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 Facing the image detection of dense small rigid targets, the main bottleneck of convolutional 

neural network (CNN)-based algorithms is the lack of massive correctly labeled training 

images. To make up for the lack, this paper proposes an automatic end-to-end synthesis 

algorithm to generate a huge amount of labeled training samples. The synthetic image set 

was adopted to train the network progressively and iteratively, realizing the detection of 

dense small rigid targets based on the CNN and synthetic images. Specifically, the standard 

images of the target classes and the typical background mages were imported, and the color, 

brightness, position, orientation, and perspective of real images were simulated by image 

processing algorithm, creating a sufficiently large initial training set with correctly labeled 

images. Then, the network was preliminarily trained on this set. After that, a few real images 

were compiled into the test set. Taking the missed and incorrectly detected target images as 

inputs, the initial training set was progressively expanded, and then used to iteratively train 

the network. The results show that our method can automatically generate a training set that 

fully substitutes manually labeled dataset for network training, eliminating the dependence 

on massive manually labeled images. The research opens a new way to implement the tasks 

similar to the detection of dense small rigid targets, and provides a good reference for solving 

similar problems through deep learning (DL). 
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1. INTRODUCTION 

 

With the explosive development of deep learning (DL) [1], 

algorithms based on convolutional neural networks (CNNs) 

have achieved great success in target detection [2-6]. This type 

of algorithms has been effectively applied to solve problems 

in various industries [7-10]. Compared with traditional target 

detection algorithms, CNN-based algorithms support data-

driven feature extraction with the aid of artificial neural 

networks (ANNs), acquiring deep abstract features of a 

specific dataset after learning numerous samples. These 

abstract features are more robust and generalizable than 

manually extracted features. 

However, the successful application of DL methods hinges 

on a large amount of training data. As a result, the network 

training faces a huge obstacle: the lack of sufficient labeled 

data as training samples. The lack is particularly severe, if the 

detection targets belong to a small yet highly professional field. 

It is a very costly task to label the samples from such a field, 

requiring lots of manpower and time. Besides, the labeling 

personnel must have strong professional background 

knowledge. The labeling task is especially costly, when the 

targets to be labeled belong to different types, the difference 

in visual features between the types is small, the target size is 

limited, the target density is high, and the images are from 

multiple sources. 

To overcome the lack of massive labeled data for DL 

methods, scholars have conducted lots of research, and 

proposed many different methods. For example, transfer 

learning [11], small sample learning [12], unsupervised and 

weakly supervised learning [13] have been adopted to lower 

the dependence on a large amount of labeled data. But none of 

these methods can achieve a comparable performance as 

supervised learning. 

Some scholars tried to enhance and expand data by means 

of image processing algorithms [14-16]. The core idea is to 

regularize the target images in the original training set to 

generate new target images, without changing their labels. 

This approach can effectively expand the size of the training 

set. But the expansion effect depends on the completeness of 

the original dataset. The types of samples not present in the 

original dataset cannot be generated through this approach. 

Some scholars trained the network with artificial synthetic 

data, and combined the synthetic images with real images into 

a complete training set [17, 18]. In this way, new types of 

target images can be generated. However, their research is 

limited to specific work scenarios. In most cases, the data are 

synthetized manually, for the lack of an automatic end-to-end 

synthesis algorithms. Moreover, their strategy is not 

universally applicable, due to the limitation of work scenario.  

Therefore, this paper proposes an automatic end-to-end 

synthesis algorithm to generate a huge amount of labeled 

training samples. In the absence of labeled training images, the 

proposed method can synthetize a training set containing all 

target classes based on the standard images in the target classes, 

and automatically label each training image. Using the 

generated synthetic training set, the network can be trained 

progressively and iteratively. Apart from reducing the 
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workload of manual labeling, this training process helps to 

adapt CNN-based target detection algorithms to the 

identification of multi-class dense small rigid targets. 

 

 

2. LITERATURE REVIEW 

 

In DL-based target detection, the network needs to be 

trained by lots of labeled training samples. When this 

technology is applied to solve industrial problems, it is a very 

difficult task to acquire numerous real images and label them 

correctly. The lack of training data poses a major obstacle to 

the successful application of this technology. Many scholars 

have resorted to various methods to avoid this obstacle. 

One of these methods is to fully utilize the information 

carried in existing training samples, using techniques like 

transfer learning and data enhancement. The traditional data 

enhancement strategies include image processing operations 

such as transform, rotation, flipping, and scaling. Through 

these operations, new samples can be generated from the 

existing samples in the original dataset, which to a certain 

extent increases the number of available training images. 

However, if the original dataset lacks some types of samples, 

it is impossible to generate these types of samples through data 

enhancement. 

Cubuk et al. [19] designed an efficient data enhancement 

strategy that automatically looks for the optimal combinations 

of the dataset, using a search algorithm. But the performance 

improvement of the strategy cannot exceed the improvement 

range dependent on the training capacity provided by the data 

enhancement algorithm. Lim et al. [20] improved Cubuk’s 

strategy to achieve the same performance at a faster search 

speed. Buslaev et al. [21] realized a fast, flexible data 

enhancement function library, which provides most of the 

common image data enhancement functions, but does not 

contain any novel method. 

In many studies, data enhancement is adopted to expand the 

number of samples for target detection in a particular domain. 

For example, Wang et al. [22] employed several data 

enhancement algorithms suitable for target detection of 

synthetic aperture radar (SAR) images, and effectively 

expanded the number of training samples. Wu et al. [23] 

discussed the role of common data enhancement techniques 

for expanding sample set in broader domains. In general, data 

enhancement alone mainly mines deep visual features from the 

existing samples. The mining effect is not ideal, if the current 

dataset is too sparse or lack some types of samples. 

Due to the difficulty in acquiring lots of correctly labeled 

real images, the synthetic image technology has been 

introduced to increase the sample size, such as to train the 

network more adequately. So far, researchers have attempted 

to generate synthetic images by various methods. For instance, 

Narayanan et al. [24] synthetized aerial images with a game 

engine; this approach is not universal, for its applicable scope 

depends on the functions of the game engine. Rajpura et al. 

[25] used a three-dimensional (3D) engine to synthesize 

images of the items in the refrigerator. With the help of a 3D 

engine, Xu et al. [26] synthesized multiple mutually occluded 

pedestrian images in surveillance video. Both Rajpura and Xu 

Jian relied on 3D engine to identify spatial relationship 

between different targets in the synthesis images. Thus, their 

approaches are both limited by the specific scene of the task 

and the functions of the 3D engine. Lu et al. [27] synthetized 

a moving target detection dataset through affine transform, 

trained the deep CNN on the dataset, and verified the trained 

network on a test set of real images; but this strategy can only 

deal with moving targets, rather than general targets.  

In addition, Jiang et al. [28] synthetized a dataset for logo 

detection, and proved the effectiveness of the method; 

however, the method only applies to target detection problems, 

in which the logos have fixed graphical features. Jin et al. [29] 

separated the vehicle foreground from real images, and 

embedded it in various complex scenes, producing multiple 

training images; with vehicle as the detection target, this 

method can effectively pinpoint targets of the same class 

amidst abundant samples, but cannot detect various types of 

targets with a high inter-class similarity out of many samples. 

Through image processing, Xu et al. [30] synthesized the 

smoke shrouding effect, and successfully applied it to video 

smoke detection; nevertheless, this approach is not suitable to 

general problems of target detection, because the targets must 

overlap with the background, rather than cover the background. 

Similarly, O'Byrne et al. [31] explored video smoke detection 

of underwater scene images with artificial synthetic data. 

Most of the above methods are not applicable to similar 

problems in other industries. Some of them are constrained by 

image synthesis methods and tools, and some are limited to 

special application scenarios. 

Some scholars utilized more complex algorithms to 

synthesize training data. Frid-Adar et al. [32] generated 

training data by generative adversarial network (GAN). Wang 

et al. [33] adopted Wasserstein GAN + gradient penalty 

(WGAN-GP) to expand the number of cooperative target 

images, and applied the expanded image set to the detection 

network based on you look only once (YOLO). Kim and 

Myung [34] cascaded autoencoders into a GAN, and 

synthetized images with the network for the target detection of 

jellyfish swarm. Nonetheless, these methods are unlikely to be 

transplanted to other fields, owing to the complex mechanism, 

complicated network structure, and high overload of network 

training. 

In all the studies above, the generation methods for training 

set face two limitations. Some methods have a high 

complexity and a huge training overhead. Some are limited to 

specific scenarios, and not applicable to similar problems. To 

recognize dense small rigid targets from various sources, this 

paper proposes an end-to-end automatic synthesis algorithm 

for training images. The synthetized dataset was combined 

with a few real images to train the network progressively and 

iteratively. The proposed algorithm was proved effective 

through an example analysis on target detection problem of 

rice planthoppers. 

The rest of this paper is organized as follows: Section 3 

describes the methodology of this research, provides the end-

to-end automatic synthesis algorithm for training images, 

explains the selection of network training parameters, and 

introduces the features of sample classification in the target 

detection problem of rice planthoppers; Section 4 carries out 

an experiment, analyzes the experimental results, and verifies 

the effectiveness of our algorithm; Section 5 summarizes the 

findings of this research. 

 

 

3. METHODOLOGY 

 

3.1 Samples and evaluation metrics  

 

In the target detection problem of rice planthoppers, there 
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are three kinds of targets: brown planthoppers, gray 

planthoppers, and white-backed planthoppers. Each kind of 

planthoppers can be divided by shade into a dark type and a 

light type. For every kind of planthoppers, each insect needs 

to through five nymphic stages before becoming an imago. 

Every imago is either male or female, and long-winged or 

short-winged. To sum up, the rice planthoppers in this research 

fall into 54 subcategories. As shown in Table 1, the standard 

images of 47 subcategories were obtained for our experiment. 

The training images were synthetized from the 47 different 

kinds of standard images. 

 

Table 1. Classes of rice planthoppers 
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X 

 

X 
   

     
 

 

X 

 

X 

Note: B, G, and W refer to brown, gray, and white-backed rice planthoppers, respectively; D/L is dark type or light type; 1-5 stand for the five nymphic stages; F/M 

is female or male imago; L/S is long-winged or short-winged. 

 

Careful observation shows that some classes of standard 

images have very similar appearances, with very minor 

differences. Therefore, the target detection problem of rice 

planthoppers aims to classify targets with high inter-class 

similarity. Since there are so many targets of similar classes in 

the original images, it is a challenging task to recognize and 

count the targets in each class, even the recognition and 

counting are performed by experts with rich experience in the 

domain. 

Under the application scenario of our problem, estimating 

the total number of rice planthoppers in the target images is 

more important than the accurate classification of an 

individual rice planthopper. Hence, the effectiveness of target 

detection method should be evaluated by the ability to detect 

the rice planthoppers in the images, rather than the correct 

classification of the detected targets. 

Next is a brief introduction to the evaluation metrics of 

experimental results. Precision and Recall are two common 

metrics of the performance of target detectors: 

 

/ ( )P TP TP FP= +  (1) 

 

/ ( )R TP TP FN= +  (2) 

 

where, TP is the number of correctly categorized positive 

samples; (TP+FP) is the total number of samples categorized 

as positive; (TP+FN) is the total number of actual positive 

samples. 

Many other metrics, including F1 score, mean average 

precision (mAP), receiver operator characteristic (ROC) curve, 

and area under curve (AUC), are developed from precision and 

recall. Because our aim is to evaluate the effectiveness of the 

proposed algorithm, precision and recall were selected as the 

basic metrics for quantitative analysis.  

In the application scenario of our problem, the images in 

some classes bear high resemblance in appearance, and the key 

task is to identify every rice planthopper. Therefore, the targets 

that are correctly recognized and located are still meaningful, 

even if they are categorized into wrong classes. 

 

3.2 End-to-end automatic image synthesis algorithm 

 

In the target detection problem for rigid targets, there are 

graphical differences between the targets in real images, which 

arise from the variation in shooting environment, shooting 

devices, light conditions, positions, and angles. Despite these 

differences, the rigidity of the targets ensures the stability of 

the visual features that differentiate different types of targets. 

This is the root reason for the effective simulation of real 

images by image processing algorithms. 

Take the target detection of rice planthoppers as an example. 

The target images could come from various sources, such as 

professional lab devices, field trap and shooting devices, drone 

shooting devices, and the Internet (Figure 1). If the real images 

are directly taken as training samples, it is very laborious for 

professional personnel to label all the images for network 

training. In fact, the labeling task is a daunting task, for the 

sheer number of targets, graphical differences of targets in the 

same class, and the numerous connection weights of the 

network. 

 

 
 

Figure 1. Multi-source target images  

 

In this paper, manual labeling is replaced with an end-to-

end automatic image synthesis algorithm to generate the 

training set. As shown in Figure 2, the algorithm produces the 

synthetic dataset in three steps: First, collect the standard 

images on each type of targets; Second, perform data 

enhancement on the standard images to simulate every 

possible appearance of the insect on real images; Third, 

superimpose the processed insect images as foreground onto 

various backgrounds, i.e., the images of different typical 

scenes, such as close-up images on field crops, real images 

shot in the field, and monochrome images. 

63



 
 

Figure 2. End-to-end automatic image synthesis algorithm 

 

The real images, collected from the field, contain various 

changes induced by the number, pose, and direction of insects, 

as well as the shooting environment, device location, and 

device orientation. These changes should be retained as much 

as possible in the synthetic image set, such that the synthetic 

dataset has similar feature distribution as the real images. For 

this purpose, the standard images on rice planthoppers were 

preprocessed by image processing algorithm to mimic the 

changes in the real environment. The preprocessing 

procedures is detailed below. 

(1) Rotation 

The various orientations of targets in the labeled images 

were simulated by rotation: 

 

1

cosθ sinθ
A ,

sinθ c
2

osθ
0  

− 
=  
 

   (3) 

 

where, θ is the rotation angle. In this paper, θ is changed at the 

step size of 15° in the interval of [0°, 345°]. 

(2) Scaling 

The size variation of targets induced by different sources of 

labeled images and the distances to the camera was simulated 

by scaling: 

 

2

S 0
, 0A

0 S
s

 
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




 (4) 

 

where, S is scaling ratio. Three different scaling sizes were 

used in the experiment, creating an image pyramid for each 

target. The network trained by the image pyramids can 

correctly detect targets of different sizes. Note that some 

information of the original image might get lost through 

rotation and scaling. To prevent the error accumulated by step-

by-step reduction, the images of different rotation angles and 

scaling ratios were all directly transformed from the high-

resolution original images. This strategy has a much smaller 

information loss than the existing rotation and scaling methods 

based on small targets in real images. 

(3) Hue/lightness/saturation (H/L/S) adjustment 

In the labeled images, the targets have L and S changes 

caused by lighting and device conditions. In our experiment, 

the three attributes of the color space, namely, H, L, and S, 

were changed by the step size of 1/10 in the change interval. 

Figure 2 illustrates the generation of training images. For 

the standard images on 47 types of rice planthoppers, an image 

processor was generated for each image, and used to adjust H, 

L, and S by the said step size in the change interval. After each 

adjustment, one of the 47 image processors was chosen as the 

foreground, and subject to rotation and scaling, before being 

superimposed on a randomly selected background. Meanwhile, 

the coordinates of the superimposed position were written into 

the Extensible Markup Language (XML) file as the label data. 

This process was repeated until the number of foregrounds 

superimposed on the background reached the preset number. 

Then, a training image and its label file were generated. The 

above steps were iteratively implemented till all the generated 

images were superimposed. During each superimposition, the 

image processor was selected cyclically, such that the target 

images of all types were superimposed on the training images 

in turn. This method balances the distribution of different 

classes of samples, avoiding the imbalance of sample 

distribution. 

Following the above synthesis method, the total number of 

generated target samples can be calculated by: 

 
24 3 10 10 10 47 3,384,000     =  

 

Suppose 100 target images are superimposed on each 

training image. Then, a total of 3,384,000 training images 

could be obtained. It would be immensely difficult to manually 

collect so many labeled training images. The difficulty lies in 

the acquisition of enough images, and the correct labeling of 

targets in numerous images. By contrast, our synthesis 

algorithm automates the generation of training images and the 

accurate labeling of targets. 
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3.3 Network structure and training strategy 

 

Considering the application scenario, the target samples of 

this research have the following features: 

1. The main goal of the task is to detect rice planthoppers in 

multi-source images. From different sources, the images differ 

in resolution and background. 

2. The targets in the images are very small, usually as large 

as a dozen of pixels. The effective detection of small targets is 

critical to this research. The detection model should be able to 

recognize targets of various sizes. 

3. The application scenario, as a mode of sampling analysis, 

has a low requirement for real-timeliness. Compared with 

detection accuracy, model speed is not a key element. 

Through the above analysis, faster region-based CNN 

(Faster-RCNN), with residual network 101 (ResNet101) as the 

backbone, was selected as the detection model. The main 

structure of the FASTER R-CNN is shown in Figure 3(a). The 

convolutional layers adopt the ResNet101 structure, which 

includes a 99-layer CNN stacked from the modules in Figure 

3(b), an input convolutional layer, and a fully-connected layer.  

 

 
(a) Structure of Faster-RCNN 

 
(b) Bottleneck module of ResNet101 

 

Figure 3. Structure of Faster-RCNN with ResNet101 as the 

backbone 

 

In actual network training, the initialization of network 

weights directly impacts the convergence speed of the network. 

The common ways to initialize weights include full-zero 

initialization, random initialization, Xavier initialization, and 

He initialization. 

Transfer learning of suitable pre-training network 

parameters is an effective way to reduce the difficulty of 

network learning [11]. The main idea is to avoid re-training 

the entire network with limited training data in the target 

domain, starting from the lowest layer. In the field of image 

processing and computer vision, transfer learning often 

assumes that low-level image features, such as edge and 

simple geometry, are independent of the actual image contents 

in the target domain. Therefore, these underlying features can 

be learned by any dataset containing lots of available training 

data. The pre-trained model can be used as training benchmark, 

and further finetuned to adapt to the target domain. In this way, 

the training objective can be achieved with fewer data than 

direct training from the initial state. In our experiment, transfer 

learning was adopted to prevent training the network from 

random weights. 

 

3.4 Experimental procedure 

 

The procedure of our experiment was designed as follows: 

First, take the weights of the pre-trained network as the initial 

weights; train the network with the initial training set 

generated by the synthesis algorithm mentioned in 3.2, and 

verify the trained network with a few real images; treat the 

targets not detected or incorrectly detected in the test set as the 

targets for the next cycle, convert them into new training data, 

and superimpose the data on the original training set for the 

iterative training of the network; repeat this step until the 

network reaches the preset detection standard. Overall, image 

synthesis is implemented iteratively throughout network 

training, rather than only once before the first training. The 

overall procedure of our experiment is detailed below. 

Step 1. Generate training images and label files by the 

method described in Section 3, and create the dataset required 

for Faster R-CNN training. 

Step 2. Initialize the weights of the network as the pre-

trained network weights. 

Step 3. Start training with the dataset generated in Step 1. 

Step 4. Terminate the training when the total loss reaches 

the preset level or the number of training steps surpasses the 

preset value. 

Step 5. Apply the trained network to detect the labeled 

images, compare the detection results with the real values, and 

jump to Step 9 if the difference is smaller than the preset value. 

Step 6. Separate the targets not detected or incorrectly 

detected in Step 5, treat the target images as foregrounds, and 

synthetize them into new training images by the method 

specified in Section 3. 

Step 7. Progressively train the network obtained in Step 5 

with the training images generated in Step 6. 

Step 8. Return to Step 5. 

Step 9. Perform detection with new labeled images, repeat 

Steps 5-8 until the test images are used up, and terminate the 

training. 

Step 10. Obtain the final results of network training. 

 

 

4. RESULT ANALYSIS AND DISCUSSION 

 

Our experiment attempts to verify the feasibility and 

effectiveness of synthetic training images for neural network 

training. 

Figure 4 presents the real image detection results of our 

network trained by synthetic image data. The experimental 

results show that, after being trained by the synthetic image set, 

the network could correctly detect part of the targets, a sing of 

the feasibility of our strategy. However, quite a few targets 

were not detected, due to the limited number of standard 

images adopted in image synthesis. In our experiment, the 

training images on the same type of objects were derived from 

the same original standard image. Although the sample size 
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was greatly expanded through image processing, it is not 

sufficient to cover all the actual changes of different types of 

insects with similar features in various real images (Figure 4a). 
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(a) Target detection results on real images after initial training with synthetic training set (confidence threshold: 0.9, 0.7, 0.5, and 

0.1) 
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(b) Target detection results after iterative training with additional training samples synthetized from the targets in red ellipses 

 

Figure 4. Target detection results on real images after initial training with synthetic training set and after one iterative training 

with additional new synthetic training samples 
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To make up for the defect, the targets not detected were used 

to synthetize new training images. The new synthetic images 

were supplemented to the training set for progressive training 

of the network. Experimental results show that this strategy 

could quickly improve the recall in the target detection of real 

images from the same source.  

During the experiment, a single target was selected in turn, 

and taken as the standard image. The training samples 

generated from the standard image were applied to iteratively 

train the network. The results suggest that this approach 

effectively enhanced the recall of samples in the same class. 

After several iterative trainings, the network achieved 

satisfactory effect on the test set. The effects of multiple 

iterative trainings are given in Table 2. 

To clearly present the effect of iterative training, only a 

single target sample was selected for image synthesis in each 

iteration. Figure 4b compares the detection effects before and 

after one iterative training. The results show that the proposed 

method can generate a training set from the few samples, using 

the end-to-end automatic synthesis algorithm, and the training 

set can replace the set of real images with lots of manual labels 

in the initial training of the network. Throughout the network 

training, our method could realize satisfactory detection 

results, with a small amount of manual labeling in the testing 

phase. 

 

Table 2. Detection results after initial training and iterative training 

 
Number of iterations Number of actual positives TP Number of missed positives Miss rate FP Recall (%) 

0 120 44 76 63.33 1 36.67 

1 120 55 65 54.16 1 45.83 

2 120 67 53 44.17 3 55.83 

3 120 81 39 32.50 5 67.50 

4 120 90 30 25.00 4 75.00 

5 120 97 23 19.17 6 80.83 

6 120 104 16 13.33 8 86.67 

7 120 109 11 9.17 15 90.83 
Note: FP means the number of negatives incorrectly identified as positives; the samples were classified by two criteria: if the confidence of a sample is greater than 

zero in only one class, then the sample will be assigned to that class; if the confidence of several samples is greater than zero in one class, the sample with the 

highest confidence will be assigned to that class. 

 

 
 

Figure 5. Trends of TP, FN, FP, FN rate, and recall after 

multiple iterative trainings 

 

As shown in Figure 5, the FN rate of the network exhibited 

a rising trend after multiple iterative trainings. This might be 

attributed to the following reason: After more diverse samples 

are added to the training set, the distance between the depth 

features in adjacent classes will be close to each other in the 

depth feature space, due to the similarity between different 

types of image features in the application scenario of our 

problem. With the enhancement of detection ability, the 

network is more likely to detect the targets on the edge of 

sample clusters, pushing up the probability of mistaking a 

target of a class for one of an adjacent class. 

The proposed method has the following advantages over the 

training with manually labeled sample set: 

(1) The premise of manual labeling is to obtain sufficient 

real images, especially if the network is large and the targets 

are diverse. In industrial practice, network training often 

requires thousands to tens of thousands of images. It is a 

difficult task to gather so many training images. In the 

professional field of our problem, the image collection is even 

more unlikely to complete, because the training set must 

contain dozens of sample images. Meanwhile, the success of 

the DL hinges on the sufficiency of training images. Thus, it 

is impossible to complete the network training for our task, 

solely based on manually labeled training samples. In other 

words, the DL is not very applicable to tasks similar to ours. 

In contrast, our end-to-end automatic synthesis algorithm can 

generate the training set with minimal manual intervention. 

(2) Compared with manually labeled images, synthetic 

images as training samples contain accurately classified and 

positioned targets. During manual labeling, the operator must 

be very careful to mark each target with a box in every real 

image and specify the class of that target. However, errors are 

commonplace in manual labeling, especially if the original 

images are fuzzy for reasons of poor lighting, camera vibration, 

low resolution, or ultra-small targets. If any error occurs, the 

data will be incorrect, and cannot be removed through data 

cleaning. In our task, the targets are divided into very refined 

classes, with a high inter-class similarity. In this case, wrong 

labeling is very likely to occur. Any misclassification or 

inaccurate positioning of targets by the operator will introduce 

wrong data or noises to the training set, which cannot be easily 

removed. 

(3) It is hard to balance the targets of different types in the 

manually labeled image data. This is particularly true, when 

the targets to be recognized and located belong to various 

types. In our problem, a total of 47 types of rice planthoppers 

need to be detected. However, some types of insects seldom 

appear in the real images captured in the field. In many cases, 

most real images contain only the insects of the same type, 

while some types of insects are not contained in any image. If 

the initial training set is synthetized by our method, the data 

will be easy to process, such that different types of insects 

appear at more balanced frequencies. 

(4) If the dataset is manually labeled based on the real 

images, it is difficult to separate the targets from backgrounds 

through preprocessing, not to mention facilitating target 

feature extraction. If the dataset is synthetized by our method, 

it would be convenient to process the targets and backgrounds 

differently and superimpose the processed parts together, 

making it easier to train the network. 
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5. CONCLUSIONS 

 

To adapt the CNN to the image detection of dense small 

rigid targets, this paper proposes an end-to-end automatic 

image synthesis algorithm, which reduces the workload and 

technical difficulty of training set generation by manual 

labeling. Taking a single standard image as the original sample, 

the proposed algorithm was adopted to create a training set for 

initial network training. Then, the samples not detected in 

network testing were iteratively compiled into a new training 

set for progressive training of the network. The target 

detection network was trained and tested based on the DL. The 

main conclusions are as follows: 

(1) The initial training of deep network can be effectively 

implemented by our strategy, i.e., the end-to-end automatic 

synthesis of training set by image processing, based on a single 

standard image and multi-source background images. 

(2) Taking a few real images as the test set, it is possible to 

quickly find the deviation of the training set from the actual 

values. Then, the training set could be supplemented with the 

minimal manual intervention. 

(3) The proposed method can complete network training for 

image detection of dense small rigid targets, in the absence of 

lots of labeled real images. 

The proposed method provides a reference for solving the 

difficulty in labeling for image detection of dense small rigid 

targets. The following aspects of our method need further 

research: Currently, the target images must be manually 

separated to generate additional training samples, after the 

sample targets are selected in the testing and iterative training 

phase. To overcome the complexity of manual operation, the 

future research could try to replace the manual separation with 

automatic or interactive operation based on image 

segmentation techniques. In addition, the network training 

results hinge on the quality of the standard images for targets 

of each type in the initial samples. This is particularly the case, 

when the targets belong to various classes with high inter-class 

similarity. If the standard images are of poor quality, it is easy 

to misjudge the classes of the targets. To realize ideal results, 

the network must be trained iteratively for many rounds. 

However, the more the iterations, the higher the FN rate of the 

network tested on real images. The internal mechanism and 

solution of this problem should be further studied. 
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