this way, the authors solved the forward problem more 

accurately, improved the ill-conditionedness of the sensitivity 

matrix and the Hessian matrix, and made the sensitivity 

distribution more uniformly, thereby effectively enhancing the 

accuracy of image reconstruction. 
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