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The cascaded integrator comb (CIC) filters are characterized by coefficient less and reduced 

hardware requirement, which make them an economical finite impulse response (FIR) class 

in many signal processing applications. They consist of an integrator section working at the 

high sampling rate and a comb section working at the low sampling rate. However, they 

don’t have well defined frequency response. To remedy this problem, several structures have 

been proposed but the performance is still unsatisfactory. Thence, this paper deals with the 

improvement of the CIC filter characteristics by optimizing its sampling rate. This solution 

increases the performance characteristics of CIC filters by improving the stopband 

attenuation and ripple as well as the passband droop. Also, this paper presents a comparison 

of the proposed method with some other existing structures such as the conventional CIC, 

the sharpened CIC, and the modified sharpened CIC filters, which has proven the 

effectiveness of the proposed method. 
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1. INTRODUCTION

The filtering operation, in signal processing domain, plays 

a very important role in the enhancement of the signal quality. 

This process can be realized by removing some undesirable 

components or some frequency characteristics from signals 

(Figure 1). Nowadays, the implication of filters become 

indispensable for several electronics fields such as in radio, 

audio, telecommunication, television, radar, information 

transmission, ...etc. Usually, the filters can be classified as 

analog or digital [1-4]. In digital signal processing (DSP), 

there are two kinds of digital filters, the infinite impulse 

response (IIR) filters and the finite impulse response (FIR) 

filters. 

The Cascaded integrator comb filter (CIC) filters, which 

were initially invented by Hogenauer [5], are a part of FIR 

filters that mainly used in low-cost implementation of 

decimation and interpolation. Besides, these filers don't 

require multipliers and lot of memory space, which make them 

an economic choice in various applications such as signal 

analysis, digital communication, compression, 

denoising, ...etc. CIC filters consist of two connected blocks in 

cascade, the first block is an integrator component that works 

at a high sampling rate and the second one is a comb 

component that works at a low sampling rate.  

Several works have studied the CIC filters on different 

applications. A performance evaluation of CIC filters 

combined with compensation techniques have been proposed 

to improve the passband response of filters [6]. This 

combination makes the CIC decimation component followed 

by the FIR decimation filter. In order to build a structure that 

can operate at a lower sampling rate while achieving better 

performances, a double sharpened CIC decimation filter has 

been presented [7]. This proposed filter consists of three 

cascading stages as follows: the first stage is the comb 

decimation filter that handles at the input sampling rate. The 

second and the third stages are sharpened comb filters 

operating in low sampling rate, gradually. This scheme can 

produce the narrow passband droop in the sharpened second 

stage and then compensate it with the help of third stage. 

Furthermore, the maximally flat (MF) error minimization 

method has been used for addressing the problem of passband 

droop in the compensated CIC filters [8]. The MF method was 

applied in order to obtain the coefficients of the second and the 

fourth order compensation filters. The cascading of these two 

filters generated a sixth order CIC compensation filter that 

reduced considerably the passband drop of CIC filters. The 

basic structure of CIC filter has been discussed with the 

illustration of its important involved parameters [9]. The 

authors tried to find some problems associated with the filter 

characteristics and emphasized a solution for improving its 

performance. 

Figure 1. Frequency magnitude response of filter 

Through this study, we found that the CIC filter 

performances suffer from two major limitations namely the 
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higher passband error and the lower stopband attenuation, 

which are undesirable in many applications [10]. In order to 

remedy these problems, some improvements can be realized at 

the passband, stopband, or both. These enhancements improve 

significantly the passband and stopband attenuation. 

In this work, we propose a new method based on the 

optimization of the CIC filter parameters to improve both the 

ripple and the attenuation of its stopband. This solution will 

examine the effect of sampling rate on the CIC filter gain 

response and find the optimal sampling rate value that improve 

efficiently the CIC filter gain response. 

The remain of this paper is organized as follows: Section 2 

describes the main principal of the CIC filters and their 

characteristics. In section 3, we explain in detail the proposed 

method for optimizing the CIC filter parameters. Section 4 

discusses the results of the proposed method combined with 

some interesting examples. In order to give an idea on where 

our proposed method ranks performance-wise, we compare 

with several well-known CIC filters in section 5. Finally, the 

conclusions drawn from this work are in Section 6. 

 

 

2. CIC FILTER REVIEW 

 

The cascaded integrator comb (CIC) filter, which was 

initially proposed by Hogenauer in 1981 [5], is a new class of 

economical digital Finite Impulse Response (FIR) filters for 

the reason that it uses only the delays and the summation units. 

Usually, this filter is used in multi-modulated digital signal 

processing as well as in interpolation and decimation. Unlike 

conventional FIR filters, CIC filters have two sections called 

integrator and comb sections, which perform simultaneously 

the digital low pass filtering and decimation operations [7, 8]. 

CIC filters can realize the decimation by decreasing in the 

sampling rate and the interpolation by increasing in the 

sampling rate without using multipliers. A CIC filter consists 

of an equal number of ideal filter integrator and comb stages. 

Its frequency response can be adjusted by selecting the optimal 

number of cascade integrator and comb filter pairs [6]. Its 

highly symmetric structure allows an efficient hardware 

implementation [11]. Figure 2 shows the main structure of the 

CIC filter. 
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Figure 2. Structure of CIC filter with multistage 

 

In this structure, 𝑥[𝑛] designs the input signal and 𝑦[𝑚] the 

output signal. The transfer function of the CIC filter in z-

domain is given by the following equation: 

 

H(z, N,M) = (
1

N

1 − Z−N

1 − Z−1
)

M

 (1) 

 

In Eq. (1), the numerator 1 − Z−N  represents the transfer 

function of comb and the denominator 1 (1 − Z−1)⁄  indicates 

the transfer function of integrator, where M and N denote the 

number of CIC stages and the decimation factor, respectively. 

The amplitude response of the CIC filter of the Mth order is 

given by: 

 

|HCIC(Ω, N,M)|= |(1/𝑁)
sin(NΩ 2⁄ )

sin (
Ω
2
)

|

M

 (2) 

 

where, Ω represents the normalized frequency. 

 

a) 

 
b) 

 
 

Figure 3. CIC filter gain responses with N=8 and M=1, 2, 

and 3: a) the whole magnitude response, b) the passband 

zoom 

 

The illustrations depicted in Figure 3 represent the 

frequency response of CIC filter for N=8 with three different 

value of M. We note that when increasing the number of stages 

M, the passband droop decreases and the stopband attenuation 

augmented constantly. 

 

 
 

Figure 4. CIC filter gain response with single stage (M=1) 

and three different value of N (10, 20 and 40) 
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From Figure 4, we clearly note that increasing in differential 

delay N causes a fast passband droop while the stopband 

attenuation is relatively improved within the CIC bands. 

Besides, the stopband ripple increases proportionally with the 

value of N. 

 
 

Figure 5. CIC filter gain response for two different value of 

sampling frequency (M=1, N=10) 

 

Now, in order to show the influence of the sampling 

frequency in the CIC filter characteristics, we show in Figure 

5 two gain responses with two different sampling frequency. 

We notice that a smaller sampling frequency results a faster 

passband drop.  

Based on all aforementioned characteristics of the CIC filter 

behavior, we are looking for a useful relation between Ω and 

N for improving the CIC filter gain response through its 

parameters. In the next section, we detail the mathematical 

formulation of objective function in order to find the optimal 

CIC filter parameters. 

 

 

3. PROPOSED METHOD 

 

The Gain response of the CIC filters depends on three 

parameters: the decimation factor N, the number of stages M, 

and the sampling frequency. In this paper, we propose a new 

method that can resolve the CIC filter problems mentioned-

above by optimizing its parameters simultaneously. For this 

end, we consider the CIC filter Gain response reported in Eq. 

(3): 

 

|HCIC(Ω, N)|= |(1/𝑁)
sin(NΩ 2⁄ )

sin (
Ω
2
)

| (3) 

 

To find the optimal solution for Ω and N, we should 

compute the partial derivative of Eq. (3) with respect to Ω and 

N. Straightforward mathematical manipulations allow to write: 

 
𝜕𝐻(𝑁, Ω)

𝑑Ω

=
(𝑁 2⁄ ) 𝑐𝑜𝑠 (

Ω𝑁
2
) 𝑠𝑖𝑛 (

Ω
2
) − (1/2)𝑐𝑜𝑠⁡(

Ω
2
) 𝑠𝑖𝑛 (

Ω𝑁
2
)

𝑠𝑖𝑛 (
Ω
2
)
2  

(4) 

 

𝜕𝐻(𝑁, Ω)

𝑑𝑁
=
(Ω 2⁄ ) 𝑐𝑜𝑠 (

Ω𝑁
2
) 𝑠𝑖𝑛 (

Ω
2
)

𝑠𝑖𝑛 (
Ω
2
)
2  (5) 

 

After adding Eq. (4) to Eq. (5) and setting all to zero, we get: 

 

(
𝑁
2
) 𝑐𝑜𝑠 (

Ω𝑁
2
) 𝑠𝑖𝑛 (

Ω
2
) − (1/2)𝑐𝑜𝑠⁡(

Ω
2
) 𝑠𝑖𝑛 (

Ω𝑁
2
)

𝑠𝑖𝑛 (
Ω
2
)
2

+
(
Ω
2
) 𝑐𝑜𝑠 (

Ω𝑁
2
) 𝑠𝑖𝑛 (

Ω
2
)

𝑠𝑖𝑛 (
Ω
2
)
2 = 0 

(6) 

 

After some mathematical manipulations, we obtain: 

 

(
𝑁
2
+
Ω
2
) 𝑐𝑜𝑠 (

Ω𝑁
2
) 𝑠𝑖𝑛 (

Ω
2
) − (1/2)𝑐𝑜𝑠⁡(

Ω
2
) 𝑠𝑖𝑛 (

Ω𝑁
2
)

𝑠𝑖𝑛 (
Ω
2
)
2

= 0 

(7) 

 

We define A=(
N

2
+

Ω

2
), hence Eq. (7) becomes: 

 
(
𝐴
2
) [𝑠𝑖𝑛 (

Ω
2
+
Ω𝑁
2
)⁡+ 𝑠𝑖𝑛 (

Ω
2
−
Ω𝑁
2
)⁡] − (1/2)(1/2) [𝑠𝑖𝑛 (

Ω
2
+
Ω𝑁
2
)⁡+ 𝑠𝑖𝑛 (

Ω
2
−
Ω𝑁
2
)⁡]

𝑠𝑖𝑛 (
Ω
2
)
2 = 0 

(8) 

 

(
A
2
−
1
4
) [sin (

Ω
2
+
ΩN
2
)] ⁡+⁡ (

A
2
−
1
4
)⁡[sin (

Ω
2
−
ΩN
2
)⁡]

sin (
Ω
2
)
2

= 0 

(9) 

 

(
A

2
−
1

4
) [sin (

Ω

2
+
ΩN

2
)] ⁡

+⁡ (
A

2
−
1

4
)⁡[sin (

Ω

2
−
ΩN

2
)⁡] = 0 

(10) 

 

sin (
Ω

2
+
ΩN

2
)⁡+⁡ sin (

Ω

2
−
ΩN

2
) = 0 (11) 

 

sin (
Ω

2
+
ΩN

2
) =⁡−⁡sin (

Ω

2
−
ΩN

2
) (12) 

 

Now, we involve the following trigonometric rule to resolve 

Eq. (12): 

 

sin(π + θ) = −sin(θ) = sin((2k + 1)π + θ), (13) 

 

where, k is a positive integer. Accordingly, we can write: 

 

sin (
Ω

2
+
ΩN

2
) =⁡ sin ((

Ω

2
−
ΩN

2
) + (2k + 1)π) (14) 

 

(
Ω

2
+
ΩN

2
) = ⁡ ((

Ω

2
−
ΩN

2
) + (2k + 1)π) (15) 

 

Finally, the optimal value of Ω in function of N is as follows: 

 

Ω = (2k + 1)π/N (16) 

 

a) 

 
 

b) 
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4. RESULTS AND DISCUSSION 

 

In this section, we carry out our experiments on the 

proposed CIC filter gain response using Matlab software. We 

perform several values of Ω as function of N according to Eq. 

(16) to compute the gain response expressed in Eq. (2). In 

order to demonstrate the effectiveness of the proposed method, 

we opted for the following tests: 

Test 1: In this example, we designed a CIC filter gain 

response for M=1 and four different values of N (48, 64, 128, 

and 256). Figure 5 shows the magnitude responses of the 

proposed filter in function of N. We Note that there is a 

significant improvement in both stopband attenuation and 

ripple while increasing the value of N. 

Test 2: Now, we increase the number of stages from 1 to 2 

while keeping the same values of N as in test 1. Then, we plot 

the obtained gain response in Figure 7, which seems the same 

one shown in the first test (Figure 6) but with the minimum 

stopband attenuation doubling. 

Test 3: For three stages in CIC filter (As shown in Figure 

8), we notice that the passband of the gain responses with the 

four values of N are rapidly dropped compared to ones 

performed in test 1 and 2. 

Test 4: As shown in Figure 9, we take M=4 while keeping 

the same values of N as in the previous tests. We clearly notice 

that the passband droop is faster than ones obtained before. 

This behavior can significantly improve the amplitude 

response of the CIC filter with rational number of stages M (a 

cost constraint). 

 

 
 

Figure 6. Gain response of the proposed CIC filter with 

single stage (M=1) and four values of N: a) the whole 

magnitude response, b) the passband zoom 

 

 
 

Figure 7. Gain response of the proposed CIC filter with two 

stages (M=2) and four values of N: a) the whole magnitude 

response, b) the passband zoom 

 

 
 

Figure 8. Gain response of the proposed CIC filter with three 

stages (M=3) and four values of N: a) the whole magnitude 

response, b) the passband zoom 
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Figure 9. Gain response of the proposed CIC filter with four 

stages (M=4) and four values of N: a) the whole magnitude 

response, b) the passband zoom 

 

5. COMPARISON 

 

In order to make a meaningful performance assessment of 

the proposed method compared to other existing CIC filters, 

we compare the gain response of our proposed method with 

three other existing CIC filters namely: the conventional CIC 

filter expressed in Eq. (2), the sharpened CIC filter [12], and 

the modified sharpened CIC filter [13].  

The frequency responses of the sharpened (𝐻𝑠ℎ ) and the 

modified sharpened ( 𝐻𝑀𝑠ℎ ) CIC filters, with which we 

compare, are given in the following equations: 

 

|𝐻𝑠ℎ(Ω,N,M)| = |3 [
1

𝑁

sin(NΩ 2⁄ )

sin (
Ω
2
)

]

2𝑀

− 2 [
1

𝑁

sin(NΩ 2⁄ )

sin (
Ω
2
)

]

3𝑀

| (17) 

 
|𝐻𝑀𝑠ℎ(Ω,N,N1, N2, M, L)|

= ⁡ |[
1

𝑁1

sin(N1Ω 2⁄ )

sin (
Ω
2
)

]

𝐿

{3 [
1

𝑁2

sin(NΩ 2⁄ )

sin (𝑁1
Ω
2
)
]

2𝑀

− 2 [
1

𝑁2

sin(NΩ 2⁄ )

sin (𝑁1
Ω
2
)
]

3𝑀

}| 

(18) 

 

where, N1 is the decimation factor of the comb filter section, 

N2 is the decimation factor of the sharpened filter section so 

that N = N1 ∗ N2, and L ≥ 2M. We note that N1, N2, M, L are 

integers. For more details about sharpened and modified 

sharpened CIC filter structures, the interested reader should 

consult these references [12-14]. 

 

 
Figure 10. Frequency response comparison with the following parameters: a) M=1, N=64, N1=N2=8, L=3, b) M=1, N=256, 

N1=N2=16, L=3, c) M=4, N=64, N1=N2=8, L=9, and d) M=4, N=256, N1=N2=16, L=9 
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Table 1. Comparison of stopband attenuation 

 
Filter type Parameters Stopband 

attenuation 

(dB) 
M 

N  N1 N2 L 

Conventional 

CIC [5] 

1 64 - - - 13.26 -  
128 - - - -13.27 
256 - - - 13.28 -  

2 64 - - - -26.52 
128 - - - -26.56 
256 - - - -26.55 

3 64 - - - -39.77 
128 - - - -39.84 
256 - - - -39.85 

4 64 - - - 53.03 -  
128 - - - -53.13 
256 - - - 53.13 -  

Sharpened 

CIC [12] 

1 64 - - - 15.8 -  
128 - - - 15.8- 3 
256 - - - 15.85 -  

2 64 - - - -43.77 
128 - - - -43.86 
256 - - - -43.86 

3 64 - - - -69.95 
128 - - - -70.09 
256 - - - -70.09 

4 64 - - - 96.54 -  
128 - - - -96.72 
256 - - - 96.73 -  

Modified 

Sharpened 

CIC [13] 

1 64 8 8 3 16.2 -  
128 16 8 3 - 16 . 24 
256 16 16 3 15.95 -  

2 64 8 8 5 -44.26 
128 16 8 5 -44.33 
256 16 16 5 -43.98 

3 64 8 8 7 -70.4 
128 16 8 7 -70.52 
256 16 16 7 -70.2 

4 64 8 8 9 97.01 -  
128 16 8 9 -97.17 
256 16 16 9 96.84 -  

The 

proposed 

method 

1 64 - - - 315 -  
128 - - - 315- .4 
256 - - - 315.2 -  

2 64 - - - -630.4 
128 - - - -630.4 
256 - - - -630.4 

3 64 - - - -945.6 
128 - - - -946.3 
256 - - - -945.6 

4 64 - - - 1261 -  
128 - - - -1261 
256 - - - 1261 -  

 

From Figure 10, we clearly notice the effectiveness of the 

proposed method in terms of stopband attenuation and ripple 

whatever the values of N and M. Furthermore, the passband 

droop is considerably improved compared to others. This 

superiority can be justified by the optimizing of the CIC filter 

parameters so that this solution examined the effect of 

sampling rate on the CIC filter gain response and found its 

optimal value which improved efficiently the CIC filter 

magnitude response. 

Table 1 summarizes the performance of the proposed 

method compared to the other existing CIC filters in term of 

stopband attenuation statistics. It is clear that the sharpened 

and the modified sharpened CIC filter performances are 

almost similar but the both are better than conventional CIC 

filter. However, the proposed method gives the best stopband 

attenuation which is 13 times better than that of modified 

sharpened CIC filter. These statistics make our optimized CIC 

filter the best choice for improving the characteristics of the 

decimation filtering. 

 

 

6. CONCLUSIONS 

 

We have presented in this paper a new method for 

improving the CIC filter characteristics. This opted solution 

has examined the effect of sampling rate on the CIC filter gain 

response by finding the optimal sampling rate value which 

improve efficiently the CIC filter characteristics. The 

evaluated results of the proposed CIC filter confirmed the 

enhancements in both stopband attenuation and ripple as well 

as the passband droop. Besides, the comparison carried out 

between our method and some other existing CIC filters 

showed the effect of the sampling rate parameter on both 

stopband and passband performances. This improvement 

makes our CIC filter suitable for many signal processing 

applications, especially in wireless domain including 

WCDMA and WiMAX with different parameter combinations.  

For future work, we are planning to investigate more deeply 

various sampling rate-based optimization method such as 

Lagrangian constrained optimization for improving the CIC 

filter characteristics. 
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