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 Late detection of depression is having detrimental consequences including suicide thus there 

is a serious need for an accurate computer-aided system for early diagnosis of depression. 

In this research, we suggested a novel strategy for the diagnosis of depression based on 

several geometric features derived from the Electroencephalography (EEG) signal shape of 

the second-order differential plot (SODP). First, various geometrical features of normal and 

depression EEG signals were derived from SODP including standard descriptors, a 

summation of the angles between consecutive vectors, a summation of distances to 

coordinate, a summation of the triangle area using three successive points, a summation of 

the shortest distance from each point relative to the 45-degree line, a summation of the 

centroids to centroid distance of successive triangles, central tendency measure and 

summation of successive vector lengths. Second, Binary Particle Swarm Optimization was 

utilized for the selection of suitable features. At last, the features were fed to support vector 

machine and k-nearest neighbor (KNN) classifiers for the identification of normal and 

depressed signals. The performance of the proposed framework was evaluated by the 

recorded bipolar EEG signals from 22 normal and 22 depressed subjects. The results provide 

an average classification accuracy of 98.79% with the KNN classifier using city-block 

distance in a ten-fold cross-validation strategy. The proposed system is accurate and can be 

used for the early diagnosis of depression. We showed that the proposed geometrical 

features are better than extracted features in the time, frequency, time-frequency domains as 

it helps in visual inspection and provide up to 17.56% improvement in classification 

accuracy in contrast to those features. 
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1. INTRODUCTION 

 

1.1 Background 

 

Depression is taken into consideration as one of the 

common mental disorders worldwide that affect the different 

aspects of a person life. Its behavioral symptoms appear as 

restlessness feeling, sadness and distress feeling, low energy 

and persistent tiredness feeling, sleep disorder, as well as 

despair and guilty feeling. Growing the extent of the illness 

and untreated will lead to suicide. Hence detection of 

depression could be viable to prevent the disease progression 

and its irreversible consequences. According to the report of 

the World Health Organization (WHO) in 2017, there are more 

than 300 million people, who are now living with depression. 

This situation had an increase of more than 18% between 2005 

and 2015 [1]. Although depression is treatable by medication 

cure and psychotherapy session, there are different reasons in 

which many people currently suffer from the illness 

worldwide. These reasons are dealt with lack of awareness, no 

timely diagnosis, improper detection, high cost of treatment 

and so on. 

Physicians and psychologists can diagnostic the depression 

disorders by counselling sessions and asking relevant 

questions from subjects, although it has prone to physician's 

error and experience. For this reason, medical imaging 

approach like magnetic response imaging (MRI) and positron 

emotion tomography (PET) scan used for depression 

diagnostic. 

But the main problem of this diagnostic is inaccessibility of 

these equipment in developing countries, also they are 

expensive for a large part of society. Besides, PET scan needs 

to nuclear material which few countries can make it. The 

activities of the brain in the depression condition became very 

low in compared to healthy condition. It is due to lesser 

connection of brain’s synapse in depressed subject in 

compared to healthy subject. Figure 1 illustrates a schematic 

comparison of synapses between healthy subjects and 

depressed patients. 
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Figure 1. A schematic comparison of synapses tween healthy 

subjects and depressed patients (adapted from a purchased 

image from https://www.123rf.com/) 

 

Recently, Electroencephalography (EEG) is considered as a 

popular tool for detection and investigation of various mental 

diseases such as Alzheimer [2], dementia [3, 4], epilepsy [5, 

6], alcoholism [7-9], attention deficit hyperactivity disorder 

(ADHD) syndrome [10, 11], autism [12, 13] and motor 

imagery [14, 15]. The EEG records electrical activity of the 

brain and depicts the function of brain signals. Since neurons 

do not properly function in depressed subjects, the synapse has 

a smaller concentration of receptors and neurotransmitter 

release is decreased in comparison to healthy subjects. For this 

reason, depression EEG signals have less complexity (more 

predictability) compared to standard EEG signals [16, 17]. 

Visual interpretation and analysing of complex, nonlinear and 

non-stationary EEG signals by psychiatrist are so difficult, 

time-consuming and inefficacious procedures. In other word, 

an automatic method to distinguish normal and depression 

EEG signals with proper performance is desirable. For that, in 

this article, we proposed a computer aided detection system 

based on EEG signals for depression detection. 

 

1.2 Previous works 

 

Therefore, many methods have been proposed to provide an 

EEG-based diagnosis system for depression subjects in the last 

two decades. Among those methods, different linear and 

nonlinear techniques have been used for the identification and 

detection of depressive disorder. 

We have categorized the proposed linear and nonlinear 

frameworks for depression detection into four groups namely: 

1) time method, 2) frequency method, 3) time-frequency 

method, and 4) deep learning. 

The features in the time method have been extracted directly 

from EEG signals without any processing method. On other 

hand, features in the frequency method have been extracted 

from the frequency spectrum of EEG signals. The time method 

features evaluated the variations of the EEG signal in the time 

domain and the frequency method evaluated the variation of 

frequency components of the EEG signals in the frequency 

domain. In other work, the frequency method measures the 

variations of the frequency spectrum of the EEG signal. In the 

following, we reviewed various studies based on time and 

frequency methods that have been carried out in recent years. 

Knott et al. [16] proposed a linear method for the diagnosis 

of depressive disorder. The authors employed power, 

frequency, asymmetry, and coherence measures to 

discriminate between depressed and normal patients which 

categorizes their framework in time and frequency methods. 

The results of their research regarding the depressed male 

patients provide a pattern of aberrant inter-hemispheric 

synchrony asymmetry and a profile of frontal activation. In a 

time method, Hosseinifard et al. [18] revealed that the 

combination of nonlinear features including detrended 

fluctuation analysis, Higuchi's fractal dimension, correlation 

dimension, and largest Lyapunov exponent leads to the 

improvement of k-nearest neighbor (KNN), linear 

discriminant analysis, and logistic regression classifiers 

performance and achieved 90% accuracy with logistic 

regression classifier. Ahmadlou et al. [19] presented a novel 

nonlinear technique based on the relative convergence of 

EEGs and named it spatiotemporal analysis of relative 

convergence. The features were selected by the analysis of 

variation (ANOVA) statistical test, and then they were 

considered as inputs for the enhanced probabilistic neural 

network classifier. This procedure was done for the diagnosis 

of male and female major depressive disorder patients. We can 

categorize their work in time methods. Bachmann et al. [20] 

developed a study based on the time method to compare the 

spectral asymmetry index technique with Higuchi's fractal 

dimension method for the diagnosis of depression. They 

evaluate features using the student’s t-test and achieved good 

sensitivity (SEN) for the detection of depression. Acharya et 

al. [21] presented a novel technique using depression diagnosis 

index with nonlinear features encompassing fractal dimension, 

the largest Lyapunov exponent, sample entropy, de-trended 

fluctuation analysis, Hurst’s exponent, higher-order spectra, 

and recurrence quantification analysis. These features were 

ranked by the t-value and fed to support vector machine 

(SVM) classifier, their framework categorizes in time method. 

This configuration resulted in 98% classification ACC. In 

another time method, Mumtaz et al. [22] employed 

synchronization likelihood features as an input to SVM, 

logistic regression, and naïve Bayesian classifiers and results 

in 98%, 91.7%, and 93.6% of ACC respectively. Bairy et al. 

[23] developed a time method by prediction coding method, 

extracted higher-order statistical features, ranked by receiver 

operating characteristic (ROC), and reported 94.30% of ACC 

with bag tree classifier. 

The main defect of time method features is that they do not 

evaluate the EEG signals spectrum which has significant 

information about the variation of frequency components in 

the EEG signal. On other hand, the main defect of the 

frequency method is that it is a significant tool for stationary 

signals because the frequency components do not change 

during time. But the EEG signals are non-stationary and their 

frequency components are not a constant value and change 

over time. So, extracted parameters by the frequency method 

cannot be as significant features for the EEG signals as a non-

stationary signal.  

In a time-frequency method, the EEG signals have been 

decomposed by wavelet-based techniques and the linear and 

nonlinear features have been computed from sub-bands. 

Extracted features by the time-frequency method can 

evaluate the variation of EEG signals in both time and 

frequency domain which is better than the single time method 

or frequency method. Ahmadlou et al. [17] studied the left and 

right frontal lobes of major depressive disorder patients by a 

time-frequency method using the wavelet-chaos methodology 

proposed by Adeli et al. [24]. Katz's and Higuchi's fractal 

dimensions features were fed into an enhanced probabilistic 

neural network for classifying major depressive disorder and 

normal signals. The reported results showed an accuracy 

(ACC) of 91.3%. Puthankattil and Joseph [25] suggested an 
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artificial neural network for classifying normal and depressed 

signals. A discrete wavelet transform as a time-frequency 

method has been employed to decompose EEG signals; then, 

relative wavelet energy was calculated for the coefficients of 

the discrete wavelet transform. They reported a classification 

ACC of 98.11% for classifying the normal and depressed EEG 

subjects [25]. In another time-frequency method, Faust et al. 

[26] extracted entropy features including approximate entropy, 

sample entropy, renyi entropy, and bispectral phase entropy 

from wavelet packet decomposition coefficients. Significant 

features have been selected by the t-test and used as inputs for 

seven different classifiers. Consequently, the probabilistic 

neural network classifier provided a classification ACC of 

99.5% for detecting healthy and depressed patients. Liao et al. 

[27] proposed a method called kernel eigen-filter-bank 

common spatial pattern for feature extraction which resulted 

in 81.23% classification ACC with SVM classifier. They 

extracted features from sub-bands of EEG signals which 

categorizes their method in the time-frequency method. 

Bachmaan et al. [28] combined linear and nonlinear attributes 

and achieved 92% ACC with the logistic regression classifier 

for the detection of depression. Sharma et al. [29] have 

designed a novel computer-aided diagnosis system that 

comprised a bandwidth-duration localized and three-channel 

orthogonal wavelet filter bank (TCOWFB) for the detection of 

depression subjects. The L2 norm algorithm was utilized as 

feature extraction from TCOWFB coefficients and resulted in 

99.58% ACC in a ten-fold cross-validation strategy by using 

least square SVM. 

In contrast to these three traditional methods for feature 

extraction, there is a deep learning method. Deep learning is 

becoming a significant technique in biomedical signal 

processing applications. But the main defect of deep learning 

is its cumbersome calculations.  

Acharya et al. [30] developed a deep convolutional neural 

network model for the detection of depression. The 

experimental results of this work revealed that the 

classification ACC of 93.5% and 96.0% were attained by the 

left and right hemispheres, respectively. Their framework 

categorizes in deep learning.  

 

1.3 Contribution 

 

The main contribution of this study is to utilize the second 

order difference plot (SODP) of EEG signals, new geometrical 

features and binary particle swarm optimization (BPSO) as 

feature selection algorithm in normal and depression EEG 

signal classification.  

With a glance at the past researches, it can be said that most 

of them have been developed based on wavelet transforms and 

nonlinear features like entropies. Although these methods can 

detect depression, but they cannot clearly explain the nonlinear 

behaviours of normal and depression EEG signals in time 

domain which can use as a significant parameter for better 

knowing the nature of depression disorder. For this reason, for 

the first time we plotted the EEG signals in two dimensional 

(2D) space by SODP for the classification of depression and 

normal subjects which is useful method for illustration of 

dynamic and chaotic nature of the EEG signals. 

In other word, we propose a new nonlinear method based 

on illustration of SODP of EEG signals for the detection of 

depressed subjects. The SODP is taken into consideration as a 

technique for 2D illustration of input signal variability [31, 32]. 

SODP has widely been employed in bio-signals processing 

applications. SODP has been used for the detection of focal 

EEG signals [31]. Seizure and seizure-free EEG signals have 

been classified by extracted features from SODP of EEG 

signals [32]. SODP was used for human identification in 

electrocardiography (ECG) signal [33], and it has been used 

for chronic obstructive pulmonary disease detection through 

lung sound signal [34]. Due to more stationary morphological 

behaviors and fewer complexity behaviors of depression EEG 

signals than normal, this work is focused on applying SODP 

for 2D illustration of EEG signals. We believe that the pattern 

of SODP in 2D space can quantify the complexity of EEG 

signals. These reasons motivated us to use SODP for the 

classification of normal and depressed EEG signals. 

Geometrical features have been extracted from 2D 

illustration of several bio-signals including hart rate variability 

(HRV) [35], ECG [36] and EEG [37, 38] for detection of 

disorders. Geometrical features can quantify the variability 

and complexity of the 2D shape of bio-signals. Geometrical 

features have been extracted from Poincaré plot of HRV 

signals to mortality prediction of ICU cardiovascular patients 

[39], as well as prediction of epileptic seizures [40], emotions 

classification [41] and detection of sleep apnea [42]. 

Geometrical features have been extracted from phase space 

reconstruction of EEG signals to detection of focal epilepsy 

[43], seizure [44], ADHD [45] and ECG to heart arrhythmia 

classification [46]. Geometrical features are significant tool 

for showing the dynamic of disorders from 2D shape of bio-

signals. In this article, geometrical features are extracted from 

SODP of EEG signals for classification of normal and 

depressed subjects. 

Most of the previous works in biomedical signal processing 

applications used from statistical approach like ANOVA and 

student t-test as feature selection tools. In other word, they 

used from p-values for selecting the significant features; in 

such a way that features with less than 0.05 p-value can select 

as significant features. But the approach is not useful when the 

p-values of all features are less than 0.05; because all features 

will be used in classifiers whereby the feature vector length 

will have the highest possible length. We should be noted that 

the length of the feature vector has a direct relationship to the 

complexity of the classifier. Thus, a method for founding the 

shortest feature vector with the best performance is desirable. 

In such cases, meta-heuristic algorithms can use for feature 

selection. In this work, BPSO is applied on extracted 

geometrical features for selecting the significant features in 

order to normal and depression EEG signal classification. 

Concerning the pattern of SODP shape in normal and 

depressed EEG signals, several nonlinear geometrical features 

are proposed and BPSO selected the significant features and 

fed to SVM and KNN classifiers in ten-fold cross validation 

strategy. 

The proposed framework has made innovations in the 

processing method, feature extraction, and feature selection 

for depression EEG signals detection based on the previous 

research. Besides, a new visual method for illustration of the 

behavior of normal and depression EEG signals have been 

proposed. 

 

1.4 Organization 

 

The rest of the article is organized as follows. Section 2 

describes the used database and gives information about 

normal and depressed subjects. 
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Section 3, describes the SODP and bolds the differences 

between the SODP of normal and depression EEG signals. 

Section 4 describes the geometrical features and their 

equations. Section 5 describes the feature selection and 

classification. Section 6 shows the results. Discussion and 

conclusion about the results of the proposed framework writes 

in section 7 and 8, respectively.  

 

 

2. USED DATABASE 

 

 
 

Figure 2. A pattern of normal and depressed EEG signals for 

left and right hemispheres 

 

This study is conducted based on a dataset consisting of 22 

healthy (16 men and 6 women) subjects without brain disease 

and 22 depressed subjects (10 men and 22 women) which 

candidate to being admitted to the hospital. A committee of 

senior medical practitioners has authorized the set of data to 

use for research purposes. This experiment was approved by 

the Research Ethics Committee of AJA University of Medical 

Sciences (Approval ID: IR.AJAUMS.REC.1399.049), Tehran, 

Iran. All the subjects were asked to give written consent. The 

participants were selected for both groups (depressed and 

normal situations) in the age group of 23 to 58 years, and then 

EEG signals were recorded for each participant at the resting 

state with eyes-open and eyes-closed and consequently, the 

experiment lasted ten minutes. The recordings were 

accomplished using bipolar surface electrodes according to the 

International 10–20 system. During the experiment, the EEG 

signals were recorded by the FP1-T3 channel from the left 

hemisphere and FP2-T4 channel from the right hemisphere of 

the brain. The sampling frequency rate was set to 256 Hz and 

50 Hz power line intrusion was eliminated with a notch.  

Figure 2 depicts a sample for normal and depressed EEG 

signals for left and right hemispheres. 

 

 

3. SODP 

 

Poincaré plot [47]  and phase space reconstruction [48, 49] 

are previously used for 2D illustration of bio-signals. Recently, 

we used the second-order difference plot  (SODP) for the 2D 

plot of the EEG signal [31]. The SODP can illustrate the 

complexity of EEG signals in 2D space faster than phase space 

reconstruction [31]; because of illustration of the phase space 

matrix requires the calculation of optimum values for delay 

time τ and embedding dimension d, which they computed from 

the input signal by using mutual information [50, 51] and false 

nearest neighbor methods [50], respectively; but in other hand, 

SODP not needs to computing any parameters. For this reason, 

this paper is associated with the application of SODP for 2D 

illustration of the normal and depression EEG signals. SODP 

illustrates the variability of signals in 2D space. By assuming 

that EEG signal is EEG(n), then x(n) and y(n) are defined as 

follows [31, 32]: 

 

( ) ( 1) ( )x n EEG n EEG n= + −  (1) 

  

( ) ( 2) ( 1)y n EEG n EEG n= + − +  (2) 

 

For better understanding the section 2 of present article, we 

assumed x(n) as 𝑥(𝑛) = [𝑥1, 𝑥2, . . . , 𝑥𝑛−2] and y(n) as 𝑦(𝑛) =
[𝑦1 , 𝑦2, , . . . , 𝑦𝑛−2]. Finally, the SODP is plotted by x(n) versus 

y(n). Figure 3 illustrates the SODP for the normal and 

depressed EEG signals.  

 

 
 

Figure 3. SODP of normal and depressed EEG signals for the left and right hemispheres 
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4. FEATURE EXTRACTION 

 

Based on the pattern of the SODP shape of EEG signals, we 

proposed nonlinear geometrical features for discrimination 

between normal and depressed subjects. This section is dealt 

with the description of the proposed geometrical features. 

 

4.1 Standard descriptors (STD) 

 

To quantify the Scattering of EEG data on SODP, we used 

standard descriptors. It is assumed that STD1 and STD2 are 

two lines with 45 and 135 degrees, respectively. STD1 is 

introduced as the standard deviation for the projection of 

SODP on the line perpendicular to the line of identity (y=-x). 

STD2 is defined as the standard deviation for the projection of 

SODP on the line of identity (y=x). We can define STD1 and 

STD2 as following [40]: 

 
1/2 1/2STD1 ( Var (( ( ) ( )) / 2 ) ) x n y n= −  (3) 

 
1/2 1/2STD2 ( Var (( ( ) ( )) / 2 ) ) x n y n= +  (4) 

 

where, Var (.) is the variance. In this work, STD=π 

(STD1×STD2) is utilized to discriminate the features. Figure 

4 indicates STD1 and STD2 for SODP. 

 

 
 

Figure 4. Illustration of STD of SODP of EEG signal as a 

used geometrical feature 

 

4.2 Summation of the angles between consecutive vectors 

(SAV) 

 

To quantify the behavioral complexity for the EEG signal 

in the time domain, we computed the angles between 

consecutive vectors on SODP, which can lead to show better 

information about changes in the EEG signal over time [39]. 

Every three points on SODP makes two successive vectors. 

Assume that (𝑥𝑖, 𝑦𝑖), (𝑥𝑖+1, 𝑦𝑖+1 ) and (𝑥𝑖+2, 𝑦𝑖+2) are related 

to coordinates of three successive points, respectively. Then, 

we can make two successive vectors by using these three 

points as follow: 

 

1 1( , ) ( , )i i i i m ma x x y y x y+ += − − =  (5) 

  

2 1 2 1 1 1( , ) ( , )i i i i m mb x x y y x y+ + + + + += − − =  (6) 

 

Thereafter, the angle between two consecutive vectors a and 

b is defined as follows: 

 

1 1

2 2 2 2

1 1

.
cos

| || |

m m m m

m m m m

x x y ya b

a b x y x y
 + +

+ +

+
= =

+ + +
 (7) 

where, |a| and |b| denote the length of vectors a and b, 

respectively. Also, a.b denotes the inner product of vectors a 

and b. Finally, the summation of the angles between 

consecutive vectors is calculated as following: 

 
2

1 1

2 2 2 2
1

1 1

n
m mm m

m m m m m

x x y y
SAV

x y x y

−
+ +

=
+ +

+
=

+ + +
  (8) 

 

SAV is the summation of the angles between consecutive 

vectors. Figure 5 displays the SAV for SODP. 

 

 
 

Figure 5. Illustration of SAV of SODP of EEG signal as a 

used geometrical feature 

 

4.3 Summation of distances to coordinate (SDC) 

 

The distance of data points to coordinate plane for SODP of 

normal EEG signals are more than depressed signals. This 

issue mentions that we need to compute the summation of 

distances of points of SODP to coordinate in normal and 

depression signals as a feature. It can be calculated as follows 

[39]: 

 
2

2 2

1

( ) ( )
n

i

S y iD x iC
−

=

= +  (9) 

 

where, x(.) and y(.) indicate ith point coordinate on SODP. 

Also, SDC is the summation of distances to coordinate. Figure 

6 demonstrates the SDC for SODP. 

 

4.4 Summation of the triangle area using three successive 

points (STA) 

 

As can be observed in Figure 2, SODP of normal EEG 

signals occupies more area than depressed EEG signals. This 

issue leads us to compute the area as a geometrical feature. For 

this reason, we computed the summation of the triangle areas, 

which can be made by three successive points on SODP as a 

feature. If (𝑥𝑖 ,𝑦𝑖 ), (𝑥𝑖+1 ,𝑦𝑖+1 ) and (𝑥𝑖+2 ,𝑦𝑖+2 ) are three 

successive points on SODP, the summation of triangle areas is 

calculated as following [39]: 

 

1 22

1 2

1

1
det

2
1 1 1

i i in

i i i

i

x x x

STA  y y y  

+ +−

+ +

=

 
 

=
 
  

  (10) 

 

where, n denotes the length of x(n) and y(n), STA is the 

summation of triangle area using three successive points. 

Figure 7 depicts the STA for SODP. 
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Figure 6. Illustration of SDC of SODP of EEG signal as a 

used geometrical feature 

 

 
 

Figure 7. Illustration of STA of SODP of EEG signal as a 

used geometrical feature 

 

4.5 Summation of the shortest distance from each point 

relative to the 45-degree line (SSHD)  

 

It can be understood from Figure 2 that the SODP for 

normal EEG signals is wider than depressed EEG signals. To 

quantify this element for SODP, we calculate the shortest 

distance from each point to the 45-degree line as a feature. If 

(𝑥𝑖, 𝑦𝑖) is a point on SODP, we can calculate the summation 

of the shortest distance from each point relative to the 45-

degree line as [37]: 

 
2

1

( ) ( )

2

n

i

x i y i
SSHD

−

=

−
=  (11) 

 

where, n denotes the length of signal x(n) and y(n). Also, 

SSHD is the summation of the shortest distance from each 

point relative to the 45-degree line. Figure 8 exhibits the SSHD 

for SODP. 

 

 
 

Figure 8. Illustration of SSHD of SODP of EEG signal as a 

used geometrical feature 

 

4.6 Summation of the centroid to centroid distance of 

successive triangles (SCC) 

 

To quantify the self-similarity of the SODP pattern, we 

computed the summation of distances between the centers of 

successive triangles as a feature. To achieve this purpose, we 

should calculate the center of each triangle. We said that every 

three successive points on SODP make a triangle. To attain the 

centroid coordinate of each triangle, we should calculate the 

average coordinates for three successive points, which are 

edges triangle as follow: 

 

1 2

3

i i i
C

x x x
x − −+ +

=  (12) 

  

1 2

3

i i i
C

y y y
y − −+ +

=  
(13) 

 

where, ( 𝑥𝑖−2 , 𝑦𝑖−2 ), ( 𝑥𝑖−1 , 𝑦𝑖−1 ) and ( 𝑥𝑖 , 𝑦𝑖 ) are 

coordinates of triangle edges. Also, 𝑥𝐶  and 𝑦𝐶  indicate the 

coordinate of the centroid of the triangle. Then, by assuming 

that (𝑥𝐶𝑖 , 𝑦𝐶𝑖) and (𝑥𝐶𝑖+1 , 𝑦𝐶𝑖+1) are centroid coordinates for 

two successive triangles, we can compute the summation of 

centroid to centroid distance for successive triangles as 

following: 

 

1 1

2 2( ) ( )
i i i iC C C CSCC x x y y
+ +

= − + −  (14) 

 

SCC is the summation of centroid to centroid distance for 

successive triangles. Figure 9 shows the SCC for SODP. 

 

 
 

Figure 9. Illustration of SCC of SODP of EEG signal as a 

used geometrical feature 

 

4.7 Central tendency measure (CTM) 

 

Central tendency measure (CTM) is used for quantifying the 

degree of variability for SODP of EEG signals [31, 32]. If it is 

assumed that there are N data points on SODP, we can draw a 

circle with radius r from the coordinate center, which covers 

M data points of SODP. Afterward, the CTM is defined as the 

ratio of M/N: 

 

1

1
( )

N

n

n

CTM q b
N =

=   (15) 

  

2 21 [ ( )] [ ( )]
( )

0
n

if x n y n r
q b

otherwise

 + 
= 


 (16) 

 

In this study, we set the range of CTM to 5, 10, 15, …, 90, 

95 and computed the corresponding r. Finally, we used 𝜋𝑟2 a 

feature. In other words, we extracted 19 features to quantify 

the variability of SODP (i.e. CTM 5, CTM10, CTM15, …, 

CTM90, CTM95). Figure 10 displays the CTMs for SODP. 
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Figure 10. Illustration of CTMs of SODP of EEG signal as a 

used geometrical feature 

 

4.8 Summation of successive vector lengths (SSVL) 

 

Every two successive points on SODP make a vector. To 

quantify the amplitude changes of EEG signals in the time 

domain, which can be defined as a covered distance for SODP 

of EEG signals on a coordinate plane, we calculate the 

summation of successive vector lengths (SSVL) as a feature. 

It is defined as following [37]: 

 
1

2 2

1 1

1
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where, n denotes the length of x(n) and y(n). Also, (𝑥𝑖, 𝑦𝑖) and 

( 𝑥𝑖+1 , 𝑦𝑖+1 ) indicate the centroid coordinates for two 

successive points, which make a vector. The SSVL for SODP 

is shown in Figure 11. 

 

 
 

Figure 11. Illustration of SSVL of SODP of EEG signal as a 

used geometrical feature 

 

A summary of the concept and meaning of proposed 

geometrical features is given in the Table 1. 

 

Table 1. The geometrical features and their meaning 

 

Feature  Meaning  

STD 
Quantifies the scattering of SODP points on the 

coordinate plane  

SAV 
Quantifies the complexity of SODP by measuring the 

variation of angles 

SDC 
Quantifies the scattering of SODP from coordinate 

center 

STA Quantifies the area of SODP  

SSHD Quantifies the scattering of SODP from 45-degree line 

SCC Quantifies the self-similarity of the SODP shape 

CTMs 
Quantifies the variation of SODP shape from 

coordinate center 

SSVL Quantifies the variation of length of SODP shape 

 

5. FEATURE SELECTION AND CLASSIFICATION 

 

The BPSO algorithm is considered as one of the meta-

heuristic algorithms for solving the problems with the least 

information [52]. In many applications, it belongs to the 

swarm intelligence algorithms and is used as a solution for 

solving binary optimization problems. In this work, we used 

BPSO as a feature selection method. The number of particles 

(N), maximum number of iterations (T), cognitive factor (C1), 

social factor (C2), maximum velocity (Vmax), maximum 

bound on inertia weight (Wmax), and minimum bound on 

inertia weight (Wmin) are the parameters of BPSO algorithm 

[53]. In this work, for implementation of the BPSO algorithm, 

the value of N, T, C1, C2, Vmax, Wmax, and Wmin 

parameters are selected to 10, 100, 2, 2, 6, 0.9, and 0.4, 

respectively. Besides, the performance of the classifier is used 

as the fitness function in the BPSO algorithm.  

Two famous classifiers namely SVM and KNN are used for 

the classification of the selected geometrical features by the 

BPSO algorithm.  

The SVM is taken into account as a supervised learning 

method [54-56]. In recent years, it has shown acceptable 

performance for classification and solving regression 

problems. The SVM classifier mapped the training data into a 

high dimension space by the kernel function. In the new space, 

a hyper-plane is separated the data into different classes. The 

selection of kernel function has a direct relationship to the 

performance of the SVM classifier. In this work, the radial 

basis function (RBF) is used as the kernel function for 

mapping of the dataset. Sigma value in RBF is changed from 

0.1 to 1.5 by 0.1 steps. 

The KNN is characterized as a non-parametric and simple 

method with simple implementation. KNN algorithm 

calculates the distance between an input test data and all 

training samples in a training dataset [29, 57]. Then, K samples 

are taken from the training dataset, which has the nearest 

distance to the test data. Then, they are saved as a new dataset. 

Thus, a class that has the most frequent items in the new set is 

assigned as the class of test data. There are different metrics 

for computation of the distance metric such as Euclidean and 

city block distances. The value of K in the KNN algorithm is 

an important parameter in the KNN classifier. For this reason, 

in this work, the value of k is changed from 2 to 9 by one step. 

 

 

6. RESULTS 

 

In this paper, we used SODP to plot the variations of EEG 

signals in 2D space. Figures 2 and 3 show the EEG signals and 

their SODP for depressed and normal subjects. Aimed at the 

pattern of SODP for normal and depression EEG signals, we 

proposed the number of 26 nonlinear geometrical features 

including STD, SAV, SDC, STA, SSHD, SCC, 19 CTMs 

(i.e.CTM5, CTM10, …, CTM90, CTM95) and SSVL for 

classification of normal and depressed subjects. 

Table 2 gives the mean, standard deviation and p-value for 

the extracted features. According to the obtained results, we 

can understand that the proposed geometrical features within 

the normal groups considerably have higher mean values than 

the depressed groups in both hemispheres. 
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Table 2. Mean ± standard deviation values and p-values of 

features 

 

Left hemisphere 

Features Normal Depression p-value 

STD 829±1.01e+4 196±4.53e+2 1.47E-295 

SAV 74087±3.71e+3 60318±1.42e+4 0 

SDC 38274±1.51e+4 19342±1.09e+4 0 

STA 199631±3.07e+6 40489±1.22e+5 0 

SSHD 11076±4.82e+3 4544±3.55e+3 0 

SCC 34957±1.45e+4 14533±1.09e+4 0 

CTM5 42±1.94e+1 11±1.93e+1 0 

CTM10 88±3.81e+1 24±3.98e+1 0 

CTM15 141±6.07e+1 38±6.26e+1 0 

CTM20 200±8.61e+1 54±8.86e+1 0 

CTM25 269±1.19e+2 73±1.18e+2 0 

CTM30 347±1.48e+2 95±1.51e+2 0 

CTM35 437±1.87e+2 120±1.88e+2 0 

CTM40 541±2.33e+2 150±2.31e+2 0 

CTM45 664±2.89e+2 186±2.81e+2 0 

CTM50 808±3.58e+2 228±3.40e+2 0 

CTM55 979±4.42e+2 278±4.10e+2 0 

CTM60 1187±5.67e+2 340±4.96e+2 0 

CTM65 1448±9.01e+2 417±6.05e+2 0 

CTM70 1800±2.21e+3 513±7.41e+2 0 

CTM75 2311±5.82e+3 639±9.22e+2 0 

CTM80 3040±1.25e+4 814±1.18e+3 0 

CTM85 4084±2.26e+4 1086±1.61e+3 0 

CTM90 5966±4.68e+4 1605±2.66e+3 0 

CTM95 9855±1.02e+5 3120±7.41e+3 0 

SSVL 23889±1.05e+4 9843±7.63e+3 0 

Right hemisphere 

Features Normal Depression p-value 

STD 1235± 2.14e+4 164±7.55e+2 0 

SAV 75012±3.40e+3 59136±1.38e+4 0 

SDC 40837± 2.16e+4 18649±9.18e+3 0 

STA 293033±5.58e+6 29071±1.86e+5 0 

SSHD 11963±6.60e+3 4181±2.63e+3 0 

SCC 37656±1.92e+4 13504±7.84e+3 0 

CTM5 47±1.90e+1 10±1.25e+1 0 

CTM10 98±3.91e+1 21±2.49e+1 0 

CTM15 157±6.10e+1 33±3.80e+1 0 

CTM20 223±8.65e+1 47±5.23e+1 0 

CTM25 299±1.15e+2 63±6.87e+1 0 

CTM30 385±1.48e+2 82±8.81e+1 0 

CTM35 486±1.88e+2 104±1.10e+2 0 

CTM40 602±2.34e+2 130±1.36e+2 0 

CTM45 738±2.89e+2 162±1.67e+2 0 

CTM50 896±3.57e+2 199±2.06e+2 0 

CTM55 1087±4.46e+2 244±2.52e+2 0 

CTM60 1317±5.70e+2 299±3.09e+2 0 

CTM65 1604±8.49e+2 367±3.83e+2 0 

CTM70 1995±2.19e+3 454±4.88e+2 0 

CTM75 2687±1.02e+4 568±6.48e+2 0 

CTM80 3755±2.58e+4 728±9.38e+2 0 

CTM85 5379±5.17e+4 974±1.56e+3 0 

CTM90 8366±1.07e+5 1433±3.25e+3 0 

CTM95 16520±2.92e+5 2555±8.14e+3 0 

SSVL 25806±1.43e+4 9049±5.66e+3 0 

 

In other words, SODP of normal EEG signals occupies 

more areas than the normal subjects (see Figure 3). Another 

information that we can realize through Figure 3 coincides 

with the complexity of SODP in EEG signals. According to 

Figure 3, it is clear that the SODP of normal EEG signals has 

a more complex shape than depression. On the other hand, the 

SODP of depression EEG signals has more regular shape than 

the normal cases. We can say this concept by analysing the 

standard division values of features in Table 2, because of the 

standard deviation of features in depression EEG signals are 

less than normal EEG signals. It may be due to the decreased 

activity of neurons in the depressed subject’s brain. It has also 

been found in the previous studies that the depression EEG 

signals have more stationary behavior and deal with less 

complexity (more probability) in comparison with the normal 

EEG signals [29, 30]. Kruskal-Wallis statistical test can show 

the ability of feature in discrimination of classes in binary 

classification [6-10]. Kruskal-Wallis statistical test computed 

the p-value for the extracted features for the normal and 

depression EEG signals [8, 9]. The lesser p-value indicates that 

the proposed feature has more ability in discrimination of 

classes [27, 28]. In this work, the “Kruskal-Wallis” function in 

MATLAB is used to calculate the p-value for the features. 

Since the resulted p-values for all extracted features were zero 

(except the SAV in the left hemisphere with the value of 

1.47E-295), so we can argue that all of the proposed 

geometrical features can be used for detection of depression 

EEG signals in both hemispheres. Besides BPSO is used as a 

feature selection technique to reduce the feature vector arrays. 

In this work, the performance of the SVM classifier with RBF 

kernel function and KNN classifier with Euclidean and city-

block distances in tenfold cross validation strategy are chosen 

as fitness function in the BPSO algorithm. For the 

implementation of BPSO in MATLAB, the written function 

by Too et al. has been used [58]. The selected features by 

BPSO in the right and left hemispheres with SVM and KNN 

classifier fitness function are written in Table 3. 

These features are fed as input for SVM and KNN 

classifiers in a ten-fold cross-validation strategy. 

In ten-fold cross-validation, the dataset is divided into ten 

equal subsets. Then, the classifier is tested ten times by one of 

the subsets and trained by the other subsets (i.e., the nine 

remaining subsets). In the ten-fold cross-validation strategy, 

each subset of data is used once as test data and nine times as 

training data in a classifier. Finally, summation values of true 

positive (TP), false positive (FP), true negative (TN) and false-

negative (FN) from ten times running of the classifier are used 

for computation of classifier performance. TP, TN, FP and FN 

parameters are defined as follow: 

 

TP: when a test signal with the depression label is correctly 

identified by the classifier as a depression signal. 

FP: when a test signal with the normal label is incorrectly 

identified by the classifier as a depression signal. 

TN: when a test signal with a normal label is correctly 

identified by the classifier as a normal signal. 

FN: when a test signal with the depression label is 

incorrectly identified by the classifier as a normal signal. 

 

Thereafter, various objective parameters including: 

accuracy (ACC), sensitivity (SEN), specificity (SPE), positive 

predictive value (PPV), negative predictive value (NPV) and 

Matthews correlation coefficient (MCC) are computed for 

evaluation of classifier performance. These are determined as 

follow: 
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Table 3. Selected features by BPSO algorithm with SVM 

and KNN classifiers performance fitness function 

 

Selected features 

Fitness 

function 
Left hemisphere 

SVM 

(RBF kernel 

function) 

STD, SAV, SDC, STA, SSHD, SCC,CTM40, 

CTM60, CTM65, CTM70, CTM85, CTM90, 

CTM95 

KNN 

(City-block 

distance) 

STD, SSHD, SCC, SSVL, CTM5, CTM10, 

CTM60, CTM65 , CTM70, CTM85, CTM90, 

CTM95 

KNN 

(Euclidean 

distance) 

STD, SSHD, SCC, 

CTM5, CTM10, CTM30, CTM45 , CTM60, 

CTM65, CTM85, CTM90, CTM95 

Fitness 

function 
Right hemisphere 

SVM 

(RBF kernel 

function) 

STD, SAV, STA CTM5,CTM10,CTM30, 

CTM45, CTM60, CTM65, CTM70, CTM85, 

CTM90, CTM95 

KNN 

(City-block 

distance) 

SAV, SDC, CTM25, CTM30, CTM35, 

CTM45, CTM50, CTM65, CTM70, CTM85, 

CTM90, CTM95 

KNN 

(Euclidean 

distance) 

STA, SAV , SCC, SSVL, CTM20, CTM35, 

CTM40, CTM50 , CTM60, CTM65, CTM75, 

CTM90, CTM95 

 

ACC measures the algorithm's ability to distinguish against 

depression and normal signals, SEN and SPE calculate that the 

classifier is capable of accurately determining depression and 

normal instances respectively. The PPV and NPV are the 

proportions of positive and negative test results respectively 

for subjects with the correct diagnosis. Also, the MCC is a 

quality of binary classification performance. Tables 4 to 6 

represent the performance of SVM and KNN classifiers for 

classifying the left and right hemispheres for the selected 

features by applying BPSO. 

 

Table 4. Performance of SVM classifier with RBF kernel 

function in the classification of geometrical features 

 

Objective parameters 
Hemisphere 

Left Right 

ACC (%) 96.95 98.30 

SEN (%) 96.09 97.53 

SPE (%) 97.81 99.07 

PPV (%) 97.78 99.06 

NPV (%) 96.16 97.57 

MCC 0.94 0.96 

RBF parameter 0.2 0.2 

 

Table 5. Performance of KNN classifier with Euclidean 

distance in the classification of geometrical features 

 

Objective parameters 
Hemisphere 

Left Right 

ACC (%) 97.79 98.58 

SEN (%) 96.79 97.63 

SPE (%) 98.79 99.53 

PPV (%) 98.77 99.53 

NPV (%) 96.85 97.67 

MCC 0.96 0.97 

Number of K 2 2 

 

Table 6. Performance of KNN classifier with City block 

distance in the classification of geometrical features 

 

Objective parameters 
Hemisphere 

Left Right 

ACC (%) 97.84 98.79 

SEN (%) 96.14 97.72 

SPE (%) 99.53 99.86 

PPV (%) 99.52 99.86 

NPV (%) 96.27 97.77 

MCC 0.96 0.98 

Number of K 4 6 

 

The results of the tables reveal that the proposed 

geometrical features provide average classification ACC of 

96.95% and 98.30%, SEN of 96.09% and 97.53%, SPE of 

97.81% and 99.07% when we used SVM classifier with RBF 

kernel in the left and right hemispheres, respectively. 

Also, average classification ACC of 97.79% and 98.58%, 

SEN of 96.79% and 97.63%, SPE of 98.79% and 99.53% 

when we used the KNN classifier with Euclidean distance in 

the left and right hemispheres, respectively. 

In the same way, average classification ACC 97.84% and 

98.79%, SEN of 96.14% and 97.72%, SPE of 99.53% and 

99.86% when we used KNN classifier with City block distance 

in the left and right hemispheres, respectively. 

For comparing the capability of used classifiers in 

classification of normal and depression EEG signals, area 

under the ROC curve for SVM classifier with RBF kernel 

function and KNN classifier with Euclidian and City block 

distances are showed in Figure 12. 

 

 
 

Figure 12. The ROC curve for classifiers 

 

It is clearly from Tables 4 to 6 and Figure 12 that the EEG 

signals of right hemisphere is better than left hemisphere in 

classification of normal and depression EEG signals. To 

implement the analysis process, a computer system was 

employed with the specifications of i5-M480 CPU (2.67 GHz), 
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6GB RAM, and MATLAB 2014a software package was 

considered for the purpose. The analysis results indicate a 

small run time, which is due to the simplicity of the proposed 

method. Also, our proposed method requires less than 0.02 

seconds for the extraction of all 26 geometrical features from 

an input test signal and less than 0.001 seconds for 

classification. The proposed method requires less 

computational time because of applying a minimum number 

of arrays in the feature vector. The proposed method will 

require less time when implementing with C++ codes. 

 

 

7. DISCUSSION  

 

In this article, EEG signals of normal and depression groups 

are plotted by SODP and 26 nonlinear geometrical features are 

extracted. After that, BPSO selected significant features and 

fed to SVM and KNN classifiers. Finally objective parameters 

including ACC, SE, SPE, PPV and MCC calculated for 

evaluating the geometrical features performance in normal and 

depression EEG signal classification task. Proposed method 

evaluated by using EEG signals acquired from 22 normal and 

22 depressed subjects. The FP1-T3 and FP2-T4 bipolar 

channels on the left and right halves of the brain have made all 

EEG signals. We showed that mean and standard deviation of 

geometrical features in normal EEG signals are more than 

depression EEG signal; besides, SODP of depression EEG 

signals has more rhythmic and regular shape than normal EEG 

signals which it can may due to increasing connection between 

the synapses in depressed brain in compared to normal brain. 

This concept has been reported in previous work in such a way 

that EEG signals in the depressed group have more stationary 

morphological behaviors and fewer complexity behaviors than 

normal groups [29-31]. P-value for all features were zero that 

indicate to ability of geometrical features in normal and 

depression EEG signals classification task. 

For showing the reliability of proposed method, the 

objective parameters are reported in tenfold cross-validation 

strategy. Logic, analysis, sequencing, mathematics, language, 

facts, computation, facts and training are related to the left 

hemisphere. In the other hand, creativity, imagination, arts, 

nonverbal skills, feelings, a tune of songs, daydreaming and 

creativity are related to the left hemisphere. It is clear that 

resulted in ACC by EEG signals of the right hemisphere are 

higher than the left hemisphere in all classifiers. Also, we have 

found that ACC of KNN classifier with Euclidean and City 

block distances are better than the SVM classifier with RBF 

kernel function for both hemispheres. Proposed method 

resulted to pretty good average classification ACC of 97.84% 

and 98.79% for the left and right hemispheres, respectively. 

We showed that EEG signals acquired from the right 

hemisphere are significant than left hemisphere in 

classification of normal and depression EEG signals. Similar 

concept has been obtained in the previous studies which used 

from FP1-T3 and FP2-T4 channels from left and right 

hemispheres for depression diagnostic.  

However, we cannot expand this consequence for other 

studies that used from other electrodes for recording EEG 

signals. Table 7 compares our proposed method with the 

existing methods in this area. 

The results of Table 7 demonstrate that proposed method 

provides better classification ACC in comparison with the 

methods developed by references [16-18, 21-23, 25, 27]. Also, 

our proposed method generates lesser classification ACC than 

references [26, 29]. The performance of our proposed method 

has resulted in a ten-fold cross-validation strategy. Whereas, 

classification ACC of 99.50% (reported by reference [26]) was 

reached without considering any cross-validation for solving 

the problem. In other words, the performance of proposed 

method is reported in rigorous conditions.  

Although the reported classification ACC [29] was higher 

than proposed method, their method used BDL-TCOWFB as 

a processing tool, which decomposes EEG signals into three 

steps, and then they computed Logarithm of L2 norm as a 

feature from TCOWFB coefficients. On the other hand, our 

proposed method has very lightweight calculations due to the 

simplicity of SODP plotting and the extraction of proposed 

geometrical features. Despite the highest classification ACC 

in [29], we can argue that our method can be implemented 

easier than the method represented by reference [29]. Besides, 

we proposed a novel illustration method for visual inspection 

of normal and depression EEG signals (see Figure 3). It can be 

a useable tool for psychologists, psychiatrists, neurologists 

and the other members of the medical team. 

 

Table 7. Comparison of our proposed method with existing 

methods for the detection of depression 

 
Reference, 

year 
Used Database 

Cross-

validation 

ACC 

(%) 

[16], 2001 
“70 normal and 23 

depressed subjects” 
No 91.3 

[17], 2012 
“12 normal and 12 

depressed subjects” 
No 91.30 

[25], 2012 
“15 normal and 15 

depressed subjects” 
No 98.11 

[18], 2013 
“45 normal and 45 

depressed subjects” 

Leave one 

out 
90.05 

[26], 2014 
“15 normal and 15 

depressed subjects” 
No 99.50 

[21], 2015 
“15 normal and 15 

depressed subjects” 
No 98.00 

[27], 2017 
“20 normal and 20 

depressed subjects” 

Leave one 

out 
81.23 

[22], 2017 
“30 normal and 34 

depressed subjects” 
Ten fold 98 

[23], 2017 
“15 normal and 15 

depressed subjects” 

Leave one 

out 
94.30 

[28], 2018 
“13 normal and 13 

depressed subjects” 

Leave one 

out 
92 

[30], 2018 
“15 normal and 15 

depressed subjects” 
Ten fold 95.96 

[29], 2018 
“15 normal and 15 

depressed subjects” 
Ten fold 99.54 

Present study 
“22 normal and 22 

depressed subjects” 
Ten fold 98.79 

 

According into Table 7, we can say that the proposed 

method provides up to 17.56% classification improvement in 

comparison with other studies in normal and depression EEG 

signal classification task. 

The advantages of proposed method are written bellow: 

- Proposed method is an accurate and robust computer aided 

system in depression detection which provides perfect average 

classification ACC of 98.79% and the MCC value of 0.98 

which indicates the effectiveness of binary classification. 

- We showed that SODP of EEG signals can use as 

biomarker for analysing the intrinsic behaviours of depression 

disorder. In other word, we proposed a new illustration method 

for visual inspection of EEG signals for detecting depression 

in EEG signals (See Figure 3) for medical team. 
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- The required time for feature extraction and classification 

of an input signal was near of 0.02 and 0.01 seconds which 

indicates to simplify and Lightweight of calculations in 

proposed method. 

- proposed method extracts the features directly from SODP 

of EEG signal and it does not use from any time-frequency 

method which wavelet packet decomposition [26], discrete 

wavelet decomposition [17, 19, 25], Fourier transform [16] 

and TCOWFB [29] have been used for computation of EEG 

signals coefficients which makes their method complex than 

proposed method. 

- We used from two channels for classification of normal 

and depression EEG signals while 7 channels [17], 8 channels 

[27] and 19 channels [19, 22] have been used for classification 

of normal and depression EEG signals. 

- The objective parameters of classifier reported in tenfold 

cross-validation strategy which makes proposed method more 

reliable and efficient while the objective parameters reported 

without any cross validation methods [16, 17, 21, 25, 26]. 

- We used from BPSO algorithm for reduction the feature 

vector arrays. BPSO could redact the feature vector from 26 to 

12 and 13 arrays. In other word, BPSO discarded more than 

50% of extracted geometrical features while 20 [25], 30 [18], 

15 [21] and 100 [22] feature have been used for depression 

detection. 

- The proposed method can implement in MATLAB 

software, then it can installed on computers in medical clinics 

and hospitals. It can be used easily by physicians and nurses 

and does not depend on psychiatrist experience or 

psychological counseling. Of course, it should be noted that 

physicians make the final diagnosis, but this system can be 

advantageous for the physician for an accurate diagnosis of 

depression. 

 

 

8. CONCLUSION 

 

In this article we proposed 26 different geometric features 

based on the SODP formation pattern in EEG signals for the 

identification of normal and depression patients. Through 

Kruskal–Wallis and BPSO method, substantial features were 

picked and then fed into KNN and SVM classifiers in ten-fold 

cross validation strategy. The EEG signals of 22 normal and 

22 depression patients have been analyzed for the proposed 

procedure and results showed that the cumulative accuracy of 

97.84% and 98.79% is obtained with the left and right 

hemispheres respectively. It can also be observed from results 

that the SODP shape of normal EEG signals was more 

complex (less predictable) than depression signals. Besides the 

SODP shape of depression EEG signals was more regular than 

normal signals, which can be a useful tool for visual inspection 

of EEG signals in normal or depressed subject’s detection. In 

future, the proposed method can be used for the identification 

of different disorders such as epilepsy, sleep apnea and 

schizophrenia etc. 
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positron emotion tomography PET 
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Electrocardiography ECG 

hart rate variability HRV 

three-channel orthogonal wavelet filter bank TCOWFB 
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binary particle swarm optimization BPSO 

analysis of variation ANOVA 

Standard descriptors STD 

Summation of the angles between consecutive 

vectors 
SAV 

Summation of distances to coordinate SDC 

Summation of the triangle area using three 

successive points 
STA 

Summation of the shortest distance from each 

point relative to the 45-degree line 
SSHD 

Summation of the centroid to centroid distance 

of successive triangles 
SCC 

Central tendency measure CTM 

Summation of successive vector lengths SSVL 

true positive TP 

false positive FP 

true negative TN 

false-negative FN 
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