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In many real-world scenarios, subspace clustering essentially aims to cluster unlabeled high-

dimensional data into a union of finite-dimensional linear subspaces. The problem is that 

the data are always high-dimensional, with the increase of the computation, storge, and 

communication of various intelligent data-driven systems. This paper attempts to develop a 

method to cluster spectral images directly using the measurements of compressive coded 

aperture snapshot spectral imager (CASSI), eliminating the need to reconstruct the entire 

data cube. Assuming that compressed measurements are drawn from multiple subspaces, a 

novel algorithm was developed by solving a 1-norm minimization problem, which is known 

as reweighted sparse subspace clustering (RSSC). The proposed algorithm clusters the 

compressed measurements into different subspaces, which greatly improves the clustering 

accuracy over the SSC algorithm by adding a reweighted step. The compressed CASSI 

measurements obtained using the coherence-based coded aperture can improve the 

performance of the proposed spectral image clustering method. The accuracy of our spectral 

image clustering approach was verified through simulations on two real datasets. 
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1. INTRODUCTION

Spectral imaging (SI) combines two-dimensional (2D) 

imaging with spectroscopy to capture spatial information of a 

scene across multiple wavelengths. During the SI, the desired 

three-dimensional (3D) data cube is regarded as spectral 

images with two coordinates representing the spatial domain, 

and the third coordinate corresponding to the spectral 

wavelengths. 

Spectral images are widely used in various fields, such as 

remote sensing, computer version, and medical diagnosis. In 

traditional SI technologies, namely, push-broom spectral 

imaging [1] and spectrometers based on optical bandpass 

filters [2], the scene must be scanned along spatial lines, or a 

group of bandpass filters be adjusted to acquire different 

spectral bands. The disadvantage of these technologies is that 

the volume of the data cube increases proportionally to the 

required spatial or spectral resolution, resulting in an 

exponential increase in cost and time of data acquisition. 

In fact, it is wavelength that determines the amount of 

radiation reflected, scattered, absorbed, or emitted by each 

material. As a result, spectral signature is highly valued in 

many real-world applications [3, 4], including but not limited 

to classification [5, 6], target detection [7, 8], and spectral 

unmixing [9, 10]. 

Classification can be performed in a supervised or semi-

supervised manner, depending on the availability of labeled 

information. Unfortunately, unsupervised techniques like 

subspace clustering only serves as an alternative to groups a 

set of similar pixels, because many practical applications do 

not have labeled samples in advance. 

To date, many clustering methods have been developed 

with different working mechanisms. The existing clustering 

algorithms roughly fall into four categories [11-14]: (1) 

centroid-based methods, (2) density-based methods, (3) 

biological methods, and (4) spectral-based methods [15, 16]. 

The spectral-based methods stand out for their excellent and 

robust performance on spectral images. Spectral-based 

clustering usually covers two stages: (1) establishing an 

adjacency matrix about the relationship between all points; 2) 

applying centroid clustering to the Laplacian matrix to 

complete final segmentation. 

Assuming that the spectral signatures with the land cover 

class belong to the same low-dimensional subspace, Elhamifar 

et al. and Li et al. [17, 18] proposed spectral-based approaches 

like sparse subspace clustering (SSC) for unsupervised 

classification of spectral images by representing every spectral 

pixel as a linear combination of other spectral signatures in the 

scene. The SSC is achieved by solving the sparse convex 

optimization problem, which ensures that the spectral 

signatures corresponding to these coefficients belong to the 

same subspace. Nevertheless, spectral image clustering is 

often a complex and compute-intensive task, owing to the high 

dimensionality of spectral datasets. To solve the problem, the 

key is to reduce the dimensionality of the spectral images. 

The SSC algorithm has been successfully applied to cluster 

spectral images obtained by a compressed spectral imaging 

(CSI) system, which needs far fewer sampling resources 

compared to traditional spectral imaging sensors. Several 

approaches can be utilized to complete spectral image 
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clustering based on compressed data [19-22]. The relevant 

authors designed a down-sampling strategy to extract samples, 

whose probability is inversely proportional to the number of 

samples in their own subspaces, and combined the strengths of 

different methods.  

 

 
 

Figure 1. Symmetrical structure of CASSI system 

 

Inspired by the symmetrical structure of compressive coded 

aperture snapshot spectral imager (CASSI) system (Figure 1), 

our work is grounded on the data collected by a novel 

compressive imaging system called 3D-CASSI. The novel 

system first encodes all the information of the scene induced 

by the 3D coded aperture, and then integrates the coded 

information along the spectral dimension. Unlike the 

conventional systems [23-27], 3D-CASSI ensures that each 

spatial position of the collected measurements contains 

compressed information with a uniquely coded spectral 

signature [28-31]. 

The focus of this research lies in the unsupervised 

classification of each pixel in the scene, as one of the known 

classes from the compressed measurements. The premise is 

that the measurements with the same feature are drawn from 

the same low-dimensional subspace, corresponding to a 

specific land cover class. The proposed approach illustrates 

each spectral signature, derived from its respective subspace, 

as a linear/affine combination of other spectral pixels, such 

that nonzero entries are distributed in the same class. 

Moreover, the representation of similar materials as adjacent 

pixels in the spectral image helps to extract more information 

from the data, and reduce the representation error using a 

smoothing filter on the sparse matrix [32].  

Previous works [33-35] have shown that the inclusion of 

spatial information in spectral clustering, that is, preserving 

the rich spatial information in spectral images, can promote 

clustering accuracy associated with total change (TV) 

regularization. This means the use of TV regularization 

eliminates every two consecutive pixels. The modified SSC-

based methods, as a strategy of local averaging, is applicable 

to spatial information in spectral pixel clustering on 

compressed domain problem. Nonetheless, these methods are 

extremely heuristic and unrepresentative in more complex 

areas of land cover distribution. There is still ample room to 

improve their clustering performance. To improve the 

clustering accuracy at a low computing cost, this paper 

replaces the 1-norm minimization approach (SSC and its 

variants) with 1-norm minimization approach associated with 

an iterative weighting (RSCC).  

In general, the performance of compressive spectral image 

clustering depends on the structure of coded apertures and the 

targeted spectral-based method. Particularly, the design of the 

coherence-based coded aperture is more accurate in spectral 

clustering than the traditional random coded aperture. Hence, 

the coded aperture is often designed using compressed 

subspace clustering (SSC) [36] or SC conditions with reduced 

dimensions [37]. Recent years saw the emergence of a coded 

aperture design for compressive subspace clustering. However, 

the designer did not theoretically analyze how to preserve the 

projected subspaces. Here, the authors propose to find the 

connection between affinity and distance obtained by 

introducing a projection F -norm distance after the sensing 

process, and construct a metric space for a low-dimensional 

subspace set, which depends on the coded aperture. 

The contributions of this paper are summarized follows: 

First, our general framework can analyze the performance of 

RSSC algorithm, when it is applied to the data compressed by 

coherence-based coding pattern, rather than the random matrix 

adopted by Lin et al. and Arguello et al. [38, 39]; that is, the 

designed matrix realized by the 3D-CASSI system can 

compress the data into a low-dimensional space; Second, our 

reweighted sparse subspace clustering algorithm can perform 

spectral pixel clustering directly from the CASSI 

measurements, thereby elevating the clustering accuracy 

without greatly complicating the computation. 

 

 

2. PROBLEM DESCRIPTION 

 

This section firstly introduces the 3D-CASSI system model 

for the acquisition of CASSI measurements, and then 

formulates the subspaces clustering problems and 

corresponding rules to handle affine subspaces with noise 

perturbation. 

 

2.1 General matrix-based 3D CASSI model 

 

As shown in Figure 2, the 3D CASSI system firstly uses a 

3D coded aperture (a 2D-coded aperture ensemble or an array 

of encoded patterns) to modulate the voxels of the spectral 

scene. Then, the coded spectral pixels are integrated along the 

spectral axis into the focal plane array (FPA) detector. Let 

𝑇𝑚,𝑛,𝑘
𝑠  be the discrete form of the time-varying 3D coded 

aperture, and Fm,n,k be the discrete form of source, where both 

𝑚 and 𝑛 are spatial coordinates, k is spectral component, and 

s is snapshot number. Then, the s-th output on the FPA in 

discrete form can be expressed as: 

 

𝑌𝑚,𝑛
𝑠 = ∑ 𝑇𝑚,𝑛,𝑘

𝑠

𝐿−1

𝑘=0

𝐹𝑚,𝑛,𝑘 + 𝑤𝑚,𝑛, (1) 

 

where, 𝑌𝑚,𝑛
𝑠  is the attained measurement of the (m, n)th 

position on the detector with MN dimensions; wm,n is the 

additive noise of the system. 

Formula (1) can be vectorized as: 

 

𝑦𝑠 = 𝐻
^

𝑠𝑓 + 𝑒. (2) 

 

where, 𝑦𝑠 ∈ 𝑅𝑀𝑁  and 𝑓 ∈ 𝑅𝑀𝑁𝐿  are the vectorized 

representations of 𝑌𝑚,𝑛
𝑠  and Fm,n,k, respectively; 𝐻

^
𝑠 ∈

𝑅𝑀𝑁×𝑀𝑁𝐿 is the coded apertures 𝑇𝑚,𝑛,𝑘
𝑠 . Nevertheless, a single 
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shot CASSI measurement cannot provide enough compressed 

measurements, if the scenes are very diverse or the spatial 

scenes contain too many details. To solve the problem, the 

CASSI imaging system treats multiple measurement shots, 

instead of a single measurement shot, as separate FPA 

measurements; each FPA measurement has a distinct code 

aperture pattern during the fixed integration time of the 

detector. The output of the multi-shot system can be written as: 

 

𝑦𝑆 = 𝐻
^

𝑆𝑓 + 𝑒, (3) 

 

where, 𝑦𝑆 = [(𝑦0)𝑇 , , … , (𝑦𝑆−1)𝑇] ∈ 𝑅𝑆𝑀𝑁 ; 𝐻
^

𝑆 =

[(𝐻
^

0)𝑇 , … , (𝐻
^

𝑆−1)𝑇] ∈ 𝑅𝑆𝑀𝑁×𝑀𝑁𝐿 is the set of matrices 𝐻
^

𝑠 ∈
𝑅𝑀𝑁×𝑀𝑁𝐿 , which represents the effect of each coded 

aperture. 𝐻
^

𝑠  can be obtained by 

𝑑𝑖𝑎𝑔[(𝑇0,0,𝑘
𝑠 ), . . . , (𝑇𝑚−1,𝑛−1,𝑘

𝑠 )] =  ∑ 𝑑𝑖𝑎𝑔[(𝐻𝑠)𝑘
𝐿−1

𝑘=0
] , 

where 𝑑𝑖𝑎𝑔(𝐻𝑘
𝑠) is an 𝑀𝑁 × 𝑀𝑁  diagonal matrix with 

vectorized binary entries of the coded apertures. Specifically, 

the matrix of the coded apertures (coding patterns) for all shots 

𝑆 can be expressed as 𝐻𝑆 = [(𝐻0)𝑇 , . . . , (𝐻𝑆−1)𝑇]. 

Figure 3 describes the 𝐻
^

 structure that contains coded 

apertures in CASSI. The vector representation of 2D arrays 

(dashed circles) is represented by columns and the 

vectorization (solid line circle) is performed vertically to 

concatenate the vectorizations of each F(:,:, k) with k=0, …, 

L-1like 3D arrays 𝑓 ∈ 𝑅𝑀×𝑁×𝐿. 

Note that each spatial location of Ts is assigned to one 

coding pattern HsRL to modulate a pixel in a specific location. 

Hence, the rich structure of Ts depends on the coding pattern 

Hs. As a result, the coded apertures design can be regarded as 

the coding patterns design. The matrix of S coding patterns can 

be alternatively given by 𝐻 = [𝐻0, 𝐻1 , . . . , 𝐻𝑆−1]𝑇 ∈ 𝑅𝑆×𝐿.  

Let f be an LMN matrix whose columns correspond to the 

spectral signatures fj of the data cube, with j=0,…, MN-1. Thus, 

the ensemble of S measurements can be written as 𝑦𝑆 =
[[𝑦0,0

0 , . . . , 𝑦𝑀−1,𝑁−1
0 ]𝑇 , . . . , [𝑦0,0

𝑆−1, . . . , 𝑦𝑀−1,𝑁−1
𝑆−1 ]𝑇]𝑇, where ys is 

an SMN matrix. Note that each column value and each row 

value in matrix ys correspond to a compressed spectral 

signature, and the compressed information (spectral response) 

of each pixel obtained at the sth snapshot, respectively. 

Because of this intrinsic structure, matrix y is applicable to 

SSC, making it easier to distinguish among all measurements 

and to improve the clustering results. 

 

 
Note: The q-th slice of the data cube F with L=6 spectral components is coded by a row of the coded aperture t and sheared by the dispersive element; the detector 
gets the intensity y by integrating the coded light. 

 

Figure 2. The CASSI spatial-spectral optical flow 

 

 
Note: On the indicated diagonal, the spectral response of the pixels with the 

coded aperture H for each band is shown separately. 

 

Figure 3. The CASSI matrix 𝐻
^

 with S = 2, M = 8, N = 10, 

and L = 4 

2.2 Clustering of compressive spectral imaging (CSI) 

measurements  

 

Let 𝑦 ∈ 𝑅𝑆×𝑀𝑁  be a 2D matrix reorganized as y=[y1, …, 

yMN], where yi is the spectral signature of the ith spectral pixels 

on the compressed domain, i.e., compressed pixels. Assuming 

that the CSI measurements are in the union of l low-

dimensional subspace ⋃ 𝐶𝑙
𝑙=1  of SSC, each subspace must be 

corresponding to a specific class of land cover [40]. It is also 

assumed that each spectral signature yi corresponds to a 

specific land cover class, which belongs to the same subspace 

with features of independence. Treating the compressed 

measurements as a dictionary, the SSC optimization problem 

can be expressed as: 

 

𝑚𝑖𝑛
𝑐,𝑔

∥ 𝑐 ∥0+
𝜆

2
∥ 𝑔 ∥F

2 

𝑠. 𝑡. 𝑦 = 𝑦𝑐 + 𝑔, 𝑑𝑖𝑎𝑔(𝑐) = 0, 𝑐𝑇1 = 1, 

(4) 

 

where, λ is a parameter for the tradeoff between sparsity and 
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noise level; cRMNMN is the coefficient matrix; gRSMN is the 

error matrix to model noise; diag(c)=0 is a constraint to 

eliminate the trivial solution of representing a point as a linear 

combination of itself; cT1=1 is a constraint to guarantee the 

operability in affine subspace.  

The l0-norm aims to find the total number of nonzero entries 

of c. However, formula (4) generally leads to a 

nondeterministic polynomial-time (NP) hard problem, due to 

the nature of combinatorial optimization. In fact, the l0-norm 

is usually replaced by its tightest convex relaxation, namely, 

l1-norm constraint, which transforms formula (4) into: 

 

𝑚𝑖𝑛
𝑐,𝑔

∥ 𝑐 ∥1+
𝜆

2
∥ 𝑔 ∥F

2 

𝑠. 𝑡. 𝑦 = 𝑦𝑐 + 𝑔, 𝑑𝑖𝑎𝑔(𝑐) = 0, 𝑐𝑇1 = 1, 

(5) 

 

where, the l0-norm regularization promotes the sparsity of c 

resulting in subspace preservation. The optimization problem 

(5) can be effectively solved by using the alternating direction 

method of multiplier (ADMM). Besides, the solution of 

formula (5) is such that zi,j=0 when points i and j exist in 

distinct subspaces. Therefore, it is possible to adopt z to define 

a data adjacency matrix w as |𝑧| + |𝑧|𝑇 . The final 

segmentation of the data can be achieved by applying spectral 

clustering-based methods to Laplacian matrix caused by w. 

 

 

3. MULTIFRAME CASSI CODING PATTERN 

OPTIMIZATION FOR CSI SUBSPACE CLUSTERING 

  

Considering its dimensionality reduction effect on ambient 

signal space, the compression property can effectively reduce 

the computational cost of using the self-expression features of 

the data in the SC. According to the affinity concept of 

similarity between the two subspaces [41], many scholars have 

theorized and verified the conditions for several subspace 

clustering-based methods on compressed data [42-44]. Due to 

the high-dimensionality of data, all of them randomly 

projected the samples onto a low-dimensional subspace using 

an off-the-shelf dimensionality reduction (DR) method, and 

then called a clustering algorithm in this subspace. Recent 

works [44, 45] have studied the distance preserving properties 

of compressed data points, using random projections. More 

recently, Jiao et al. [46] theoretically concluded that the 

distance between the two subspaces is almost constant after 

random projection. However, the traditional coded apertures 

cannot preserve the spectral signature similarities between any 

pair of vectors on the compressed domain, for the random 

projection cannot retain orthogonality, and the vectors that 

define the orthogonal basis of the subspace cannot be 

normalized. 

This section mainly aims to solve these challenges with the 

projection determined by the coded aperture design, thereby 

improving the clustering results. 

 

3.1 Coding pattern formulation and analysis of the 

principal angles, affinity, and distance 

 

Let 𝑓 = [𝑓1
𝑇 , 𝑓2

𝑇 , . . . , 𝑓𝐿
𝑇]𝑇 ∈ 𝑅𝐿×𝑀𝑁  be a matrix 

representing; {𝐺𝑢}𝑢=1
𝑢  be a set of u subspaces, where 

𝑑𝑖𝑚[𝐺𝑢] = 𝑑𝑢
′ < 𝑑′ , ∀𝑢 = 1, . . . , 𝑢 . Whereas each column 

𝑓𝑢 ∈ 𝑅𝐿  is of dimension 1MN corresponding to a given 

spectral band in a spectral image, linear combinations of 

samples can be taken from separate bands applying the 

sampling matrix 𝐻 = [𝐻1, 𝐻2, . . . , 𝐻𝑆]𝑇 ∈ 𝑅𝑆×𝐿 , where S<L. 

This yields 𝑦 = [(𝑦1)𝑇 , (𝑦2)𝑇 , . . . , (𝑦𝑆)𝑇]𝑇 ∈ 𝑅𝑆×𝑀𝑁 , where 

each 𝑦𝑢 ∈ 𝑅𝑆 is of dimension 1MN. 

With the growing dimension u of the ambient space, it is 

necessary to reduce the time and memory costs of SC, that is, 

to reduce the data dimensionality. Moreover, the available data 

have been compressed or incomplete constraint to data 

acquisition methods, which leads to the use of SC method for 

data compression. Heckel et al. [47] theoretically analyzed the 

performance of different types of compression matrices 𝐻 to 

validate the performance of SC algorithms. Unfortunately, 

their work does not exploit the data structure. Therefore, this 

paper chooses the encoding mode matrix HRSL for 

compression and dimensionality reduction. The full data cube 

f, which lies in the 𝐺-dimensional space, was compressed by 

H to yield y=Hf. 

Because the principal angle between two different 

subspaces provides a fundamental way to measure their 

similarity in term of cosine definition, the similarity between 

two columns of matrix representation of the spectral cube can 

be recursively defined as: 

 

𝑐𝑜𝑠(𝜃𝑢𝑢′) = 𝑚𝑎𝑥
𝑓𝑢∈𝑆𝑢

𝑚𝑎𝑥
𝑓𝑢′∈𝑆𝑢′

𝑓𝑢
𝑇𝑓𝑢′

∥ 𝑓𝑢 ∥2∥ 𝑓𝑢′ ∥2

: = 𝑓𝑢
𝑇𝑓𝑢′ 

s.t. ∥ 𝑓𝑢 ∥2= 1 and ∥ 𝑓𝑢 ∥2= 1 

(6) 

 

where, θuu’ is the principal angle between two subspaces Gu 

and Gu’ of dimensions 𝑑𝑢
′ ⩽ 𝑑𝑢′

′ ; fuRL is the submatrix of f 

indexed by u. 

Recently, the most efficient low-rank matrix estimation 

technique has emerged as a powerful estimation tool in 

principal component decomposition (PCA), such as singular 

value decomposition (SVD). The estimator is mainly decided 

by dimension reduction of the matrix with respect to the 

orthogonal basis. This paper adopts a similar dimension 

reduction to calculate the principal angles. Specifically, given 

the columns of orthogonal bases Uu for subspace Gu of 

dimension 𝑑𝑢
′ , 𝜆1 ≥ 𝜆2 ⋯ ≥ 𝜆𝑑𝑢

′ ≥ 0 are the singular values 

of 𝑈𝑢
𝑇𝑈𝑢′ , 𝑢 ≠ 𝑢′ . This motivates the use of the singular 

values of 𝑈𝑢
𝑇𝑈𝑢′ for the cosine of the principal angles, such 

that 𝑐𝑜𝑠𝜃{1,...,𝑑𝑢
′ } = 𝜆{1,...,𝑑𝑢

′ }. The clustering result, which relies 

on the affinity between pairs of subspaces, can be obtained by 

imposing the principal angles for measuring the similarity 

between two subspaces. The affinity between two subspaces 

Gu and Gu’ of dimension 𝑑𝑢
′ < 𝑑𝑢′

′  can be defined as 

 

𝑎𝑓𝑓(𝐺𝑢 , 𝐺𝑢′): =
1

√𝑑𝑢
′

∥ 𝑈𝑢
𝑇𝑈𝑢′ ∥F (7) 

 

It can also be represented by the principal angles 𝜃1 ≤
𝜃2. . . ≤ 𝜃𝑑𝑢

′  between Gu and Gu’: 

 

𝑎𝑓𝑓(𝐺𝑢 , 𝐺𝑢′)

= √
𝑐𝑜𝑠2(𝜃1) + 𝑐𝑜𝑠2(𝜃2) + ⋯ + 𝑐𝑜𝑠2(𝜃𝑑𝑢

′ )

𝑑𝑢
′

, 
(8) 

 

where, 0 ≤ 𝑎𝑓𝑓(𝐺𝑢 , 𝐺𝑢′) ≤ 1 uses a smaller value to show 

that one subspace is further apart from the other subspaces, if 

Gu and Gu’ for subspaces intersect in t dimensions. 

More accurate distance measures were introduced for the 

subspace’s separability, due to their advantages in space 
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measurement. In addition, the Forbenius norm ( F -norm) 

distance between pair of subspaces in term of principal angle 

was considered as a special case of formulas (6), (7) and (8) 

constraint to the same dimension. The projected F -norm 

distance can be written in the case where the two subspaces 

have different dimensions: 

 

𝐷(𝐺𝑢 , 𝐺𝑢′): =
1

√2
∥ 𝑃𝑢 − 𝑃𝑢′ ∥F, (9) 

 

where, D(Gu, Gu’) is the general F-norm distance with two 

subspaces Gu and Gu’. Formula (9) is general enough to 

encompass a wide applications, thanks to its properties like 

non-negativity, positive-definiteness, symmetry, and 

triangular inequality. Capable of adapting to different 

dimensional subspaces in a metric space, formula (9) provides 

an effective way to measure the similarity between two 

subspaces of different dimensions. 

Combining formulas (7) and (9), the proposed relationship 

between distance and affinity can be expressed as: 

 

𝐷2(𝐺𝑢 , 𝐺𝑢′) =
𝑑𝑢

′ + 𝑑𝑢′
′

2
−

1

√𝑑𝑢
′

𝑎𝑓𝑓2(𝐺𝑢 , 𝐺𝑢′). (10) 

 

Next, it is possible to access dimensionality reduction set G 

only, which is resulted from down-sampling. The set increases 

proportion to G, in terms of computational and complexity 

cost.  More importantly, it is usually desirable to work on a 

dimensionality-reduced version of G, because the original 

version weakens storage capacities and computational 

resources, even when the points in G are simply accessible. 

The key idea of reducing computational complexity is to apply 

the realization of HRSL with 𝑆 ≥ 𝑚𝑎𝑥𝑢𝑑𝑢  to each pixel, 

which guarantees that such projections can preserve 

orthogonality and normalization of the vectors in formula (5). 

All the entries inside the sets Cl in C=C1U…UCl can be 

detailed by:   

 

𝐺𝑢 ⟶
𝐻

𝐶𝑙 = {𝑦|𝑦 = 𝐻𝑓}. 𝑙 ≠ 𝑙′. (11) 

 

Assuming that each class (projected subspaces) exactly 

preserves the similarities of the spectral signatures from other 

classes, the projected distance D(Cl, Cl’) between classes l and 

l’ of dimension dl>dl’ obtains the new data, which come from 

the underlying scene within the difference of snapshots, so that 

the entanglement of the class is best described. In this case, the 

projected distance can be described by: 

 

𝐷2(𝐶𝑙 , 𝐶𝑙′) =
𝑑𝑙+𝑑

𝑙′

2
−

1

√𝑑𝑙
𝑎𝑓𝑓2(𝐶𝑙 , 𝐶𝑙′),  

s. t. 𝑎𝑓𝑓2(𝐶𝑙, 𝐶𝑙′) =∥ (𝐻𝑘
𝑇)𝐻𝑘′ + 𝐼 ∥𝐹

2+∥

𝐻𝑠(𝐻𝑠′
)𝑇 + 𝐼 ∥𝐹

2 ,  
𝑘 ≠ 𝑘′, 𝑠 ≠ 𝑠′, 

 

where, (𝐻𝑘
𝑇)𝐻𝑘′ and 𝐻𝑠(𝐻𝑠′

)𝑇  are all the entries outside the 

diagonal of HTH and HHT, respectively; I is the identification 

matrix. Later, the proposed model (11) will be proved to 

reveals the link between affinity and distance initialized by the 

definition of concise, which allows to deal with the 

constrained optimization problem. Figure 4 displays an 

example of the relations among principal angles, affinity, and 

distance after projection. 

 
Note: Red and blue bars stand for the pixels y1C1 and y2C2, respectively; 

all pixels are normalized to unit l2-norm prior to clustering. 

 

Figure 4. Geometric interpretation of the main angles, 

affinity and F-norm distance after projection in the case of 

two subspaces C1 and C2 of dimensions 2 and 3, respectively 

 

3.2 Our algorithm for coding pattern optimization 

 

To improve the clustering effect, the desired values of D2(Cl, 

Cl’) should be as larger as possible. The problem of designing 

H to maximize D2(Cl, Cl’) can be formulated as 

 

𝑚𝑎𝑥
𝐻

𝐷2(𝐶𝑙 , 𝐶′) 𝑠. 𝑡. 𝐻 ∈ 𝒞𝐿,𝑆, (12) 

 

where, 𝐻 ∈ 𝒞𝐿,𝑆 is the set of matrices whose entries are drawn 

from a Bernoulli distribution (H)S, L~Be(p), under the 

constraint of binary nonnegativity, that strengthens the 

spectral pixel clustering from the measurements. Although the 

expression of D2(Cl, Cl’) is convex, the direct solution to the 

non-trivial problem (12) is not workable. 

Coherence is a direct measure for the quality of these 

projections associated with compressive sensing. The 

coherence of any pair of the measurement matrix H depicts the 

maximum absolute value of the inner product in term of the l2-

norm. Thus, the coherence should be minimized obtain the 

unique solution. More specifically, the matrix H can be 

expressed as 𝐻 = ∑ ∑ ℎ𝑘
𝑠𝐿−1

𝑘=0
𝑆=1
𝑆=0 . Formally, the inner product 

between the columns of A at a different shot can be firstly 

defined as: 

 

⟨𝐻(𝑠1,⋅), 𝐻(𝑠2,⋅)⟩ = ∑⟨ℎ𝑠1
, ℎ𝑠2

⟩

𝑆−1

0

. (13) 

 

The coherence of H can be expressed as 

 

𝜇1(𝐻) = 𝑚𝑎𝑥
𝑠1≠𝑠1

|⟨ℎ𝑠1
, ℎ𝑠2

⟩|

∥ ℎ𝑠1
∥2∥ ℎ𝑠2

∥2

, (14) 

 

where, 

 

𝜇1(𝐻) =

| ∑ 𝜑𝑠1,𝑠2

𝑆−1

0
|

(∑ 𝜑𝑠1,𝑠2
𝑆−1

0
)

1
2(∑ 𝜑𝑠1,𝑠1

𝑆−1

0
)

1
2

 (15) 

 

and 𝜑𝑠1,𝑠2 = ⟨ℎ𝑠1
, ℎ𝑠2

⟩. It is possible to eliminate the value 

outside its diagonal inner product, that is, the desired value 
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should be zero to distinguish all classes. Thus, formula (15) 

can be rewritten as 

 

𝜇1(𝐻) =
|𝜚𝑠1,𝑠2|

(𝜚𝑠1,𝑠1)
1
2(𝜚𝑠1,𝑠2)

1
2

, (16) 

 

where, 

 

𝜚𝑠1,𝑠2 = ∑ 𝜑𝑠1,𝑠2

𝑆−1

0

+ ∑ 𝜑𝑠1,𝑠2

𝑠1≠𝑠2

, (17) 

 

where, the coherence 1(H) depends on the varibles 𝜑𝑠1,𝑠2  and 

𝜑𝑠1,𝑠1 . Similarly, the inner product between any pair of 

columns of A can be expressed as 

 

𝜇2(𝐻) =
|𝜚𝑘1,𝑘2

|

(𝜚𝑘1,𝑘2
)

1
2(𝜚𝑘1,𝑘1

)
1
2

, (18) 

 

where,  

 

𝜚𝑘1,𝑘2
= ∑ 𝜑𝑘1,𝑘1

𝑆−1

0

+ ∑ 𝜑𝑘1,𝑘2

𝑘1≠𝑘2

. (19) 

 

According to the quantities from formula (19), 1(H) and 

2(H) require that the value of D2(Cl, Cl’) must be nonnegative. 

To be more specific, given that dl and dl’ are assumed to be 

fixed, the optimization can be limited to minimize (H)= 

1(H)+2(H), implying the expanding range of values of D2(Cl, 

Cl’), that is, an indirect maximization of D2(Cl, Cl’) to identify 

the local maximum. 

Under these considerations, the problem (12) can be 

equivalently transformed into: 

 

𝑚𝑖𝑛 ∑ 𝜑𝑠1,𝑠2

𝑠1,𝑠2
+ ∑ 𝜑𝑘1,𝑘2

𝑘1,𝑘2

, 𝑠. 𝑡. 𝐻 ∈ 𝒞𝐿,𝑆. (20) 

 

where, 𝒞𝐿,𝑆  is the set of matrices directly clustering 

multispectral images with L bands using S shots. Due to the 

NP-hardness of a direct solution of problem (20), the 

following formulation was further introduced to illustrate the 

relation between  and : 

 

𝜇(𝐻) ⩽ 𝜀1[(∑ 𝜑𝑠1,𝑠2

𝑆−1

0

) + ∑ 𝜑𝑠1,𝑠2

𝑠1≢𝑠2

] 

+𝜀2[(∑ 𝜑𝑘1,𝑘2

𝑆−1

0

) + ∑ 𝜑𝑘1,𝑘2

𝑘1≠𝑘2

]. 

(21) 

 

The quantities from formula (21) bounds the value of (H). 

This still likens the minimization of  to the maximization of 

D2(Cl, Cl’). The (H) is minimized indirectly by reducing the 

value range of (H) to obtain the local minimums.  

Considering this, problem (20) can be rewritten as: 

 

𝑚𝑖𝑛 ∑ 𝜑𝑠1,𝑠2

𝑠1,𝑠2
+ ∑ 𝜑𝑘1,𝑘2

𝑘1,𝑘2

,  𝑠. 𝑡.  𝐻 ∈ 𝒞𝐿,𝑆. (22) 

 

Figure 5 compares a coherence-based coding pattern (a) 

compared with a random coding pattern (b). The coding 

pattern (a) was realized by implementing Algorithm 1 with 

different sets of pairs of cut-off wavelengths. Both coding 

patterns were generated with S=50, and L=220. For the value 

of function (H), the smaller value belongs the desired coding 

pattern, which finds optimal projections to guarantee the 

spectral pixel clustering directly from the CASSI 

measurements. Further, the block-unblock entries in Figure 

5(a) for the coherence-based coding pattern show a uniform 

spectral distribution, which provides a more ideal sampling 

environment and a better condition of H to satisfy the SSC or 

dimensionality-reduced SC. By contrast, the random coding 

pattern in Figure 5(b) did not satisfy the previously described 

conditions, which results in oversampling or subsampling of 

part of all spectral bands. 

 

 
(a)                               (b) 

 

Figure 5. Coherence-based coding pattern (a) compared with 

a random coding pattern (b) 

 

 

4. REWEIGHTED SPARSE SUBSPACE CLUSTERING 

ALGORITHM FOR CSI 

 

Under a high-dimensional ambient space, of the whole 

subspace clustering processing can be forbidding it terms of 

time and memory costs. One efficient way to reduce the data 

dimensionality is to apply the compressed or incomplete data 

via some practical methods. More specifically, induced by a 

sampling matrix, the original data were compressed by H, 

which leads to y=Hx distributed in a low dimensional subspace. 

The final clustering result was realized by the compressed data 

using the RSSC algorithm. 

Compressed measurements with similar features can be 

allocated into the same cluster (group) via the spectral 

clustering-based methods such as SSC algorithm, provided 

that they contain a small part of the spectral pixels with the 

same land-cover class. However, applying the classical SSC 

algorithm adapted to CSI cannot fully exploit the spatial 

correlation of the spectral image, which leads to a low 

representation accuracy of the learned sparse coefficient 

matrix. What is worse, their presentation coefficients are very 

close, if specific land-cover materials are distributed locally, 

i.e., two spatially adjacent pixels are very likely to be allocated 

to the same subspace.  

Suppose each band of 𝑐
~

 represents the distribution of the 

representation coefficients of each image realized by 

rearranging the 2D sparse matrix 𝑐 ∈ 𝑅𝑀𝑁×𝑀𝑁  into the 3D 

cube 𝑐
~

∈ 𝑅𝑀×𝑁×𝑀𝑁  along the rows. In other words, the 

adjacent elements of each row of 𝑐
~

 are generally smaller and 

each row of 𝑐
~

 is piecewise smooth. As a result, it is natural to 

constrain a coefficient vector with adjacent coefficient vectors, 

in order to reduce the representation bias. 

The mean of a spatial window can be used to regularize the 

coefficient vector in center representation, under the 
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assumption that pixels can share the equal dominant subspace 

in the window. More specifically, the authors in [48] opened a 

moving window with 33 at each coefficient vector and limit 

the difference between them. The mean of the neighboring 

pixels was defined as ∥ 𝑐 − 𝑐 ∥𝐹
2 < 𝜀, where  is the restriction 

and 𝑐 ∈ 𝑅𝑀𝑁×𝑀𝑁 is the mean coefficient matrix obtained by 

rearranging the mean of the cube 𝑐
~

∈ 𝑅𝑀×𝑁×𝑀𝑁 to a 2D matrix, 

with the aim to greatly improve the SSC performance. 

Therefore, a spatial regularizer [49] capable of promoting 

piecewise smoothness and preserving edges was introduced 

into the original SSC model, and used to formulate the l1-norm 

minimization problem to better utilize spatial neighborhood 

information and boost piecewise smoothness of the coefficient 

matrix c 

 

𝑚𝑖𝑛
𝑐,𝑔,𝑐

∥ 𝑐 ∥1+
𝜆

2
∥ 𝑔 ∥F

2+
𝛼

2
∥ 𝑐 − 𝑐 ∥F

2 

𝑠. 𝑡. 𝑦 = 𝑦𝑐 + 𝑔, 𝑑𝑖𝑎𝑔(𝑐) = 0, 𝑐𝑇1 = 1, 
(23) 

 

where, α is the regularization coefficient representing the 

contribution of each related spatial constraint. However, the 

SSC algorithm coupled with such a regularizer might not 

obtain the optimal solution of formula (23). Inspired by the 

iterative update of weighting matrix, the reweighted l1-norm 

minimization approach was applied to enhance the 

compressive clustering performance. The, the problem can be 

modeled as: 

 

𝑚𝑖𝑛
𝑐,𝑔,𝑐

∥ 𝑤 ⊙ 𝑐 ∥1+
𝜆

2
∥ 𝑔 ∥F

2+
𝛼

2
∥ 𝑐 − 𝑐 ∥F

2 

𝑠. 𝑡. 𝑦 = 𝑦𝑐 + 𝑔, 𝑑𝑖𝑎𝑔(𝑐) = 0, 𝑐𝑇1 = 1, 
(24) 

 

where, ⊙ is the element-wise operator. The problem (24) can 

be solved by ADMM. The numerous variables in the objection 

function will hinder the convergence of the reweighted 

ADMM algorithm, which is still a ubiquitous problem. To 

overcome this difficulty, the maximum number of iterations 

and necessary convergence conditions should be configured to 

ensure the convergence, whiling guaranteeing the algorithm 

performance. 

Assuming that the compressed data are corrupted by the 

system, the following convex program can be considered 

alternatively to solve problem (24): 

 

𝑚𝑖𝑛
𝑐,𝑎,𝑐

∥ 𝑤 ⊙ 𝑐 ∥1+
𝜆

2
∥ 𝑦 − 𝑦𝑎 ∥F

2+
𝛼

2
∥ 𝑐 − 𝑎 ∥F

2 

𝑠. 𝑡. 𝑎𝑇1 = 1,  𝑎 = 𝑐 − 𝑑𝑖𝑎𝑔(𝑐). 
(25) 

 

By introducing two penalty terms aT1=1 and a=c-diag(c) 

into the constraint function of (25), the objective can be 

reformulated as: 

 

𝑚𝑖𝑛
𝑐,𝑎,𝑐

∥ 𝑤 ⊙ 𝑐 ∥1+
𝜆

2
∥ 𝑦 − 𝑦𝑎 ∥F

2+
𝛼

2
∥ 𝑐 − 𝑎 ∥F

2 

+
𝜌

2
∥ 𝑎𝑇1 − 1 ∥2

2+
𝜌

2
∥ 𝑎 − (𝑐 − 𝑑𝑖𝑎𝑔(𝑐)) ∥F

2 

𝑠. 𝑡. 𝑎𝑇1 = 1,  𝑎 = 𝑐 − 𝑑𝑖𝑎𝑔(𝑐). 

(26) 

 

By introducing a vector 𝛿 ∈ 𝑅𝑀𝑁  and a matrix Δ ∈
𝑅𝑀𝑁×𝑀𝑁  for the two equality constraints in (26), the 

augmented Lagrangian can be expressed as: 
 

𝐿(𝑐, 𝑎, 𝑐, 𝑤, 𝛿, Δ) =∥ 𝑤 ⊙ 𝑐 ∥1+
𝜆

2
∥ 𝑦 − 𝑦𝑎 ∥F

2  +
𝛼

2
∥ 𝑐 −

𝑎 ∥F
2 +

𝜌

2
∥ 𝑎𝑇1 − 1 ∥2

2+
𝜌

2
∥ 𝑎 − (𝑐 − 𝑑𝑖𝑎𝑔(𝑐)) ∥F

2+ 𝛿
𝑇

(𝑎𝑇1 −

1) + 𝑡𝑟 (Δ(𝑎 − 𝑐 + 𝑑𝑖𝑎𝑔(𝑐))) 𝑠. 𝑡. 𝑎𝑇1 = 1,  𝑎 = 𝑐 − 𝑑𝑖𝑎𝑔(𝑐). 

(27) 

where, tr(•) is the trace operator of a given matrix. The 

variables a and c were updated by setting their gradienst, 

namely, a and c to 0 per iteration. Furthermore, at each 

iteration, the dual variables 𝛿 and Δ were updated via gradient 

ascent. The update of a at iteration (k+1) can be expresed as: 

 

(𝜆𝑦𝑇𝑦 + 𝛼𝐼 + 𝜌11𝑇 + 𝜌𝐼)𝑎(𝑘+1) = 𝜆𝑦𝑇𝑦 + 𝛼𝑐
(𝑘)

  

 +𝜌(11𝑇 + 𝑐(𝑘)) − 1𝛿
(𝑘)𝑇

− Δ
(𝑘)

. 
 

Accordingly, the update for c at iteration (k+1) can be 

expressed as: 

 

𝑐(𝑘+1) = 𝐽 − 𝑑𝑖𝑎𝑔(𝐽), 𝐽 =
Δ

𝑆1/𝜌
𝑤(𝑘)

(𝑎(𝑘+1) +
Δ

(𝑘)

𝜌
), (28) 

 

where, 𝑆1/𝜌
𝑤 (∙) is a shrinkage-thresholding operator; 𝑆𝜂

𝑤(𝜐) =

𝑚𝑎𝑥(|𝜐| − 𝜂𝑤, 0) ⊙ 𝑠𝑔𝑛(𝜐) . The operator (•)+ returns its 

arguments, if it is nonnegative, and returns zero, if otherwise. 

Then, w in iteration (k+1) can be updated by: 

 

𝑤𝑖𝑗
(𝑘+1)

=
𝜀2

|𝑐
𝑖𝑗

(𝑘+1)
| + 𝜀1

, (29) 

 

where, 1 and 2 are the absolute parameters; wi is the sum of 

the weighted matrix w at the i-th row. 

Finally, 𝛿
(𝑘+1)

 and Δ
(𝑘+1)

 can be respectively updated with 

the step size =500 as 

 

𝛿
(𝑘+1)

= 𝛿
(𝑘)

+ 𝜌(𝑐(𝑘+1)1 − 1) 

Δ
(𝑘+1)

= Δ
(𝑘)

+ 𝜌(𝑎(𝑘+1) − 𝑐(𝑘+1)). 
(30) 

 

These three steps were repeated until the convergence or the 

maximum number of iterations is reached. The iteration was 

terminated by verifying whether the following constraints 

holds for the primal and dual residuals at each iteration k: 

 

∥ 𝑎(𝑘)𝑇
1 − 1 ∥∞≤ 𝜀, ∥ 𝑎(𝑘)𝑇

− 𝑐(𝑘) ∥∞≤ 𝜀 

∥ 𝑎(𝑘)𝑇
− 𝑎(𝑘−1) ∥∞≤ 𝜀 

(31) 

 

where, 𝜀 is the error tolerance. 

The matrix c can be created with the adjacency matrix 

(similarity graph) wRMNMN, in which each entry expresses 

the similarity between two pixels, in the same way as the 

original SSC 

 

𝜔 = |𝑐| + |𝑐|𝑇 . (32) 

 

Table 1. Compressed subspace clustering 

 
Algorithm 1: Subspace clustering directly from the 

3D-CASSI measurements. 

Input: 𝑦, the selected RSSC algorithm with the 

corresponding parameters  

Initialization:  

1: Generate a sampling matrix for compression  

Generate random matrix or another matrix  

2: Compress the data 

Compute the compressed data as y=Hx  

3: Conduct subspace clustering 

Cluster 𝑦 using the RSSC algorithm 

Output: 𝑦1, . . . , 𝑦𝐾 
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The formula (32) with symmetrization can be used to 

enhance the connection of the graph. The final result can then 

be obtained by applying spectral clustering algorithm such as 

RSSC to the similarity graph. The entire process is listed in 

Algorithm 1 (Table 1). 

 

 

5. SIMULATION AND RESULTS ANALYSIS 

 

This section realizes the proposed compressed spectral 

image method on two real-world datasets with different 

imaging environments: Indian Pine dataset [50, 52] and 

University of Pavia dataset [51, 52]. The multi-shot CASSI 

system model was used to obtain a set of CASSI 

measurements with the number of shot and the coding pattern 

bandwidth: 𝑆 = 20 , for Indian Pines dataset and for 

University of Pavia dataset. The CSI measurements were 

obtained with two different types of codes apertures, i.e., 

random coding pattern, and designed coding pattern. The 

RSSC algorithm was proposed to validate the clustering 

directly from the CSI measurements (Algorithm 2). All 

parameters of the RSSC algorithm were set as follows: 

α=3.9104 for the Indian Pines images; α=25.5105 for the 

University of Pavia images; the positive parameter λ that 

trades off sparsity of coefficient against the magnitude of the 

noise can be determined by: 
 

𝜆 =
𝛽

𝜇
, 𝜇 =

Δ
𝑚𝑖𝑛

𝑗
𝑚𝑎𝑥

𝑗≠𝑗
|𝑦𝑗′

𝑇 𝑦𝑗|, (33) 

 

where, β is the adjustment coefficient fixed for all the 

experiments at β=1,000;  is a parameter with the dataset that 

can be explicitly determined; yj is the column of y. Once  is 

fixed for a certain dataset, the value of λ is solely dependent 

on β. 

To fully evaluate the performance of our algorithm, the 

original SSC was taken as the benchmark. The RSSC using 

designed coding pattern was compared with that using random 

coding pattern. Furthermore, the results of our approach for 

subspace clustering were also compared with the algorithms 

RSSC and SSC, respectively, using the complete spectral data 

cube, for both types of data.  

For simplicity, the direct clustering by RSSC on the set of 

CASSI measurements associated with the coherence-based 

codes is denoted as “Coherence-codes-RSSC’’; the direct 

clustering by RSSC on the set of CASSI measurements 

associated with the random codes is denoted as “Random-

codes-RSSC”; the clustering by RSSC on the complete 

spectral data cube (Full-data) is denoted as “Full-data-RSSC”; 

the clustering by the original SSC on the complete spectral 

data cube (Full-data)is denoted as “Full-data-SSC”. 

A common clustering strategy is to treat the number of 

clusters as a prior, and then manually determinate the thematic 

information for each cluster through cross-referencing 

between the clustering results and the images. Here, all the 

parameters of each clustering algorithm are manually adjusted 

to the optimum. Further, a 30dB Gaussian noise was added to 

the measurements compressed (incomplete pixels) in the real 

CSI architecture. The mean of 10 trial runs was taken as the 

final result. Both visual clustering results and quantitative 

evaluations were provided, including overall accuracy (OA), 

mean accuracy (AA), Kappa coefficients, and computational 

time (Time). Every experiment was carried out in MATALB 

2019b (640bit) on a 3.33GHz desktop computer with 32GB of 

RAM. 

5.1 AvIRIS dataset: Indian Pines images 

 

The first experiment was conducted on the images of Indian 

Pines collected by the Airborne Visible/Infrared Imaging 

Spectrometer (AvIRIS) sensor during a flight campaign on 

June 12, 1992, over West Lafaytee, Indiana, US. In the dataset, 

each spatial information involves 145145 pixels and 224 

spectral bands. After discarding the 20 noisy and water 

absorption bands, 200 bands remained for the spectral analysis. 

This scene covers an agricultural field with 16 main classes. 

There are 10, 249 labeled samples for this dataset using the 

distribution as shown in Table 2. Combined with the 

computational efficiency, a sub image of 7070 was cropped, 

including four main land-cover classes: corn-no-till (2), grass 

(7), soybeans-no-till (10), and soybeans-minimum-till (11). 

Clustering is a challenging work for the following factors: the 

highly similar spectral signatures of the land-cover classes in 

this area leads to some seriously mixed spectral curves (Figure 

6(c)). The false-color image and the growth truth are shown in 

Figures 6(a) and (b), respectively. 
 

 
(a)                            (b)                        (c) 

 

Figure 6. AVIRIS Indian Pines images, (a) False-color 

image (RGB 40, 30, 20). (b) Ground truth. (c) Spectral 

curves of the four land-cover classes 

 

Table 2. Class labels with sample number for each class of 

the set of indian pines data 

 
Label Class Samples Label Class Samples 

1 Alfalfa 46 9 Oats 20 
2 Corn-noill 1428 10 Soy-notill 927 
3 Corn-mintill 830 11 Soy-mintill 2455 
4 Corn 237 12 Soy-clean 593 
5 Pasture 483 13 Wheat 205 
6 Tree 830 14 Woods 1265 
7 Grass 28 15 Bidg-drives 386 
8 Hay-window 478 16 Stone-tower 93 

Total 10249 

 

Figure 7 show the results of different clustering methods on 

25% of the samples. Obviously, Coherence-codes-RSSC and 

Full-data-RSSC obtained better accuracy associated with the 

infomraiton of spatial neighborhood. Coherence-codes-RSSC 

performed better than Random-codes-RSSC, thanks to its 

higher clustering accuracy.  Coherence-codes-RSSC 

effectively separated the Corn-no-till class, Grass class, and 

Soybeans-minimum-till class, but slightly underperformed on 

the Soybeans-no-till classes. Meanwhile, due to a reweighted 

matrix of the pixels in the spectral images, RSSC guaranteed 

that the correlated signals provide a more accurate coefficient 

matrix, which brings a high clustering accuracy and a small 

sparse representation bias. Compared to Random-codes-RSSC, 

the our method achieved a high precision. Finally, our 

approach obtained clustering results comparable to those of 

Full-data-RSSC and Full-data-SSC on full data, yet only 

consumed 83.65% and 83.23% of the computational time of 

Full-data-RSSC and Full-data-SSC, respectively. Overall, our 

method realized relatively good performance on spectral 

image clustering tasks, both visually and quantitatively. 
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Figure 7. Unsupervised classification maps using different 

approaches for the Indian Pines images: (a) Ground truth. (b) 

Full-data-RSSC, (c) Full-data-SSC, (d) Coherence-codes-

RSSC, (e) Random-codes-RSSC 

 

5.2 ROSIS Pavia Data: University of Pavia, Italy 

 

The second dataset, the images of the University of Pavia, 

was captured by the Reflective Optics System Imaging 

Spectrometer System (ROSIS) sensor over the University of 

Pavia, Pavia, Italy. The images in the dataset are of the size 

610340, involving 115 spectral bands. A total of 103 band 

remained for further analysis after the removal of low signal-

to-noise ratio (SNR) bands and water absorption bands. 

Similar to the former experiment, a representative region 

with a size of 14080 pixels was cropped, which contains eight 

main land cover categories: asphalt (1), meadows (2), trees (3), 

metal sheet (4), bare soil (5), bitumen (6), bricks (7), and 

shadows (8). The diversity of land cover classes makes the test 

a challenging clustering task. The spectral curves of the eight 

land-cover classes are depicted in Figure 8. The false-color 

image and the ground truth are also given. From the ground 

truth, there are approximately 40,677 pixels. The number of 

samples in each class is listed in Table 3. 

 

Table 3. Class Labels with Sample Number for Each Class of 

The Set of The University of Pavia Data 

 
Label Class Samples Label Class Samples 

1 Asphalt 6631 5 Bare soil 5029 
2 Meadows 18649 6 Bitumen 1330 
3 Tree 3064 7 Bricks 3682 
4 Metal sheets 1345 8 Shadows 947 

 

 
 

Figure 8. ROSIS University of Pavia images, (a) False-color 

image (RGB 102, 56, 31). (b) Ground truth. (c) Spectral 

curves of the eight land-cover classes 

 

Figure 9 presents the clustering results using different 

methods on 25F% of the samples. It can be seen that Full-data-

SSC outputted poor clustering results, which contain lots of 

salt-and-pepper noises and many misclassifications, with an 

OA of 71.45%. Random-codes-RSSC generated smooth 

clustering results and outshined Full-data-SSC in this scene 

with an OA of 78.72%. However, there were still some 

misclassifications in the results of Random-codes-RSSC. For 

example, the bitumen and bare soil classes were not effectively 

identified, leading to the misclassification of most bare soil 

classes as asphalt. Coherence-codes-RSSC achieves an 

improvement of almost 6% in term of OA by significantly 

reducing misclassification. In addition, Coherence-codes-

RSSC consumed the least classification time while 

maintaining a good performance, as it solved the clustering 

problem 7 times faster than other approaches. This further 

verifies the effectiveness and advantages of this strategy. 

Finally, the full data-RSSC effectively distinguished most of 

the land cover classes, achieving the best visual result and 

highest accuracy with little salt-and-pepper noise in each class; 

Nevertheless, the full data-RSSC consumed too much time in 

computation. 

 

 
 

Figure 9. Unsupervised classification maps using different 

approaches for the University of Pavia image: (a) Ground 

truth. (b) Full-data-RSSC, (c) Full-data-SSC, (d) Coherence-

codes-RSSC, (e) Random-codes-RSSC 

 

 

6. CONCLUSIONS 

 

This paper derives a compressed spectral image clustering 

approach, which replaces the compute-intensive task of direct 

clustering the full spectral data cube with direct clustering a 

set of CASSI measurements. Our approach fully utilizes the 

characteristic that each spectral signature is separability 

preserved after the scene projection using the coherence codes, 

which allows to improve clustering results on the compressed 

domain. Simulation results on two spectral image datasets 

show the proposed approach is up to 7 times faster to achieve 

similar accuracy than other approaches that cluster the full 3D 

spectral images. 
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