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Urban building information can be effectively extracted by applying object-based image 

segmentation and multi-stage thresholding on High Resolution (HR) remote sensing 

satellite imageries. This study provides the results obtained using this method on the 

images of Indian remote sensing satellite, CARTOSAT-2S launched by the Indian Space 

Research Organization (ISRO). In this study, a method is developed to extract urban 

building footprints from the HR remote sensing satellite images. The first step of the 

process consists of generating highly dense per pixel Digital Surface Model (DSM) by 

using semi global matching algorithm on HR satellite stereo images and applying robust 

ground filtering to generate Digital Terrain Model (DTM). In the second step, multi-stage 

object-based approach is adopted to extract building bases using the PAN sharpened 

image, normalized Digital Surface Model (nDSM) derived from DSM and DTM, and 

Normalised Difference Vegetation Index (NDVI). The results are compared with the 

manual method of drawing building footprints by cartographers. An average precision of 

0.930, recall of 0.917, and f-score of 0.922 are obtained. The results are found to be in a 

match with the method using the high resolution Airborne LiDAR DSM by providing a 

solution for large areas, low cost and low time. 
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1. INTRODUCTION

Growth assessment, planning, development, monitoring, 

risk management, and climate monitoring in urban areas is 

achieved in a planned way using the urban information 

system. This is essentially a Geographic Information System 

(GIS) based data information and management system used 

for planning and managing urban habitat facilities [1]. The 

basic building block of this information system is the 

individual building data with the location and size of the 

buildings from which, the extent of human settlements, their 

exact locations together with other attributes such as the 

cluster density, and proximity to utilities are estimated. 

The manual method of collecting individual building 

information with attributes is very expensive and time 

consuming. Automatic extraction of building information 

using High Resolution (HR) remote sensing images is one of 

the widely used methods globally since it allows large area 

information retrieval at economical and faster rates. 

This paper provides an efficient multi-stage object-based 

methodology to extract individual building information from 

High Resolution remote sensing images. The rest of the paper 

is organized as follows: Section two provides a literature 

study, Section three gives data sets and study area, Section 

four discusses the methodology adopted, Section five 

presents the results and analysis and conclusions are drawn in 

the last chapter. 

2. LIRERATURE STUDY

Various HR satellite images are globally available with the 

resolution/Ground Sample Distance (GSD) varying from 0.5 

m to 1.0 m, such as IKONOS (image GSD 1.0 m), QuickBird 

(0.6 m), WorldView-2 (0.5 m), GeoEye (0.46 m) and 

Cartosat -2S (0.6 m) [2]. Using the Panchromatic (PAN) and 

MS (Multi Spectral) images acquired from these satellites, 

various methods are adopted by researchers to extract 

individual building information. The primary data which is in 

the form of images, are directly used or the derived 

secondary data such as PAN sharpened image, Digital 

Surface Model (DSM), Digital Terrain Model (DTM), 

normalised DSM (nDSM), and Normalized Difference 

Vegetation Index (NDVI) are used for this purpose. These 

images are also used in conjunction with very dense and 

accurate Airborne LiDAR-derived DSM for this purpose.  

The models used on these datasets are broadly grouped 

into three categories as shown in Figure 1. The first model is 

based on using the image data directly; the second model 

uses the NDVI, nDSM derived together with the images; and 

the third model uses the hybrid approach of two independent 

sensor data, where the image is used in conjunction with the 

Airborne LiDAR-DSM. The processing algorithms used to 

mine the building information are supervised classification, 

morphological operations, object-based approach with 

segmentation, machine learning based approach, Fully 

Convolution Network (FCN), etc. 
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Table 1. Results obtained HR satellite image data (Model 1) 

Reference Author Data set Method 

Precision P 

TP/ 

(TP+FP) 

Recall R 

TP/ 

(TP+FN) 

f-score

2*((P*R)/ 

(P+R)) 

[3] Jin and Davis IKONOS PAN Differential Morphological Profile 0.67 0.62 0.644 

[4] Tiwari et al. IKONOS Fused 
Object-based approach with 

segmentation 
0.66 0.73 0.693 

[5] Lefèvre et al. QuickBirdPAN Advanced morphological operations 0.79 0.635 0.704 

[6] 
Chandra and

Ghosh 
SAR, multispectral images Using shadow information 0.794 0.643 0.710 

[7] 
Liasis and 

Stavrou 

Google Earth Satellite 

images 1 m to 10 m 

Segmentation using active color and 

color features 
0.705 0.740 0.722 

[8] Sefercik et al. IKONOS Pan sharpened Object-based segmentation 0.701 0.826 0.758 

[9] Benarchid et al. GeoEye Pan sharpened 
Object-based approach with shadow 

information 
0.90 0.66 0.761 

[8] Sefercik et al. QuickBird PAN &MS Object-based segmentation 0.669 0.909 0.770 

[10] Chen et al.

RGB high-resolution 

images 

from Google Earth 

Object-based and machine learning-

based approach 
0.902 0.724 0.803 

[11] Li et al. QuickBird, Pléiades 0.5 m 

Morphological building indices 

(MBIs) and mask with hierarchical 

probable model 

0.7562 0.863 0.806 

[12] Li et al.
HR data with 0.31 m PAN 

and 1.24 m MS 
Semantic segmentation 0.896 0.763 0.824 

[13] Sefercik et al.
WorldView 2 Pan 

sharpened 
Novel Fusion approach 0.874 0.79 0.829 

[14] 
Attarzadeh and

Momeni 
QuickBird 

Object-based approach from buildings 

characteristics 
0.809 0.893 0.849 

[15] 
Gavankar and 

Ghosh 
IKONOS PAN Morphological based (automatic) 0.895 0.915 0.904 

Table 2. Results obtained by HR satellite image data HR satellite image + derived products (Model 2) 

Reference Author Data set Method 
Precision P TP/ 

(TP+FP) 

Recall R TP/ 

(TP+FN) 

f-score

2*((P*R)/ 

(P+R)) 

[16] Davydova et al. WorldView, nDSM Neural network 0.9 0.735 0.809 

[17] Bittnera et al. WorldView, nDSM Fully Convolution Network (FCN) 0.86 0.78 0.818 

[8] Sefercik et al. WorldView, nDSM Novel Fusion approach 0.896 0.815 0.853 

[8] Sefercik et al. IKONOS, nDSM Object-based segmentation 0.904 0.829 0.864 

[18] Shaker et al. IKONOS, nDSM Supervised classification 0.937 0.84 0.885 

Table 3. Results obtained with HR satellite/aerial image + LiDAR-nDSM (Model 3) 

Reference Author Data set Method 

Precision P 

TP/ 

(TP+FP) 

Recall R 

TP/ 

(TP+FN) 

f-score

2*((P*R)/ 

(P+R)) 

[19] Demir et al.
Aerial RGB 0.125 m, 

LiDAR-nDSM, NDVI 
Supervised classification 0.76 0.9 0.824 

[20] San and Turker
IKONOS, nDSM, 

NDVI 

SVM, edge detection, vectoring and 

grouping 
0.78 0.95 0.856 

[19] Demir et al.
Aerial RGB 0.125 m, 

LiDAR-nDSM, NDVI 

Classification over images by applying 

LiDAR height information 
0.86 0.87 0.865 

[19] Demir et al.
Aerial RGB 0.125m, 

LiDAR-nDSM, NDVI 

NDVI classification + voids from 

LiDAR-DTM 
0.87 0.87 0.87 

[19] Demir et al.
Aerial RGB 0.125 m, 

LiDAR-nDSM, NDVI 
LiDAR classification 0.92 0.83 0.872 

[21] Yan et al.
Aerial Image + 

LiDAR-DSM 0.09m 
Stacked Sparse Auto encoder (ANN) 0.909 0.907 0.908 

[22] Ni et al. ALS Point cloud 
Supervised segmentation, Random 

Forests based Classification 
0.954 0.867 0.908 

The results obtained for each model varied with the type of 

dataset and the processing model adopted. Quantification of 

the results is reported in terms of precision, recall, and f-

score using the number of True Positives (TP), True 

Negatives (TN), and False Positives (FP) detected by that 

particular method. The detailed results obtained by various 

researchers are shown in Tables 1, 2, and 3. 

It is found that, the f-score achieved by various researchers 

for HR satellite image data (model 1) is 0.644 – 0.904, for 

HR satellite image + derived products (model 2) is 0.809 – 

0.885 and for HR satellite/aerial image + LiDAR-nDSM 

(model 3) is 0.824 – 0.908. It is also observed that the HR 

satellite/aerial image data in conjunction with LiDAR data 

used in model 3 gives the best results. However, LiDAR data 
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is based on the aerial/ drone platform, hence, using this 

model is time consuming and expensive. On the other hand, 

the HR satellite data with the derived product of nDSM, 

NDVI used in model 2 offers the advantage of faster, large 

area coverage, and less cost. Hence, the objective is to derive 

a methodology by improving model 2 to achieve the same 

results obtained by model 3. 

Model 1: Using HR 

satellite images 

Model 2: Using HR satellite 

image + derived products 

nDSM, NDVI 

Model 3: Using HR satellite/aerial image + LiDAR-

nDSM 

Figure 1. Models used to extract building information 

3. DATA SET AND STUDY AREA

3.1 Data set 

The CARTOSAT-2S satellite of the Indian Space 

Research Organization (ISRO) provides images in a single 

PAN and four MS bands at a spatial resolution of 0.60 m and 

1.6 m simultaneously at 11-bit radiometric resolution. The 

PAN image can take panchromatic (black and white) in a 

selected portion of the visible and near-infrared spectrum 

(0.50 - 0.85 μm). The 4-band MS records data of spectral 

resolutions in Blue (0.43 - 0.52 μm), Green (0.52 - 0.61 μm), 

Red (0.61 - 0.69 μm) and NIR (0.76 - 0.90 μm) in 4 separate 

bands. 

3.2 Study area 

CARTOSAT-2S satellite images of the part of West 

Hyderabad acquired on January 1, 2018, and January 28, 

2018, simultaneously in PAN and MS bands with across 

track stereo mode are used for investigation purposes. An 

area covering 3 km² was a subset for study purposes. The 

scene includes urban settlements consisting of very dense to 

sparse buildings. The heights of the buildings vary from a 

single floor to high-rise apartments with concrete/sheet 

rooftops. The location of the study area and the images of the 

PAN and MS are shown in Figure 2. 

Figure 2. Study area 

4. METHODOLOGY

As mentioned in the previous section, the best results are 

achieved by using LiDAR-nDSM compared to 

photogrammetrically derive satellite DSM, due to the high 

point density. Hence, the approach of this study is based on 

improving the derived nDSM from satellite stereo images to 

match the density of LiDAR-nDSM supplemented with 

customised preprocessing.  

The process is carried out as (i) Preprocessing and 

secondary data generation as per the flowchart shown in 

Figure 3 (ii) Multi-stage object-based classification as per the 

flowchart in Figure 4 and (iii) Regularization of building 

shapes. 

Figure 3. Flow chart of preprocessing and secondary data 

generation 
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Figure 4. Flow chart of multi stage object-based 

classification 

4.1 Preprocessing and secondary data generation 

These is achieved by (a) Image enhancement and PAN 

sharpening (b) generating nDSM from highly dense per-pixel 

DSM using a semi-global matching algorithm and (c) 

applying robust ground filtering method based on Discrete 

Cosine Transform (DCT) to generate DTM.  

PAN Sharpening: After preliminary image enhancements, 

high resolution (0.6 m) PAN image is fused with the low 

resolution MS image (1.6 m) to generate high resolution (0.6 

m) PAN sharpened image. This process injects the spectral

details of the MS image into the HR PAN image. Partial

Replacement Adaptive Component Substitution (PRACS)

method is used after experimenting with various PAN

sharpening algorithms with the data set and evaluating the

resultant image quantitatively.

nDSM generation: Per-pixel DSM is generated using the 

semi-global matching method [23]. This method could derive 

DSM point cloud from the HR satellite images with a point 

density of 2.79 points / sq. m. with a height accuracy of 1.79 

m. The filtering of ground points (DTM) from DSM is

achieved by DCT-based ground surface interpolation as it

offers better noise filtering [24]. The accuracy of DSM

generation using this method is reported in K-values of 0.91,

083 and 0.90 respectively for the areas containing vegetation,

small close buildings and high rise buildings respectively

[24]. The terrain variations are in all respects are reflected in

this DTM as the point density is very high (which is almost

like LiDAR DTM). nDSM is generated by subtracting DTM

from DSM.

NDVI Generation: Normalised Difference Vegetation 

Index gives a quantitative estimation of vegetation growth 

and biomass. This is generated using the NIR band and the 

Red band of the fused image. 

4.2 Multi-stage object-based classification 

This process consists of (a) image segmentation and (b) 

multi-stage classification. Image segmentation is the process 

of dividing the images into segments / objects based on its 

spectral properties of the image that uniquely represent a 

small set of areas. Multi-stage thresholding is applied to the 

created objects to derive the buildings.  

Object Generation: Multiresolution segmentation is used 

to generate the objects having a pixel count of fewer than 14 

pixels. 

Shadows and water body removal: This is a threshold level 

classification using the NDVI and Blue band of the image to 

remove shadows and water bodies. 

Vegetation removal: NDVI Threshold is determined from 

the bimodal histogram of the image having dominant 

buildings and vegetation. This step differentiates the 

vegetation from buildings. 

Height object extraction: Threshold-based classification 

with a height limit of 2.0 m on nDSM is applied above that 

and small height objects can be removed. 

Extraction of buildings from height objects: All height 

objects do not represent buildings; hence multispectral (Red, 

Green, Blue bands) thresholding is used to extract buildings 

from height objects. 

4.3 Regularization of building shapes 

Regularization is carried out to bring the created objects to 

the shapes of the buildings. Holes in the buildings are 

subsumed into large buildings and the smaller noise 

appearing as buildings are removed by area threshold. Finally, 

the edges of the buildings are regularized to get the proper 

corners. 

5. RESULTS AND ANALYSIS

The process experiments on 4 subsets of areas extracted 

from the study area as shown in Figure 5. The subsets are 

identified as Villa, Dense, High-rise, and Sparse areas as per 

the distribution of buildings. 

Figure 5. Subset of areas selected for study 
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5.1 Results 

The processing of the data is carried out using the e-

cognition software as per the methodology provided in the 

previous section. The multiresolution segmentation and the 

multi-stage object-based classification using thresholding are 

applied sequentially and the results are provided in Figure 6, 

and the building shape regularization is shown in Figure 7. 

Image Objects 

(No of objects: 17363, 

Avg. object size: 14 pixels) 

Shadows and water body 

removal 

(Thresholds: B 155, 

NDVI < 0.01) 

Vegetation removal 

(Threshold: NDVI > 0.1) 

Height object extraction 

(Threshold: nDSM > 2) 

Extraction of buildings from 

height objects 

(Thresholds: B >150, 

R > 210, G > 200) 

Figure 6. Applied thresholds and the resultant objects 

Actual Building 

footprints 
Detected shapes 

Regularized 

buildings 

Figure 7. Regularization of building shapes 

5.2 Analysis 

The reference data is provided by manually drawing all the 

building boundaries residing in that particular study area. The 

reference data is compared with the buildings extracted by 

the developed multi-stage object-based classification 

methodology. The results are tabulated in Tables 4a and 4b. 

Table 4a. Number of buildings detected in the study areas 

Sample 

Type 

No of Buildings detected 

Correct 

Detection 

TP 

Undetected 

FN 

Wrong 

Detection 

FP 

Villa 176 26 1 

High-Rise 119 7 22 

Dense 124 10 6 

Sparse 234 18 18 

Table 4b. Results obtained from the study areas 

Sample Type 
Precision P Recall R f-score

TP/ 

(TP+FP) 

TP/ 

(TP+FN) 

2*((P*R)/ 

(P+R)) 

Villa 0.994 0.871 0.929 
High-Rise 0.844 0.944 0.891 

Dense 0.954 0.925 0.939 
Sparse 0.929 0.929 0.929 

Average 0.930 0.917 0.922 

It is observed that the obtained results are comparable with 

the f-score achieved by using the LiDAR-nDSM. The false 

negatives or undetected buildings occurred due to the low 

spectral reflectivity from the roofs covered with dirt or fading. 

This is apparent as high undetected buildings in the villa area 

(increased false negative) as reflectance from the houses is 

not bright and the reflectance is similar to the surrounding 

features on the ground. The wrong detection or false 

positives occurred due to the similarity of the spectral 

characteristics between the rooftops and metal/concrete roads 

in the areas where it is highly urbanized. This result is 

reflected in the high- rise area (increased false positive) due 

to the concrete road bright reflections falsely recorded as a 

building. 

6. CONCLUSIONS

Urban building detection using High Resolution satellite 

images provides a viable solution in terms of large area 

coverage with less cost and time. Multi-stage object-based 

classification combined with a highly accurate and dense 

DSM can provide better building detection results. 

A combination of high resolution PAN sharpened satellite 

image with carefully extracted nDSM derived from Semi- 

global matching algorithm and NDVI data sets can be used to 

extract buildings efficiently from urban areas by applying the 

multi-stage object-based segmentation and classification 

methods. An f-score of 0.922 is achieved, which is 

comparable to the results that use Airborne LiDAR-nDSM. 

Utilizing the dense DTM provides the same levels of 

detection efficiency in case of terrain variations from flat to 

steep terrain. However, the accuracy of the algorithm slightly 

varies on influence of season and location as the vegetation 

effects the DSM generation and DTM filtering accuracy. 
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